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Identifying the source of an outbreak facilitates its control. Spatial methods are not optimally used in outbreak
investigation, due to a mix of the complexities involved (e.g., methods requiring additional parameter selection),
imperfect performance, and lack of confidence in existing options.We simulated 30mock outbreaks and compared
5 simple methods that do not require parameter selection but could select between mock cases’ residential and
workplace addresses to localize the source. Each category of site had a unique spatial distribution; residential and
workplace address were visually and statistically clustered around the residential neighborhood and city center
sites respectively, suggesting that the value of workplace addresses is tied to the location where an outbreak might
originate. A modification to centrographic statistics that we propose—the center of minimum geometric distance
with address selection—was able to localize the mock outbreak source to within a 500 m radius in almost all in-
stances when using workplace in combination with residential addresses. In the sensitivity analysis, when given
sufficient workplace data, the method performed well in various scenarios with only 10 cases. It was also success-
ful when applied to past outbreaks, except for a multisite outbreak from a common food supplier.

algorithms; food-borne diseases; geographic information systems; infectious disease outbreaks; source
localization; source of outbreak; spatial analysis; workplace

Abbreviation: CI, confidence interval.

The nature of transmission for some infectious diseases in-
fluences their spatial epidemiology, but several challenges exist
in optimally using spatial data to investigate infectious disease
outbreaks. First, information on the spatial relationship between
the source of infection and infected cases is often incomplete
(1). Other than residential addresses (often routinely captured
in administrative health-care data), additional spatial informa-
tion is less readily available. In outbreaks arising from a food
outlet where customers reside nearby, residential address might
be most relevant. However, more meals are bought outside the
home (2–5), and in food establishments serving concentrations
of working populations, workplace addresses might be more
relevant. Workplace addresses have indeed been obtained for
and shown to be useful in studies of pollution (6), dengue (7)

and Zika (8) epidemiology as well as, more broadly, some syn-
dromic surveillance systems (9).

A second challenge is how to simultaneously integrate mul-
tiple sources of address information. While visualization plots
are often used when communicating findings from outbreak
investigations (10), meaningful combination of 2 or more sources
of spatial information to localize the origin of an outbreak has
not been addressed. Moreover, in complex spatial techniques,
unknown parameter values often need to be estimated using
additional data sources or to be subjectively selected by the
user. For instance, with Kulldorff’s spatial scan statistic under-
lying population density as well as radius and shape of the scan-
ning window (11) are key parameter selection choices that can
significantly influence results (12). Without data from a range
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of real outbreaks with both residential and workplace addresses
as well as the outbreak source, it is challenging to establish the
validity of any of these models and parameter choices.

We aimed to address some of the above challenges. First, we
have proposed a data collection methodology for generating
mock outbreaks to validate spatial epidemiologic methods. We
then used survey data to study factors associated with the dis-
tance from the source to residential and workplace addresses,
and to validate a simple algorithm we propose that meaning-
fully combines residential and workplace (and potentially other)
addresses to help identify the source of an outbreak by localizing
it to a particular vicinity, yet does not require additional parame-
ter selection for implementation. Finally, we validated the algo-
rithm on a group of real food-borne and vector-borne outbreaks
where a presumptive geospatial sourcewas identified.

METHODS

Study design for mock outbreaks

Singapore is a dense urban city where consumption of pre-
pared food outside the home is common (13). We designed a
study to generate mock outbreaks with data on the geographical
dispersion of residential and workplace addresses of potentially
affected individuals, focusing on how a food-borne disease out-
break might present should a food establishment in a given
location become the source.

A street-intercept survey (14, 15), where participants com-
pleted a survey within sight of but (to avoid conflicts with
commercial interests) outside of a major entry and exit point
of shopping malls, was performed. We used shopping malls
as a proxy for food establishments because food establish-
ments are commonly located within and/or in the immediate
vicinity of malls.

