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Toxoplasma gondii is the causative agent of toxoplasmosis in animals and humans.

This infection is transmitted to humans through oocysts released in the feces of the

felines into the environment or by ingestion of undercooked meat. This implies that

toxoplasmosis is a zoonotic disease and T. gondii is a foodborne pathogen. In addition,

chronic toxoplasmosis in goats and sheep is the cause of recurrent abortions with

economic losses in the sector. It is also a health problem in pets such as cats and

dogs. Although there are therapies against this infection in its acute stage, they are not

able to permanently eliminate the parasite and sometimes they are not well tolerated. To

develop better, safer drugs, we need to elucidate key aspects of the biology of T. gondii.

In this review, we will discuss the importance of the homologous recombination repair

(HRR) pathway in the parasite’s lytic cycle and how components of these processes can

be potential molecular targets for new drug development programs. In that sense, the

effect of different DNA damage agents or HHR inhibitors on the growth and replication

of T. gondii will be described. Multitarget drugs that were either associated with other

targets or were part of general screenings are included in the list, providing a thorough

revision of the drugs that can be tested in other scenarios.
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INTRODUCTION

Toxoplasmosis is a zoonotic infection caused by the protozoan parasite Toxoplasma gondii.
This infection is widely distributed in the world, present in 1/3 of the population (Tenter
et al., 2000). This wide distribution is based on its life cycle, which has multiple opportunities
for transmission to animal hosts. T. gondii is capable of infecting all the nucleated cells of
mammals and birds, including humans, with cats being the definitive host (Dubey, 2009).
Throughout its life cycle T. gondii has both sexual (definitive host) and asexual (all hosts)
reproduction. The asexual phase consists of two stages: tachyzoites, characterized by a fast-
replication rate; and bradyzoites, a tissue encysted stage with a slow division rate that evades both
immunity as well as available therapies. In human, the infection naturally occurs orally, either
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by ingestion of oocysts released by felines present in the soil or
water sources (Krueger et al., 2014), or by tissue cysts present
in undercooked meats (Wilking et al., 2016; Belluco et al., 2018).
Vertical transplacental infection can also occur, called congenital
toxoplasmosis which, from a clinical point of view, is of greater
importance due to the serious consequences that it may have
on the fetus or newborn (Montoya and Remington, 2008). In
immunocompetent individuals, the infection is generally mild
or asymptomatic during the acute phase. However, it is a major
opportunistic infection in the immunocompromised, particularly
HIV/AIDS patients. In this case, life-threatening brain lesions
can arise if proper treatment is not administered; in addition
ocular and pulmonary complications can occur from AIDS-
toxoplasmosis (Porter and Sande, 1992; Rabaud et al., 1994). Due
to the high incidence of toxoplasmosis in animals of importance
for human consumption (Dong et al., 2018; Olsen et al., 2019). T.
gondii is classified as a food-borne pathogen of high relevance.
In fact, the Centers for Disease Control (USA) includes T.
gondii among the three pathogens, together with Listeria and
Salmonella, as responsible for 70% of foodborne deaths in the
United States (Guo et al., 2016).

Toxoplasma gondii is considered a parasite of veterinary
and medical importance, because it may cause abortion or
congenital disease in its intermediate hosts (Sander et al.,
2018). Toxoplasmosis has two clinical phases in intermediate
hosts: (i) acute, in which the highly replicative tachyzoite
stage spreads throughout the body, and (ii) chronic phase,
which involves the formation of tissue cysts, preferentially
in the nervous system and skeletal muscle, which remain
in the host for a lifetime (Delgado Betancourt et al., 2019;
Stelzer et al., 2019). Chronic toxoplasmosis has been correlated
with a variety of neuropsychiatric disorders that include
memory loss, bipolarism, attention deficit hyperactivity
disorder and schizophrenia (Chaudhury and Ramana, 2019;
Tyebji et al., 2019).

The treatment of the acute phase in cats and dogs
is effective and is based on the use of clindamycin,
trimethoprim/sulfonamide or azithromycin, either for
systemic toxoplasmosis or to abolish oocyst shedding (cats)
(Dubey et al., 2009). In humans, the treatment is based on
pyrimethamine/sulfadiazine, trimethoprin/sulfamethoxazole or
pyrimethamine/clindamycin (Neville et al., 2015). However, it
has been observed that about 40% of patients were forced to
stop therapy due to low tolerance and serious adverse effects
(Porter and Sande, 1992; McLeod et al., 2006; Rajapakse et al.,
2013). In addition, drug resistance cases are being reported in
some cases of toxoplasmosis (Montazeri et al., 2018). Also, there
are no approved therapies for the eradication of the encysted
bradyzoite form. Therefore, intense research is focusing on the
development of new drugs against both the acute and chronic
phases of T. gondii infection. In this review, we analyze drugs
known to induce DNA damage or block the double strand
break (DSB) repair pathway for their therapeutic potential
against T. gondii. Importantly, many of these drugs have already
been approved by the Food and Drug Administration (FDA)
or are being examined in clinical trials for other indications
(Table S1). We include a list of potential toxic effects of these

agents in Table S1 to help prioritize the most promising for
future research.

DNA REPAIR MACHINERY

The genomes of all living cells must be protected from DNA
damage, which can be sustained through a wide variety of cellular
stress and insults. Lesions in DNA can affect transcription,
replication and genomic integrity. DSBs are the most harmful
for the cell, which is equipped with different ways to repair the
DSB (Sancar et al., 2004). Both exogenous events, like irradiation
or genotoxic agents, and endogenous, such as oxidation and fork
replication collapse, can result in DSB (Figure 1). Once the DSB
is generated, different proteins start to sense the damage and
trigger a cascade of events and signals that culminate in the
regulation of the cell cycle and transcription until the damage is
repaired and DNA replication is allowed to continue (Figure 1).
In case the damage cannot be repaired, the cell can enter
into apoptosis. Failure to repair DNA properly risks genomic
instability, which can lead to degenerative changes.