To ensure adequate representation across Singapore, we
surveyed 30 sites, 10 each from 3 broad categories of target
locations. We randomly selected 10 train stations outside the
central district and then identified 2 categories of target loca-
tions for each station. First, for residential hub sites, we ran-
domly selected a mall within 300 m of the station and then
identified a corresponding survey site. Secondly, we ran-
domly selected a residential neighborhood served by those

selected stations (at least 500 m from the nearest train sta-
tion); not all had a mall in their immediate vicinity, but all
had clusters of food establishments, which we then used as the
target location. Third, for city center sites, we randomly selected
5 train stations in the central district and then randomly selected
2 malls within a 300-m radius of each station for a combined
total of 10 sites.

Survey instrument, conduct, and sample size

The National University of Singapore Institutional Review
Board approved the study (NUS-13-303). At the chosen loca-
tions, trained interviewers approached every tenth person crossing
their path. Those giving verbal consent filled out a short ques-
tionnaire (approximately 5 minutes long; see Web Appendix
1, available at https://academic.oup.com/aje).

We estimated that a sample size of 100 would be required
for sufficient numbers in a subsequent sensitivity analysis for
mock outbreaks up to a maximum size of 50 cases, assuming
that approximately 60% consumed prepared food within the
immediate vicinity of recruitment sites. Participants from city
center sites would more likely have a workplace address, and
we therefore doubled the sample sizes to 200 participants for
residential neighborhood and residential hub sites to ensure
adequate workplace addresses.

Questionnaires were administered around mealtimes (lunch:
12 PM to 4 PM; dinner: 4 PM to 8 PM) on both weekdays and
weekends (with a quarter each for every day of week and meal-
time combination).

Statistical analysis and localization algorithms

Residential distance and workplace distance were defined
respectively as the Euclidean distance between a participants’
residential or workplace address to the survey site. Hierarchi-
cal linear modeling (HLM) with a random intercept was used
to assess whether residential distance and workplace distance
were associated with the category of site, age, sex, time of day,
and day of week, as well as whether participants consumed pre-
pared (ready-to-eat) food purchased from food establishments

Table 1. Description of Centrographic Methods and Their Modifications to Estimate the Source of an Outbreak, Used in an Analysis of Data from
Singapore, 2014–2015

Number Method Name Description of Method Calculation

1 Median center Median x andmedian y coordinate values

2a Center of minimum arithmetic distance Selects the grida point with the minimum sum of arithmetic distance to all coordinate points

2b Center of minimum arithmetic distance
with address selection

When both address types are available, the address type that is closer to each grida point
is selected before calculating the sum of distance for each grid point; the grid point with
theminimum sum of arithmetic distance is selected

3a Center of minimum geometric distanceb Selects the grida point with the minimum sum of geometric distance to all coordinate points

3b Center of minimum geometric distance
with address selectionb

When both address types are available, the address type that is closer to each grida point
is selected before calculating the sum of distance for each grid point; the grid point with
theminimum sum of geometric distance is selected

a Grid refers to a standard grid (50m × 50m) of Singapore created for all analyses usingmethods 2a–3b.
b Geometric distance was calculated using the logarithm to base 10, and minimum distance was set to 10m to prevent negative or undefined

values.
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at that site, with the site identifier as the random effect. P values
less than 0.05 were considered statistically significant.

We next tested how various algorithms for centrographic
statistics could locate the geographical source of an outbreak
using residential and workplace addresses. The objective was
to use the algorithms to identify a putative center in close prox-
imity to the actual source to allow an efficient search for a poten-
tial source of contamination. To localize the putative center,
we relied on centrographic methods and our ownmodification
of these methods, described in Table 1.

To determine the performance of each method, the Euclidean
distance between the survey site and putative center was cal-
culated. Residential and workplace addresses do not change
frequently, but people frequently eat at different locations yet
would not travel too far to consume food. Hence, we used 500m
(surrogate for a 5-minutewalk) as the benchmark for performance.

We performed sensitivity analyses to assess performance
in outbreak scenarios involving fewer cases. At each survey
site, we randomly sampled individuals without replacement.
For each sample size simulated (50, 25, and 10), we per-
formed 1,000 iterations and then assessed the distribution of
distances from the putative centers to the survey sites.

Analysis of real outbreaks

The algorithms were further validated using data from past
outbreaks where we had some certainty about the geospatial
source of the outbreak. Because workplace addresses were
unavailable for the 2 food-borne disease outbreaks (one has
been published (16)), we also tested the algorithms on data
from 6 vector-borne disease outbreaks (5 chikungunya virus and
1 Zika virus) where workplace addresses are routinely collected.
Although vectors are mobile (unlike food establishments), the
range of Aedes aegypti and Aedes albopictus (vectors for den-
gue, Zika, and chikungunya) are fairly limited (17). Methods 2
and 3 were tested for their ability to estimate a putative center
from outbreak cases, and this was then referenced against the
presumptive outbreak source. For the food-borne and vector-

borne disease outbreaks, respectively, this was the contaminated
food establishment and the center of all points where vectors
positive for the outbreak virus were found. Table 2 (with Web
Figures 1–9) provides additional information on these outbreaks.

Finally, in an outbreak, some cases whose clinical presenta-
tion matches the outbreak case definition are actually unrelated
to the outbreak. We tested the algorithms’ sensitivity to such
unrelated cases. These might be a small fraction of a total out-
break data set, given that investigations typically case-find
around a suspected geographical source. However, unrelated
cases might have a disproportionate influence early in an out-
break when the number of outbreak-associated cases is small.
We generated random samples of 3 real outbreak cases, and
we then mixed these with up to 3 individuals (with their asso-
ciated residential and workplace addresses) randomly sampled
from our entire mock outbreak data. The distance between the
estimated putative center and the presumptive source was then
estimated using methods 2 and 3 and compared graphically.

R, version 3.3.2 (R Foundation for Statistical Computing,
Vienna, Austria), was used for all statistical analysis (18);
the code is provided inWeb Appendix 2.

RESULTS

A total of 5,012 participants completed the survey (accord-
ing to site: 2,008 from residential neighborhoods; 2,001 from
residential hubs; and 1,003 from city center sites). Median age
was 26 (range, 16–85) years; 47% were female; 46% were em-
ployed; and61%consumedprepared food from that site (Table 3).
Sex distribution was similar across the categories of sites, but
age distributions differed (e.g., those older than 20 years and
up to 35 years comprised one-third from residential neighbor-
hoods but almost one-half from city center sites).

Spatial distribution of addresses

Web Figure 10 shows 1 representative each for residential
neighborhood, residential hub, and city center sites. For residential

Table 2. Description and Performance of Methods on Food-Borne and Vector-Borne Outbreaks in Singapore, 2013–2018

Serial
No. Outbreak Site

Categorya

All Casesb First 14 Daysb

No. of
Casesc Nw

d Nws
e

β
Nc Nw

d Nws
e

β

Method
2a

Method
2b

Method
3a

Method
3b

Method
2a

Method
2b

Method
3a

Method
3b

1 A: GE 1f C 121 0.111 0.063

2 B: GE 2f A 15 1.524 1.428

3 C: ChikV 1 B 13 9 5 0.436 0.386 0.436 0.436 12 8 4 0.386 0.386 0.436 0.436

4 D: ChikV 2 C 52 45 30 0.146 0.215 0.336 0.090 8 7 3 0.405 0.381 0.363 0.363

5 E: ChikV 3 C 12 7 3 0.151 0.151 0.151 0.151 4 0 0 0.197 0.197 0.256 0.256

6 F: ChikV 4 C 42 40 16 0.020 0.064 0.064 0.064 7 6 2 0.064 0.064 0.064 0.064

7 G: ChikV 5 B 14 7 6 0.070 0.070 0.070 0.070 11 6 5 0.070 0.070 0.070 0.094

8 H: ZikV B 43 35 35 0.412 0.412 0.412 0.412 9 9 9 0.412 0.412 0.412 0.412

Abbreviations: GE, gastroenteritis; ChikV, chikungunya virus; ZikV, Zika virus.
a Site categories were: A, city center; B, residential hub; C, residential neighborhood.
b The unit measurement for the β estimates is kilometers.
c Number of cases included (all cases capture residential address).
d Number of valid workplace address from included cases.
e Number of workplace addresses that were selected by the address selection algorithms (2b and 3b) to localize the outbreak source.
f No temporal or workplace information was available.
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Table 3. Demographic Characteristics of Participants (n = 5,012) Surveyed in Singapore, 2014–2015