After sensing the presence of DSB, phosphatidylinositol 3′-
kinase–like kinase (PIKK), such as Ataxia telangiectasia mutated
(ATM) and DNA dependent protein kinase (DNA-PK), activate
(phosphorylate) a series of proteins related to the DNA damage
response (DDR). Meanwhile, ATMRad-3-related (ATR), another
PIKK, is recruited to stalled replication forks with single strand
DNA. When DSB is generated, ATM is the key kinase that
phosphorylates sensors such as histone H2A.X, and Mre11,
Rad50 and Nbs1 (MRN) complex proteins (Bakkenist and
Kastan, 2003) (Figure 1). The phosphorylation of H2A.X in the
serine of the SQE motif, referred to as γH2A.X, is an early
event and marker of DSB (Rogakou et al., 1998; Sedelnikova
et al., 2003). Interestingly, T. gondii tachyzoites contain basal
levels of γH2A.X even in normal conditions of growth (Dalmasso
et al., 2009; Nardelli et al., 2013; Bogado et al., 2014). It is
known that intracellular tachyzoites replicate with a doubling
time of 5-9 h (Radke et al., 2001), which could be associated
with replication stress and fork collapse. This parallels what
is seen due to fork collapse under replication-associated DNA
stress in cancer cells (Bartkova et al., 2005). The treatment of
intracellular tachyzoites with the specific ATM kinase inhibitor
is able to block the growth of T. gondii and arrest them in
G1 (Munera López et al., 2019).

In Eukaryotes, there are two well characterized pathways
of DSB repair: Homologous Recombination Repair (HRR) and
Non-Homologous End Joining (NHEJ). HRR is an error free
pathway that is preferentially activated by DSB occurring during
late S and G2 phases (Sancar et al., 2004; Blackwood et al., 2013)
(Figure 1). Conversely, NHEJ is an error pronemechanism active
across the cell cycle. T. gondii has both functional mechanisms
(Fenoy et al., 2016). The genome of T. gondii encodes near 50% of
HRR proteins described in yeast and mammals, suggesting some
divergence exists between these pathways, possibly involving
parasite-specific components (Fenoy et al., 2016). Additionally,
in yeast there is another process of DNA repair based on
recombination, called break-induced replication (BIR), which
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FIGURE 1 | Model of DNA damage response (DDR) due to DSB. (A) The panel shows the cascade of events that are triggered by a DSB and the factors that affect

the choice of HRR or NHEJ. (B) The hypothesis of the use of the HRR pathway as a drug target for the development of new anti-T. gondii therapies is graphed.

occurs during phase G2 and it is dependent of a single-end
DSB (Ait Saada et al., 2018). Another non-canonical process
described in yeast and mammals is alternative NHEJ (aNHEJ)
or microhomology-mediated end joining (MMEJ). aNHEJ is less

faithful than NHEJ and may be associated with deficiencies in the
NHEJ pathway (Deriano and Roth, 2013).

Regarding NHEJ, this system presents key proteins such
as DNA-PK (geneID 266010), Ku70 (geneID 248160), Ku80
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FIGURE 2 | HRR and topoisomerase genes of T. gondii. Genes were identified in www.toxodb.org and grouped according to their role in HRR pathway. In addition,

phenotype scores associated with fitness were added. The score values were obtained at www.toxodb.org. The scores ranged from −6.89 to +2.96, where negative

values indicate that the loss of the gene is disadvantaged or essential for the growth of the parasite.

(geneID 312510) although none ortholog of X-ray repair cross-
complementing protein 4 (XRCC4), a protein that bridges DNA
to DNA Ligase IV, was detected in T. gondii (www.toxodb.org)
(Munera López et al., 2019). Ku70 appears to be essential for
T. gondii tachyzoites (Fox et al., 2009), however Ku80 is not
and its deletion yielded knockout parasite lines (1ku80) with
impaired non-homologous recombination mediated by NHEJ
pathway (Fox et al., 2009; Huynh and Carruthers, 2009). T.
gondii RH1KU80 showed similar replication rate and virulence
as the parental strain, but a marked sensitivity to the genotoxic
agents phleomycin and γ-irradiation (Fox et al., 2009). Sidik et al.
(2016) have performed a genome wide-screen in which every
predicted T. gondii gene was assigned fitness score from −6.89
to +2.96, where negative values indicate a disadvantage for the
growth of the parasite (www.toxodb.org). In this analysis, DNA-
PK has a −3.21 score, inferring that this PI3K is essential and
could be a promising target of inhibitors. DNA-PK is recruited
to DSB sites by Ku proteins and is able to phosphorylate NHEJ-
associated proteins such as Ku, XRCC4 as well as Artemis,
ligase IV, and XLF (Deriano and Roth, 2013). In addition, DNA-
PK is also involved in HRR, together with ATM kinase (Stiff
et al., 2004; Wang et al., 2005), and in the cellular response
to hypoxia, different metabolic regulation, innate immunity
and transcriptional regulation, among others (Goodwin and
Knudsen, 2014). Therefore, the importance of DNA-PK in T.
gondii viability comparison with Ku80 protein could be due to
its pleiotropic role in the parasite biology.

The T. gondii genome harbors 39 coding sequences out of
81 genes described in mammals and yeast responsible for HRR
(Fenoy et al., 2016). In general, this pathway is conserved in

T. gondii (Figure 2), although some important proteins such as
Nbs1 and CtIP are absent. Nbs1 and CtIP have a key role at
the beginning of HRR because they are part and regulate the
activity of Mre11-RAD50-Nbs1 (MRN) complex, a DSB sensor
(Figures 1, 2), and end-chain processing (Fenoy et al., 2016).
On the other hand, in mammals, BRCT-domain containing
proteins BRCA1 and 53BP are involved in regulating the choice
of repair pathway: HRR or NHEJ, respectively. Despite their
essential roles no homologs for these proteins were detected in
T. gondii. However, other BRCT domain containing proteins
were identified in T. gondii without known functions (Fenoy
et al., 2016). In T. gondii, the HRR pathway is highly efficient
as it was observed in T. gondii 1ku80 lines (Fox et al., 2009;
Huynh and Carruthers, 2009). It is worth mentioning that
the majority of HRR components of T. gondii seem to have
essential function, since most show a fitness phenotype score
under 0, and even some below−2 (Figure 2). This would indicate
that interference of this pathway could significantly alter the
proliferation of T. gondii, making HRR an important source of
novel therapeutic targets.