Characteristic
Overall Residential Neighborhood Residential Hub City Center

No. of Participants % No. of Participants % No. of Participants % No. of Participants %

Age

16–20 1,342 27 484 24 584 29 274 27

21–35 1,893 38 635 32 729 36 529 53

36–50 880 18 394 20 382 19 104 10

51–65 711 14 373 19 262 13 76 8

66–85 186 4 122 6 44 2 20 2

Sex

Male 2,656 53 1,094 55 1,099 55 463 47

Female 2,315 47 899 45 887 45 529 53

Employed

Yes 2,304 46 857 43 875 44 572 57

No 2,700 54 1,150 57 1,120 56 430 43

Food exposurea

Yes 3,070 61 1,122 56 1,256 63 692 69

No 1,942 39 886 44 745 37 311 31

a Individuals who consumed prepared food from a food establishment at the survey site were considered to have food exposure.

Table 4. Hierarchical Linear Regression Analysis, Using Residential Address andWorkplace Address, of SimulatedOutbreaks in Singapore,
2014-2015

Variable
Residential Address (Model 1) Workplace Address (Model 2)

βa 95%CI P Value βa 95%CI P Value

Site

Residential neighborhood 0 Referent 0 Referent

Residential hub 1.285 −0.568, 3.138 0.167 0.643 −0.673, 1.960 0.326

City center 7.287 5.422, 9.152 <0.001 −2.856 −4.219,−1.493 <0.001

Sex

Male 0 Referent 0 Referent

Female −0.063 −0.301, 0.174 0.602 −1.237 −1.765,−0.710 <0.001

Age category, years

16–20 0.399 0.024, 0.775 0.037 −0.382 −1.423, 0.660 0.474

21–35 0.446 0.097, 0.794 0.012 0.304 −0.327, 0.934 0.347

36–50 0 Referent 0 Referent

51–65 −0.601 −1.017,−0.185 0.005 −1.211 −2.231,−0.190 0.021

66–95 −0.842 −1.523,−0.161 0.016 −2.609 −5.515, 0.297 0.080

Food exposureb

No 0 Referent 0 Referent

Yes −0.536 −0.782,−0.290 <0.001 −0.824 −1.382,−0.267 0.004

Time

Weekday lunch 0 Referent 0 Referent

Weekday dinner 0.146 −0.183, 0.474 0.386 1.097 0.341, 1.853 0.005

Weekend lunch −0.518 −0.847,−0.190 0.002 1.743 1.005, 2.481 <0.001

Weekend dinner −0.226 −0.555, 0.103 0.179 1.568 0.823, 2.312 <0.001

Abbreviation: CI, confidence interval.
a The unit measurement for the β estimates is kilometers.
b Individuals who consumed prepared food from a food establishment at the survey site were considered to have food exposure.
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neighborhoods, residential addresses were spatially clustered
around the survey site, while workplace addresses were dis-
persed. The inverse was observed for city center sites. Resi-
dential hubs had patterns between city center and residential
neighborhood sites, with clustering of both residential and
workplace addresses around the site.

Hierarchical linear model regression for residential (model
1) and workplace (model 2) addresses confirmed the visual im-
pressions of spatial distribution patterns (Table 4). Relative to
residential neighborhoods, workplace addresses were about 3 km
closer to city center sites (β = −2.856, 95% confidence interval

(CI): −4.219, −1.493) while residential addresses were about
7 km further away (β = 7.287, 95%CI: 5.422, 9.152). Compared
with residential neighborhoods, participants from residential hubs
lived and worked further from the site (but not significantly so).
Having consumed prepared food from the site (versus those who
did not) was significantly associated with living or working
closer to the site by 500 m (model 1: β = −0.536, 95% CI:
−0.782, −0.290) and 800 m (model 2: β = −0.824, 95%
CI:−1.382,−0.267), respectively. Participants also visited sites
on average 500m (model 1: β = −0.518, 95% CI: −0.847,
−0.190) and 200m (model 1: β = −0.226, 95% CI: −0.555,
0.103) closer to their home during lunch and dinner on the week-
ends, respectively, and on average 2 km further away from their
workplace over the weekend lunch (model 2: β = 1.743, 95%
CI: 1.005, 2.481) and dinner (model 2: β = 1.568, 95% CI:
0.823, 2.312) than during weekday lunch. Older participants,
on average, lived and worked closer to sites. Those aged
50–65 years visited sites approximately 600 m closer to where
they lived (model 1: β = −0.601, 95% CI: −1.017, −0.185)
and approximately 1 km closer to where they worked (model 2:
β = −1.211, 95% CI: −2.231, −0.190). Similarly, those older
than 65 years lived 800 m (model 1: β = −0.842, 95% CI:
−1.523, −0.161) closer and worked 3 km (model 2: β =
−2.609, 95% CI: −5.515, 0.297) closer to sites they visited.

Localizing the source of mock outbreaks using
combinations of address types

With data from surveyed individuals, the mock outbreak
source for residential neighborhoods was localized to within
a 500 m radius of the putative center with just residential ad-
dresses; method 3a performed best (Figure 1A). Workplace
address alone yielded poor results, while combining both ad-
dresses performed similarly to using only residential ad-
dresses (Figure 1A).

In contrast, using residential addresses alone yielded puta-
tive centers relatively far from the city center sites (Figure 1C).
However, workplace address localized the majority of sites to
within 500m regardless of the method used (Figure 1C). With
combined residential and workplace addresses, methods 3a
and 3b had good performance comparable to using only work-
place addresses (Figure 1C).

For residential hubs, residential addresses generally per-
formed better than workplace addresses, but only about half the
sites were localized to within 500m, irrespective of the method
(Figure 1B). Method 3a localized some sites using just work-
place addresses, but the median distance from the putative
center to the site was still 6 km (Figure 1B). The best results
were from combining residential and workplace addresses
using methods 3a and 3b, with 9 of 10 sites localized to within
500 m (Figure 1B).

Impact of the number of mock outbreak cases

Figure 2 presents how method 3b performed when sampling
a limited number of individuals for each site.With 50 randomly
sampled individuals, residential neighborhood sites were local-
ized to within 500m in almost all simulations (Figure 2A).
With 25 individuals, the results were similar with only a slight
decrease in performance at site 9, where approximately 30% of
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Figure 1. Comparison of 5 methods to localize the source of simu-
lated outbreaks, Singapore, 2014–2015. A) Residential neighborhood
(n = 1,122); B) residential hub (n = 1,256); C) city center (n = 692).
The analysis was repeated using different spatial information (i.e.,
residential address, workplace address, or both addresses). The
selection algorithm was applied only when both address types were
used. The distance measured is the Euclidean distance between the
estimated point generated from the various methods and the site of
recruitment and therefore proxy source for the outbreak, with a lower
value being a more desirable result. Each site’s result is indicated by
the black diamonds, and the box plot summarizes the result for each
method, with the midline on each bar representing the median and the
upper and lower extent of the bar depicting the interquartile range for
the site. The black dotted horizontal line indicates our chosen bench-
mark of 500m, with black diamonds below this line hence represent-
ing sites that are localized to a sufficient extent by eachmethod.
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simulations gave a putative center between 500m and 1 km
away (Figure 2B). With 10 individuals, the algorithm still per-
formed well across most sites, except that approximately 15%
of the simulations identified a putative center 2 km or more
away for site 8 (Figure 2C).

While the algorithm performed worse for residential hubs
(Figure 2D–F), with poor ability to localize site 16 in particu-
lar, we were able to localize 9 of the 10 sites to within 1 km
in >50% of the simulations, even with just 10 individuals.