DNA DAMAGING AGENTS

Nowadays there is a broad spectrum of DNA damage inducers
reported in the literaturemany of which exert their action directly
on synthesis and topology of DNA, even some have already
been evaluated as anti-toxoplasmic drug targets (Table 1).
There is another group of drugs that act indirectly generating
oxidative burst that can damage DNA and were assayed
against T. gondii (Table 2). On the other hand, the methyl
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TABLE 1 | DNA damaging agents tested in T. gondii models.

Drug Mechanism EffectivenessReferences

Camptothecin Top1 venom Moderated Adeyemi et al., 2019;

Munera López et al.,

2019

10-

Hydroxycamptothecin

Top1 venom Yes Adeyemi et al., 2019

Betulin Top1 inhibitor No Adeyemi et al., 2019

Etoposide Top2 venom No Dittmar et al., 2016

Genistin Top2 inhibitor No Adeyemi et al., 2019

Daunorubicin Top2 inhibitor Yes Adeyemi et al., 2019

Trovafloxacin Top2-a inhibitor Yes Khan et al., 1996

Ciprofloxacin Top2-a inhibitor No Khan et al., 1996

Ofloxacin Top2-a inhibitor No Khan et al., 1996

Fleroxacin Top2-a inhibitor No Khan et al., 1996

Temafloxacin Top2-a inhibitor No Khan et al., 1996

Tosufloxacin Top2-a inhibitor No Khan et al., 1996

Enrofloxacin Top2-a inhibitor Yes Barbosa et al., 2012

Gatifloxacin Top2 inhibitor Yes Khan et al., 2001

Doxorubicin Top2 venom/DNA

adducts

No Dittmar et al., 2016

Aclarubicin Top inhibitor/

oxidative DNA

damage

No Adeyemi et al., 2019

Artemisinin Top1 inhibitor Yes Jones-Brando et al.,

2006

Artemether Top1 inhibitor Yes Jones-Brando et al.,

2006

Artemisinin derivatives Top1 inhibitor Yes D’Angelo et al., 2009;

Schultz et al., 2014

Harmane Top1 inhibitor Yes Alomar et al., 2013

Harmine Top1 inhibitor Yes Alomar et al., 2013

nor-Harmane Top1 inhibitor Yes Alomar et al., 2013

Fluorouracil (5-FU) thymidylate

synthase inhibitor

Yes Harris et al., 1988

Vincristine DNA intercalation No Dittmar et al., 2016

Fluphenazine DNA intercalation Yes Goodwin et al., 2011;

Murata et al., 2017

Thioridazine DNA intercalation Yes Goodwin et al., 2011

Trifluoperazine DNA intercalation Yes Goodwin et al., 2011

Hycantone DNA intercalation Yes Murata et al., 2017

Phleomycin DNA intercalation ND Messina et al., 1995

Mitomycin C DNA intercalation Yes Adeyemi et al., 2019

Thiosemicarbazones ribonucleotide

reductase inhibitor

Yes Tenório et al., 2005

Hydroxyurea ribonucleotide

reductase inhibitor

Yes De Melo et al., 2000

Cytarabine DNA polymerase

inhibitor

no Adeyemi et al., 2019

Methyl

Methanesulphonate

(MMS)

alkylates DNA

bases

Yes Munera López et al.,

2019

methane sulfonate compound (MMS), which methylates DNA
at N7-deoxyguanosine and N3-deoxyadenosine, also generates
DNA damage in T. gondii (Munera López et al., 2019). The

TABLE 2 | Non direct DNA damaging agents used in T. gondii models.

Drug Mechanism Effectiveness References

Resveratrol oxidative DNA

damage/

DNA binding

Yes Adeyemi et al., 2019;

Chen et al., 2019

Tamoxifen oxidative DNA

damage

Yes Dittmar et al., 2016

Butein oxidative DNA

damage

No Murata et al., 2017;

Adeyemi et al., 2019

Amphotericin oxidative DNA

damage

No Adeyemi et al., 2019

Menadione oxidative DNA

damage

No Adeyemi et al., 2019

Capsiacin oxidative DNA

damage

No Adeyemi et al., 2019

Sertraline neurotransmission/

oxidative damage

Yes Dittmar et al., 2016

Andrographolide undetermined No Adeyemi et al., 2019

Chloroquine undetermined Yes Adeyemi et al., 2019

Loperamide gut opiate receptor Yes Dittmar et al., 2016

PurvalaNol A CDks Yes Dittmar et al., 2016

SB 218078 ChK1 inhibitor No Dittmar et al., 2016

Valproic acid oxidative DNA

damage

Yes Jones-Brando et al.,

2003

damage caused byMMS generally is repaired by the base excision
repair (BER) pathway, but it can also lead to fork stalling
associated DNA damage (Lundin et al., 2005). In general, MMS
is used as an experimental mutagenic agent since it is considered
carcinogenic group 2A by the World Health Organization,
International Agency for Research on Cancer. In the following
sections we will focus on the types of drugs that are related to
synthesis and topology of DNA (Table 1).