With 50 individuals at city center sites, we had reasonable
results, except for site 26 (>90% of simulations had putative
centers≥500 m away, Figure 2G). However, with 25 observa-
tions, 10%–40% of simulations had poor localization (>2 km)
across several sites. Localization to <500 m was achieved for
only approximately 50% of scenarios using data from 10 indi-
viduals (Figure 2I). We explored the reasons for the poorer
performance by repeating the analysis on all sites for 10 obser-
vations while restricting the sample to individuals who gave a
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Figure 2. Sensitivity analysis of center of minimum geometric distance with address selection (method 3b) for localizing the source of simulated
outbreaks, Singapore, 2014–2015. Rows distinguish between category of site (residential neighborhood (A, B, C); residential hub (D, E, F); city
center (G, H, I)) and columns distinguish between number of samples in each iteration (50 samples (A, D, G); 25 samples (B, E, H); 10 samples (C,
F, I)). A total of 1,000 iterations were performed for each site numbered from 1 to 30 and repeated with different sample sizes. Each color indicates
the proportion of iterations for each site and sample size that was within a range of distance values.
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workplace address (Figure 3). Results for city center sites
improved noticeably (vs. Figure 2I), with performance better
than for residential hubs and closer to that for residential neigh-
borhoods. Methods 3a, 2b, and 2a were inferior to method 3b
across most sites at sample sizes of 25 and 10 (Web Figures -
11–13 respectively).

Validatingmethods 2 and 3 against real outbreaks

We applied the algorithms on past outbreaks to determine
the sources of interest—implicated food establishments and
locations where chikungunya virus– or Zika virus–positive
mosquitoes were trapped—during outbreaks of the respective
infections (19). All methods could localize most outbreaks to
under500m, the exceptionbeing1 food-borneoutbreak (Table2).
On limiting the analysis to cases with symptoms in the first
14 days of the outbreak, the accuracy of the methods deterio-
rated slightly, but estimates remained within 500m from known
sources of interest. Both methods 2 and 3 performed well, with
neither clearly superior. A sizeable number of workplace ad-
dresses were used by the address selection algorithms 2b and
3b, particularly for outbreaks 4 and 8.

Figure 4 shows the boxplot from 1,000 simulations of 3
cases randomly selected from each outbreak and the effect of
unrelated cases on each method. For the food-borne outbreaks
(outbreaks 1 and 2), method 3a performed better than method
2a. Moreover, method 3a maintained a similar result even
with unrelated cases, except when 3 unrelated cases were
added to outbreak 2. For the vector-borne outbreaks, method 2
was marginally better than method 3 in some outbreaks but
was prone to poorer performance with unrelated cases, while
method 3 returned consistent results even with 3 unrelated
cases. Algorithms with address selection performed margin-
ally better than those without (e.g., method 2b performed better
than 2a in outbreaks 3, 4, 5 and 7, and method 3b performed
better than 3a in outbreak 4).

DISCUSSION

Wehave described a mock outbreak data-collection method
and have used it to demonstrate the relative value of residential
and workplace addresses to localize the source of exposure.
Then we proposed modified centroid methods that are simple,
do not require parameterization, and can combine residential
and workplace addresses. The resultant analyses improved on
existing methods and highlighted the added value from work-
place addresses in localizing outbreaks. This was replicated using
data from real outbreaks and corroborates both the utility of
our approach for collecting mock outbreak data and the local-
ization algorithms presented. These findings have important
implications for geospatial approaches to outbreak investiga-
tions and interpretation of surveillance data.

The workplace constitutes a large part of day-time expo-
sure to infectious diseases and often is where people have the
greatest density of contact with others. Consequently, it can be
a key epidemiologic link between outbreak cases. Our find-
ings provide evidence for this and help justify access by health
authorities to sources of such information for surveillance and
outbreak investigation.