Topoisomerase Inhibitors
Interference with DNA replication perturbs progression of the
cell cycle and would result in poor proliferation. Topoisomerases
are responsible for removing the negative supercoiling that
occurs during advances of replication forks or transcription,
but also are involved in recombination process (Wang, 2002).
Topoisomerases I (Top1) and II (Top2) are enzymes that resolve
torsional stress and supercoiled structures on replicating DNA.
In T. gondii, both Top1 and Top2 have shown a score associated
to a high degree of essentiality (Figure 2). Top1 mediated-DNA
relaxation involves the cut of one DNA strands, its rotation
and religation. Top2 enzymes also bind to DNA (G-segment),
generating a DSB through which another segment (T-segment)
of the dsDNA passes, crossing the DSB, in such a way that the
ends of G-segment are then re-ligated (Jain et al., 2017). Several
Top1 and Top2 inhibitors have emerged in recent years for use
in anti-cancer chemotherapies (Jain et al., 2017). This type of
drugs can be classified as inhibitors, when they block the enzyme
activity or binding to DNA; or venoms, those that stabilize the
topoisomerase-DNA complex.
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There are several Top1 and Top2 inhibitors or venoms
that show anti-T. gondii effect (Table 1). A plant alkaloid,
camptothecin (CPT), was one of the first Top1 inhibitors, but
other camptothecin derivatives were also studied: topotecan
and irinotecan, both approved by the US Food and Drug
Administration (FDA) in 1996 (Thomas and Pommier, 2019).
Since CPT is insoluble, CPT derivatives topotecan (9-dimethyl-
aminomethyl-10-hydroxycamptothecin), irinotecan (7-ethyl-
10-Hydroxycamptothecin) and others, contain solubilizing
groups added to the core CPT (Musiol, 2017). Moreover,
another camptothecin analog, 10-Hydroxycamptothecin, also
shows a stronger anti-tumor activity and lesser toxicity than
camptothecin (Hu et al., 2011). Recently, CPT has been shown
to have moderate anti-T. gondii activity in two independent
publications. In one of them, CPT showed a IC50 value near
to 5µM, a dose that leads to a 40% viability of the host cell
(Munera López et al., 2019). In the other, Adeyemi et al. (2019)
performed a screening of 62 compounds at a concentration
of 1.5µg/mL where CPT (4.3µM) showed an inhibition of
37% in proliferation and 27% viability of the host cell. Based
on these findings, CPT would not present a great value as an
anti-T. gondii drug even having been approved by the FDA.
However, it could be useful as a model to generate DSB during
parasite replication. In fact, increased levels of phosphorylation
to T. gondii H2A.X (γH2A.X) were observed in intracellular
tachyzoites treated with CPT (Munera López et al., 2019). In the
screening performed by Adeyemi et al. (2019), they detected that
the analog of camptothecin, 10 hydroxycamptothecin, showed
no host cell toxicity and inhibited T. gondii proliferation by
58.16% at a dose of 1.5µg/mL (4.1µM). This result suggests that
this and other camptothecin analogs could be analyzed in greater
depth in their potential as candidates for anti-T. gondii therapy.

Another group of eukaryotic topoisomerase inhibitors are
quinolones and fluorquinolones that were first identified as anti-
bacterial topoisomerase IV and DNA gyrase drugs (Gootz et al.,
1990; Brighty and Gootz, 1997; Jorgensen et al., 2000). Among
them, enrofloxacin, ciprofloxacin, fleroxacin, temafloxacin,
tosufloxacin, ofloxacin, trovafloxacin and gatifloxacin have been
tested in T. gondiimodels (Khan et al., 1996; Barbosa et al., 2012)
and reviewed by Alday and Doggett (2017). Only enrofloxacin,
trovafloxacin and gatifloxacin showed anti-T. gondii activity
(Table 1). Trovafloxacin was effective both in vitro and in
vivo. In the latter, a dose of 100 mg/kg per day during 10
days postinfection with virulent strain RH showed significant
protection of infected mice against death (Khan et al., 1996).
In addition, lower doses of trovafloxacin combined with other
drugs such as clarithromycin, pyrimethamine, or sulfadiazine
had a synergistic effect against T. gondii infection (Khan
et al., 1997). The same authors tested a new fluoroquinolone,
gatifloxacin, which also had partial protection in vivo when
administered alone and a synergistic effect in combination
with pyrimethamine (Khan et al., 2001). The mechanism of
action of these fluoroquinolones against T. gondii was not
elucidated. Ciprofloxacin did not show any anti-T. gondii effect
in vitro at concentrations from 0.625 to 10µg/mL (Khan
et al., 1996). However, treatment with 25µM (near 8µg/mL)
ciprofloxacin reduced the amount of apicoplast DNA in T.

gondii, suggesting that an apicoplast (prokaryotic-like) DNA
gyrase could be a target (Fichera and Roos, 1997). However,
it cannot be ruled out that these fluoroquinolones also target
eukaryotic topoisomerases. Ciprofloxacin and trovafloxacin have
been shown as weak inhibitors of topoisomerase II-α (Gootz
et al., 1990; Poulsen et al., 2014).

Artemisinin, a sesquiterpene lactone, and its derivative
artemether have shown activity toward tumors and target
topoisomerase I whereas artesunate, a semisynthetic derivative
of artemisinin, inhibits topoisomerase II (Kadioglu et al., 2017).
In an in vitro study, artemisinin and artemisinin derivatives (2a,
2b, 2c, 2d, deoxy-2a and artemether) displayed anti-T. gondii
activity, with artemether, 2c and 2b being the most effective
drugs on the basis of their therapeutic indices (Jones-Brando
et al., 2006). Since artemisinin and some derivatives have shown
neurotoxicity, other less toxic compounds (C-10 unsaturated,
carba-linked) were synthesized and tested in vitro (D’Angelo
et al., 2009). The majority inhibited host cell invasion and/or
tachyzoite replication and growth, but none of them were more
effective than artemether (D’Angelo et al., 2009). Later, Schultz
et al. (2014) tested different artemisinin derivatives, including
artemether and the novel LEW3-27 and CPH4-136 in vivo.
They observed that only the C-10 carba-linked, unsaturated
artemisinin derivative CPH4-136 produced a moderate effect
on mouse survival of acute infection, but it displayed a 40%
reduction of brain cyst burden in an experimental model
of murine chronic infection. In P. falciparum, artemisinin
appears to affect many systems, including antioxidant defense,
hemoglobin degradation, glycolysis, chaperone machinery, and
enzymes of purine and pyrimidine synthesis, among others, but
not with topoisomerase (Ismail et al., 2016). Recently, a protease
(DegP2) belonging to the high temperature requirement A family
(HtrA), predicted as a mitochondrial protein in toxodb, and
ARK kinase, predicted as a nucleolar kinase in toxodb, arose
as artemisinin targets (Rosenberg et al., 2019). Together, these
studies suggest that the aforementioned drugs have complex
mechanisms of actions that may involve multiple targets.

Another group of compounds that has been shown to
intercalate with DNA and inhibit topoisomerase are β-carbolines
and derivatives (Cao et al., 2007). However, β-carbolines could
also be multitargeting drugs, inhibiting some kinases such as
cyclin dependent kinases and PI3K (Song et al., 2002; Zhang
et al., 2016). Moreover, it has recently been observed that β-
carboline harmine does not induce DNA damage (Geng et al.,
2018). Treatment of intracellular tachyzoites with harmane,
norharmane, and harmine reduced parasite replication and
growth at concentrations below 12.5µM (Alomar et al., 2013).
However, this study pointed out that the three β-carbolines also
affected T. gondii host cell invasion, suggesting that other targets
unrelated to DNA topology could be involved. In fact, harmine
was identified as a potent anti-plasmodial drug targeting parasite
Hsp90 (Shahinas et al., 2012). Plasmodium falciparum and T.
gondii Hsp90 are highly identical at primary sequence level, and
T. gondii Hsp90 has also shown to be involved in parasite cell
cycle and differentiation (Echeverria et al., 2005).

Finally, other topoisomerase inhibitors were assayed against
toxoplasmosis in different experiments (Dittmar et al., 2016;
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Adeyemi et al., 2019): betulinic acid, etoposide, genistin,
daunorubicin, doxorubicin and aclarubicin. Evidence of their
inhibitory effects against topoisomerases have been observed
by different authors (Bodley et al., 1989; Chowdhury et al.,
2002; Larsen et al., 2003; Mizushina et al., 2013; Lee et al.,
2016; Amaral et al., 2017). It is important to note that only
daunorubicin showed effects against T. gondii with an inhibition
value of 41.6% and host cell viability of 62.27% at a concentration
of 1.5µg/mL (Adeyemi et al., 2019). Daunorubicin is an
anthracycline compound, such as doxorubicin and aclarubicin,
that has shown to generate DNA breaks and DNA-protein
crosslinking at lower concentrations, suggesting topoisomerase
II inhibition (Ciesielska et al., 2005). Daunorubicin is more
lipophilic than doxorubicin (Gallois et al., 1998), a property
that could be advantageous in the trespassing of the multiple
membrane barriers of infected host cells. However, it should
be used with caution because daunorubicin, as well as other
anthracyclines, has shown cardiotoxicity (Aubel-Sadron and
Londos-Gagliardi, 1984).

DNA Intercalating Compounds
Other DNA damaging agents intersperse within the DNA
molecule. A single intercalation is usually not enough to
cause damage, however major structural changes might lead
to inhibition of replication and transcription processes. Most
intercalating agents do not produce DSB in purified DNA,
suggesting that, in vivo, the stabilization of DNA-intercalating
complex disturbs the activity of topoisomerase enzyme (Tomczyk
and Walczak, 2018). For this reason, many DNA intercalating
compounds are also associated with topoisomerase inhibition.
Table 1 summarizes several damage intercalating agents that
were tested against T. gondii.

Fluphenazine, trifluoperazine, and thioridazine are
phenothiazine drugs widely used as antipsychotics in
schizophrenia (Matar et al., 2014). Phenothiazines have
been shown to associate externally to plasmid DNA, nicking the
supercoiled plasmid under photoinduction (Viola et al., 2003).
Because chronic toxoplasmosis has been linked to different
mental health disorders (Tyebji et al., 2019), among them
schizophrenia, many authors tested the effect of antipsychotic
drugs against T. gondii (Holfels et al., 1994; Jones-Brando et al.,
2003; Goodwin et al., 2011). Fluphenazine has shown good
activity against T. gondii growth (Jones-Brando et al., 2003; Fond
et al., 2014; Murata et al., 2017). Fluphenazine, trifluoperazine,
and thioridazine had IC50 values in vitro of 1.7, 3.8, and 1.2µM,
respectively (Goodwin et al., 2011). Neither fluphenazine nor
thioridazine blocked cyst formation in an experimental model in
mouse (Saraei et al., 2016).

Phleomycin is an antibiotic of bacterial origin whose
mechanism of action is through intercalating into DNA
(Wheatley et al., 1974). This antibiotic affectsT. gondii replication
and has been used as a selectionmarker of transfected tachyzoites
but not for therapeutic purposes. The treatment of extracellular
tachyzoites with high doses of phleomycin reduces their ability
to proliferate when these treated parasites are used to infect
host cell monolayers (Messina et al., 1995; Soldati et al., 1995).
The resistance cassette used in T. gondii vectors encodes BLE

protein from Tn5 transposon, which binds to phleomycin in a
1:1 complex, neutralizing its toxicity.

Mitomycin C and hycanthone showed an anti-T. gondii effect
but vincristine was not effective enough to be selected for further
studies (Dittmar et al., 2016; Murata et al., 2017; Adeyemi
et al., 2019). Mitomycin C is a well-known DNA binding
compound that induces DNA-DNA interstrand crosslinking
(Poll and Arwert, 1985). Hycanthone is a potent mutagen
that was demonstrated to intercalate DNA and generate single
stranded DNA (Bases et al., 1978). Vincristine was shown to
preferentially bind to double stranded DNA, although it showed
higher affinity for chromatin than to naked DNA, suggesting
an intercalation between the phosphate sugar backbone and
histones (Mohammadgholi et al., 2013). Mitomycin C is a
drug used to treat some cancers such as breast, bladder, gullet
(esophagus), stomach, pancreas, lung, anal and liver cancers. In
this regard, anti-T. gondii ability of Mitomycin C was evaluated
showing 45.06% of tachyzoite growth inhibition and 103%
of host cell viability at 1.5 µM/mL (Adeyemi et al., 2019).
The complementation of an Escherichia coli mutant lacking
recombinase enzyme RuvCwith the ORF expressing the T. gondii
TgDRE enzyme recovered bacterial resistance to mitomycin C
and UV-light (Dendouga et al., 2002). The TgDRE gene is
annotated as a G-patch domain containing protein in toxodb
(TGME49_214820) and its contribution to T. gondii lytic cycle
fitness has a phenotype score of −4.12, suggesting that it is likely
to be essential. It will be interesting to study in the future if
TgDRE also confers mitomycin C resistance (or to other DNA
damaging agents) in T. gondii.

DNA Synthesis Inhibitors
The synthesis of DNA requires many enzymes, including DNA
polymerase and those that synthesize deoxyribonucleotides (e.g.,
ribonucleotide reductase). The inhibition of some of these
interferes with the process by stalling the replication fork, which
can consequently generate single strand DNA or even DSB
(Abraham, 2001).

Among ribonucleotide reductase inhibitors, hydroxyurea
(HU) possesses anti-T. gondii activity affecting its proliferation
at 4mM and induces morphological changes in intracellular
tachyzoites (De Melo et al., 2000). In accordance with previous
observations, the same dose leads to an arrest in G1 cell division
after 24 h of treatment in synchronized intracellular tachyzoites
(Munera López et al., 2019). Moreover, the growth of T. gondii is
reduced by 50% in the presence of 150µM HU (Munera López
et al., 2019). However, at that dose, HU showed no synergism
with KU-55933, an inhibitor of ATM kinase, an enzyme key to
the development of HRR.