Next we introduced simple but, to our knowledge, novel
modifications to traditional methods for estimation of centroids,
and we showed that these modifications improved performance.
Our results suggest that our optimal method was robust across
a variety of scenarios. In addition, our modified methods were
able to handle cases unrelated to an outbreak. Although we had
only a limited number of real outbreaks for validation, they
were sufficiently varied in their locations, covering all 3
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Figure 3. Sensitivity analysis of center of minimum geometric dis-
tance with address selection (method 3b) for localizing the source of
simulated outbreaks, using only individuals who had a workplace
address, Singapore, 2014–2015. The panels distinguish between cat-
egories of site: residential neighborhood (A); residential hub (B); city
center (C). The analysis is limited to iterations with a sample size of
10. Each color indicates the proportion of iterations for each site that
was within a range of distance values.
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categories of sites surveyed in the mock outbreaks (Table 2). In
doing so, we also corroborated our approach to collecting the
mock outbreak data for single point source outbreaks, which
partially mitigates concerns about limitations such as our
choice of preselected sites, response bias, and a lack of a true
representation of the actual number of meals distributed across
space and time (i.e., day of week and different mealtimes). We
believe the approach is simple to execute and can be attempted
to provide data for further testing and development of geospa-
tial methods in settings similar to ours, where there are reason-
ably well-defined areas under surveillance, within which mock
outbreak sites can be selected.

In terms of application, we foresee such outbreak localization
algorithms used in several scenarios, in someofwhich thismethod
might be particularly useful. With infections uncommon out-
side of outbreaks (e.g., sporadic outbreaks of chikungunya and
Zika virus infections analyzed here), or where genetic sequenc-
ing links cases together, these algorithms could be used at the
initial phase of an outbreak to define a case associated with that
outbreak, help with recall when interviewing cases, and narrow
the search area for potential mosquito breeding. They could also
corroborate other information sources (e.g., reports about a spe-
cific food establishment causing food-borne disease). It might
be of particular value for infections with long incubation periods
where food history becomes complicated by recall bias, where
this method could help focus on specific geographical clusters
of food establishments, and triangulated with other findings to
suggest establishments that should be targeted for additional
investigation. The results should always be weighed against
other findings before making a conclusion and taking action.

There are some limitations to our methods. One relates to
the assumption that a singular outbreak arises from a single
source at the site of exposure. Accordingly, ourmethod is unable
to localize an upstream outbreak source or handle multiple
concurrent outbreaks within an area under surveillance. In
the outbreak labelled GE2, our method could neither adequately
localize at least 1 of 2 preschools that catered food nor the food
establishment that provided the food, because there was no
discernable spatial relationship between the upstream source
and cases. However, had workplace information been collected,
it might have been possible to localize the 2 preschools using
clustering techniques to first differentiate the 2 locations
where individuals were exposed. Further work is thus needed
to assess whether spatial clustering techniques, such as those
used with syndromic surveillance (20), can synergize well with
the algorithms we have presented.

The method also underperforms in locations frequented
for reasons unrelated to residence or work. For instance, re-
sults for site 16 were poor because it served as a sports hub
(the closest residential building being approximately 400 m
away), which participants likely frequented mainly for recre-
ational activities. In the case of site 26, this was a transport
node serving a local university, and results might have been
affected because our survey did not capture student status
and where they studied.

While we believe the algorithms presented should be general-
izable to other densely populated metropolitan cities, additional
validation is required in regions with lower population densities
(e.g., rural areas), varying transport systems, and different work
(and food) cultures. The algorithm is also dependent on the

availability of other address types. Notably, other govern-
ment databases (e.g., for tax filing) might contain workplace
addresses, but there are privacy concerns in accessing such
information. Alternatives include collecting such information
at point of notification by health-care providers, or soliciting it
directly from cases (e.g., a participatory surveillance approach
with patients encouraged to submit such information). Although
more difficult to obtain than residential addresses, workplace ad-
dresses have been used in spatial studies of vector-borne trans-
mission patterns (7) and in dengue and Zika virus outbreaks in
Singapore (8, 21). This suggests that we can obtain and use such
information if the justification for doing so exists.

In conclusion, workplace addresses are likely vital to optimiz-
ing use of spatial methods in outbreak investigations, particularly
in transit hubs and sites frequented by working populations. Per-
formance of spatial methods for outbreak detection and investi-
gation has thus far been mixed (1, 10, 20, 22–25), and it would
be interesting to assess the improvement gainedwith the addition
of workplace addresses. Use of the logarithmic distance and
address selection approaches presented here potentially helps to
synthesize residential with workplace (and additional) types of
addresses while reducing the effect of outliers and cases unre-
lated to the outbreak. Additional validation using both the
mock outbreak approach and more data from real outbreaks is
recommended.
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