Another class of ribonucleotide reductase inhibitors with
antitumor activity are thiosemicarbazones. The mechanism
of action is suggested to be based on their metal chelating
nature. Since ribonucleotide reductase enzyme contains a diferric
center, thiosemicarbazones change the rate-limiting step in
DNA synthesis (Kalinowski et al., 2009). Tenório et al. (2005)
synthesized a wide variety of thiosemicarbazone derivatives
from two series: (i) thiosemicarbazone compounds 2 and (ii)
4-thiazolidinone derivatives 3. These compounds significantly
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reduced the number of infected host cells in doses of 1mM, even
more than 4mM HU. Based on this study, new 4-thiazolidinone
derivatives were synthesized which also were very effective
against T. gondii but less toxic to the host cell (de Aquino et al.,
2008; Liesen et al., 2010).

Fluorouracil (5-FU) generates damage in two ways, one
by inhibiting thymidylate synthase, a rate-limiting enzyme for
DNA synthesis, and the other through its metabolic conversion
to FdUTP which is misincorporated into the DNA molecule
(Longley et al., 2003). It has long been known that T. gondii
is susceptible to 5-FU. In 1977, Pfefferkorn and Pfefferkorn
(1977) had characterized strains of T. gondii resistant to different
anti-toxoplasmic agents, including 5-FU. Several years later,
the effect of 5-FU on tachyzoite replication in a myoblast cell
model was further tested by incorporating [H3]uracil. 5-FU
produced a significant replication inhibition from 0.01µg/mL,
being very evident at 0.1µg/mL, which is below the toxicity
concentration for the host cell (Harris et al., 1988). Interestingly,
this drug showed a synergistic effect with pyrimethamine. Use
of 5-FU was not effective against the cyst in vitro studies
(Huskinson-Mark et al., 1991).

Cytarabine is a pyrimidine nucleoside-based anticancer drug
that, after three phosphorylation steps, inhibits DNA polymerase
by competing with the natural substrate, resulting in DNA
synthesis inhibition (Chhikara and Parang, 2010). This drug
was tested against toxoplasmosis in vitro and it only reduced
intracellular tachyzoite growth by 14% (Adeyemi et al., 2019). It
is worth mentioning that in future studies the anti-toxoplasmic
capacity of cytarabine could be tested in combination with
other anticancer agents, such as daunorubicin, doxorubicin,
thioguanine, or vincristine.

HRR INHIBITORS

The Homologous Recombination Repair (HRR) pathway is
well conserved in T. gondii, with the majority of related
genes exhibiting a negative fitness value, thus highlighting their
functional relevance during the tachyzoite replication (Figure 2).
HRR is a highly complex process, requiring specific proteins at
each step (Fenoy et al., 2016) that may be druggable (Carvalho
and Kanaar, 2014; Jekimovs et al., 2014; Velic et al., 2015).
HRR starts with sensor proteins that detect the DSB and
promote the resection of DNA where different exonucleases
participate to generate a long single strand (Figures 1, 2). For
example, the exonuclease activity of Mre11 is inhibited by
mirin and its amino substituted derivate, PFM39, while N-
alkylated derivatives PFM01 and PFM03 block its endonuclease
function (Velic et al., 2015). At the same time during DSB
sensing, checkpoints are activated and the cell cycle is stopped.
ATM, ATR, and DNA-PK belong to PIKK family, and, together
with checkpoint kinases (Chk1 and Chk2), are susceptible
to inhibition, blocking DNA damage repair (DDR) (Shibata
et al., 2014). Once the single strand is generated after DNA
resection, the filament recruits the RAD51 recombinase and
other proteins that seek a template in which DNA repair
associated DNA polymerases synthesize new strands; this process

results in Holliday-junction binding, which is resolved by
different helicases.

Rad51 seems to be a great pharmacological target due to
its central role in the parasites HRR pathway, but structural
and enzymatic studies are needed because is highly ubiquitous
in the human host, so specific inhibitors have to be achieved
to target the parasite protein instead of the human RAD51
(HuRad51) (Kelso et al., 2017). Recent studies are investigating
the HuRAD51 inhibitors in parasites. The molecule 4,4′-
diisothiocyanostilbene-2,2′-disulfonic acid (DIDS) in humans
inhibits the HuRad51 binding to dsDNA and ssDNA (Ishida
et al., 2009). DIDS also has effect in Entamoeba histolytica
RAD51 inhibiting its DNA binding, and in Entamoeba invadens
attenuates the encystations process (Kelso et al., 2017).
Plasmodial Rad51 is inhibited by compound B02 (Vydyam et al.,
2019). While β-carbolines were suggested to be possible DNA
intercalating agents or topoisomerase inhibitors (see above),
it has also been observed that they block HRR, affecting the
recruitment of RAD51 by a route not yet described (Zhang et al.,
2015). More studies should be done to check if β-carbolines affect
the HRR pathway in T. gondii.

PIKK Kinase Inhibitors
Given their central role in the cascade of DNA damage repair
events, the PIKKs are good candidates as drug targets (Table 3).
To note, there are several kinases (e.g., p38 MAPK) whose
inhibition can block HRR indirectly, but here we only focus
on PIKK inhibitors. T. gondii appears to have the three PIKKs
associated with DSB repair: ATM, ATR, and DNA-PK (Fenoy
et al., 2016; Munera López et al., 2019). Caffeine is a broad-
spectrum kinase inhibitor compound capable of inhibiting the
afore mentioned PIKKs (Sarkaria, 2003; Bode and Dong, 2007).
When caffeine is applied to infected HFF cultures, it reduces
cell growth with an IC50 value 370µM with a LD100 of
800µM (Munera López et al., 2019). Similarly, the isoflavonoid
quercetin and its relative LY294002 compound were shown to
competitively inhibit the binding of ATP to PI3K and DNA-
PK (Izzard et al., 1999). Both were assayed by Dittmar et al.
(2016), but none of them were selected for further analysis. The
compound NU7026 (DNA-PK inhibitor) also showed little value
as an anti-T. gondii drug in a first screening (Dittmar et al.,
2016). NU7026 is a specific DNA-PK inhibitor based on small
molecule NU7741, which displays anti-tumoral activity (Tsai
et al., 2017). Moreover, NU7026 at 10µM shows a synergistic
effect with γ irradiation in neuroblastoma cells (Dolman et al.,
2015), at a higher dose than that used by Dittmar et al. (2016).
For this reason, it would be prudent to reexamine if these DNA-
PK inhibitors could affect T. gondii replication either alone or in
combination with DNA damaging agents.

KU-55933 is a ATM kinase inhibitor that has been shown
to effectively block the intracellular growth of tachyzoites
(Munera López et al., 2019). ATM kinase has a central role
in activating the response to the DSB, acting very early in
signal transduction to begin repair of damaged DNA. ATM-
phosphorylated proteins in mammals include histone H2A.X (to
give γH2A.X), p53, Mdm2, Chk1, Chk2, Nbs1, Brca1 among
others (Boohaker and Xu, 2014; Guleria and Chandna, 2016).
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TABLE 3 | HRR inhibitors used in T. gondii models.

Drug Mechanism Effectiveness References

KU-55933 ATM inhibitor Yes Munera López et al.,

2019

NU 7026 DNA-PK inhibitor No Dittmar et al., 2016

Quercetin PI3K/DNA-PK

inhibitor

No Dittmar et al., 2016

LY 294002 PI3K/DNA-PK

inhibitor

No Dittmar et al., 2016

Caffeine Kinase inhibitor Yes Munera López et al.,

2019

SAHA/vorionstat HDACi Yes Strobl et al., 2007

Scriptaid HDACi Yes Strobl et al., 2007

Trichostatin A HDACi Yes Strobl et al., 2007

Sodium butyrate HDACi No Strobl et al., 2007

Valproic acid HDACi No Strobl et al., 2007

4-phenylbutyrate HDACi No Strobl et al., 2007

Curcumin HDACi No Adeyemi et al., 2019

Nicotinamide SIRTi No Strobl et al., 2007

Resveratrol SIRT1a Yes Adeyemi et al., 2019;

Chen et al., 2019

Harmine ND Yes Alomar et al., 2013

In mammals, the presence of DSB causes changes in chromatin
in which H3K9 is methylated (H3K9me3), recruiting Tip60,
a Histone acetyl transferase belonging to Myst family, which
acetylates histones and ATM (Figure 3). Acetylation of ATM is
an important postraductional modification (PTM), required for
its autophosphorylation, monomerization, and activation (Sun
et al., 2005; Guleria and Chandna, 2016). This pathway appears
to be present in T. gondii since overexpression of TgMYST-B
confers greater resistance of tachyzoites to the DNA damaging
agent methyl methanosulfonate (MMS) (Vonlaufen et al.,
2010). Furthermore, over-expression of functional TgMYST-B
reduces the replication rate of intracellular tachyzoites, strongly
suggesting that acetylation of ATM and its subsequent activation
results in phosphorylation of checkpoint kinases, an effect that
could be reversed by adding KU-55933.

Later,Munera López et al. (2019) observed that the application
of KU-55933 to infected host cell cultures blocked the replication
and growth of intracellular tachyzoites with an IC50 of 2.15-
2.49µM, while even higher concentrations as 10µM did not
affect host cell viability. It is worth mentioning that KU-55933
blocks the induction of phosphorylation on H2A.X (γH2AX)
due to CPT treatment (Munera López et al., 2019). These data
suggest that KU-55933 affects a kinase able to phosphorylate
H2A.X upon DNA injury. Human ATM has a molecular weight
of 350–370 kDa, which is similar to yeast (Tel1) near 320 kDa;
interestingly, T. gondii ATM has a predicted mass of only 246
kDa (Munera López et al., 2019). The homology within T. gondii
ATM is largely limited to the kinase and FATC domains. Notably,
searches of the Plasmodium database (plasmodb) only retrieves
one PI3K (Fenoy et al., 2016). However, that Plasmodium kinase
does not possess the FATC domain and is a kinase exported

to the host erythrocyte with a role in hemoglobin trafficking
(Vaid et al., 2010). In conclusion, T. gondii, seems to retain the
signaling pathway using an ATM-like enzyme, which would have
substantial differences with human ATM, making it possible to
be targeted by specific drugs.

HDAC/KDAC Inhibitors
Protein acetylation has gained great interest due to its
regulatory role in a wide variety of biological processes.
Initially, studies were focused on histones, however this PTM
is present on many other proteins, including a number
involved in DNA repair like chaperone HSP90 and ATM
kinase. The acetylation of proteins is mediated by lysine
acetyltransferases (HAT/KAT) while deacetylation is performed
by lysine deacetylases (HDAC/KDAC). Among the processes
controlled by this PTM are epigenetic regulation of gene
expression and protein-protein interactions, which in turn could
facilitate DNA repair either through HRR or NHEJ (Koprinarova
et al., 2011; Roos and Krumm, 2016). T. gondii contains GCN5
and MYST family KATs as well as several HDAC proteins
(Vanagas et al., 2012).

HDACs are associated with the regulation of numerous genes
that code for proteins involved in DDR. They are also linked
to the direct deacetylation of lysines on many of these proteins
(Figure 3). As already mentioned above, one of the first steps
in the response to DSB damage is the activation of ATM
kinase, which depends on acetylation by Tip60. Prior to the
DSB resulting from fork collapse, the fork stalling generates
ssDNAs which recruit ATR to trigger checkpoints activation.
ATR binds to DNA in a protein complex (CHD4) together
with HDAC1 and HDAC2 (Schmidt and Schreiber, 1999). Then
chromatin is modified during the DDR process beingmodulation
of H4K16ac and H4K56ac marks of key modification. The
presence of HDAC1 and 2 at the site of damage leads to the
deacetylation of H4K56ac and H4K16ac promoting repair via
NHEJ (Miller et al., 2010). The mark H4K16ac prevents BRCT
containing protein 53BP from binding to the chromatin and
facilitates linkage of another BRCT protein (BRCA1), driving
the HRR pathway (Vanagas et al., 2019). On the other hand, the
inhibition of HDAC1 and 2 renders higher levels of acetylated
Ku70, which does not form Ku70/Ku80 hetero-dimerization,
an essential step for NHEJ repair; this therefore sensitizes the
cell to genotoxic agents such as bleomycin, doxorubicin, and
etoposide (Chen et al., 2007). Interestingly, sirtuins such as Sirt1
can deacetylate the Nbs1 protein, one of the components of MRN
sensor complex, which is important for their phosphorylation
and concomitant recruitment of DNA repair factors (Yuan et al.,
2007) (Figure 3). Later it was shown that one of the roles of Sirt1
is through the acetylation of the RecQ WRN helicase, which is
involved in Holliday junction (Uhl et al., 2010). In summary,
modulation of proteins through acetylation is a critical part of
DSB repair, suggesting that the inhibition of HDAC may result
in deficiencies in the DNA damage response. Table 3 lists HDAC
inhibitors (HDACi) tested to date for their anti-T gondii action.

Suberoylanilide hydroxamic acid (SAHA) is a pan-HDACi
that has shown antitumor activity by regulating HRR-associated
genes such as BRCA1 (Konstantinopoulos et al., 2014) and also
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FIGURE 3 | Model of chromatin modification and its impact on DDR. The panel shows the cascade of events that lead to chromatin modification and other

post-translational modifications (PTM) that trigger HRR or NHEJ response.

by affecting the deacetylation of Ku70 (Kerr et al., 2012). SAHA
inhibited the growth of T. gondii tachyzoites with an IC50 83 nM,
a concentration 10-200 lower than that required to have an in
vitro antitumor effect (Strobl et al., 2007). In the same work,

other HDACi proved to be very effective in blocking the growth
of T. gondii (scriptaid, IC50 39 nM; trichosan A, IC50 41 nM).
Interestingly, low doses of these HDACi, between 1 and 50 nM,
stimulated the number of tachyzoites in in vitro cultures (Strobl
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et al., 2007). Other HDACi, such as the carboxylic acids (valproic,
butyric and derivatives), showed a reduced inhibitory potential
with IC50s between 1 to 5.35µM, while the inhibitor of sirtuin 1,
nicotinamide, showed no antitoxoplasmic capacity (Strobl et al.,
2007). The plant polyphenol curcumin is another pan-HDAC
inhibitor, which also inhibits repair of DSB in yeast (Wang et al.,
2015). However, its application in infected cultures of T. gondii
did not inhibit the replication of tachyzoite in a drug screen
(Adeyemi et al., 2019). It is worth noting that the concentration
of curcumin tested against T. gondii was 2.71µM, whereas in
the yeast model 50µM was used in combination with MMS.
In yeast, curcumin inhibits HRR presumably by promoting the
degradation of RAD52 recombinase, which does not seem to be
conserved in T. gondii (Fenoy et al., 2016).

Resveratrol (RSV) is a natural phenol with a potent
antioxidant activity (Murcia and Martínez-Tomé, 2001).
However, it has been shown to modulate a great variety of cell-
signaling pathways and interact with numerous molecular targets
(Harikumar and Aggarwal, 2008). Notably, it was demonstrated
that resveratrol is an activator of type III HDAC (Kaeberlein
et al., 2005) but, in certain tumor lines, RSV downregulates
DNA methyltransferases (DNMT), inhibits HDACs type I or II,
and activates HAT, impacting on epigenetic marks in different
ways (Chatterjee et al., 2019; Hu et al., 2019; Izquierdo-Torres
et al., 2019). RSV inhibits growth of T. gondii in vitro with
an IC50 of 54µM after 24 h of treatment on extracellular
tachyzoites (Chen et al., 2019). To note, extracellular tachyzoites
do not replicate, suggesting that antioxidant activity may have
been responsible for this effect. Adeyemi et al. (2019) also
found that RSV had anti-T. gondii activity, with an IC50 of
1.03µg/ml (4.4µM) against intracellular tachyzoites. They
also demonstrated RSV did not affect the viability of HFF
cells, even at 2µg/ml. The mechanism for RSV is likely to
be complicated because it appears to have multiple targets.
RSV also targets tyrosyl-tRNAsynthetase (TyrRS), involved in
protein synthesis, and TyrRS is linked to the regulation of genes
associated with HRR (Cao et al., 2017). RSV causes inactivation
of TyrRS, its translocation to the nucleus and, therefore, inhibits
HRR (Gao et al., 2019).

CONCLUSIONS AND FUTURE
PERSPECTIVES

T. gondii uses both NHEJ and HRR pathways, but evolutionary
divergences such as of the lack of key proteins, suggest
differences that may have therapeutic value. HRR pathway
seems to be relevant even under normal growth conditions,
suggesting that across the lytic cycle T. gondii is exposed to
situations that generate DSB, like collapse of replication forks.
In the future it would be important to better understand
the dynamics of the HRR process under normal versus DNA
damage conditions. It is also of interest to identify the proteins
critical to the cellular decision between using the NHEJ or
HRR pathways.

Like other organisms, T. gondii requires high fidelity of
DNA replication during proliferation. Drugs that induce DNA

damage could be effective against the parasite, but that
effectiveness may be limited if DNA repair mechanisms are
intact. Combined therapies that induce DNA damage and
neutralize repair enzymes may be required. A better approach
could be to target topoisomerases and other enzymes (e.g.,
ribonucleotide reductase) related to the synthesis of the new
DNA chain.

The fact that HRR proteins seem to be crucial in T.
gondii and that some have structural divergences, make them
promising candidates as drug targets. The differences between
T. gondii and host enzymes can provide valuable information
to obtain drugs that specifically block T. gondii without
affecting the human or animal. Among the compounds analyzed
here some are multitargets and often exert different actions
depending on the organism. It would be best to identify
specific and effective drugs against a single target to avoid
unexpected adverse effects on the host. In addition, there are
many HRR druggable targets that were not assayed against T.
gondii yet, but could be excellent candidates. Moreover, the
HRR pathway in T. gondii may have other proteins whose
identification and analysis in the future will allow us to
gain knowledge in the HRR mechanisms and could be novel
drug targets.

It is clear that the DNA repair pathway is a promising source of
new therapeutic targets while offering an important opportunity
to generate knowledge about this biological process. Finally, this
mechanism allows the combined use of DNA damaging agents
and DNA repair inhibitors, thereby increasing the efficiency
of therapies.
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