
entropy

Article

Constrained Active Fault Tolerant Control Based on Active
Fault Diagnosis and Interpolation Optimization

Kezhen Han * , Changzhi Chen, Mengdi Chen and Zipeng Wang

����������
�������

Citation: Han, K.; Chen, C.; Chen,

M.; Wang, Z. Constrained Active

Fault Tolerant Control Based on

Active Fault Diagnosis and

Interpolation Optimization. Entropy

2021, 23, 924. https://doi.org/

10.3390/e23080924

Academic Editors: Quanmin Zhu,

Giuseppe Fusco, Jing Na, Weicun

Zhang and Ahmad Taher Azar

Received: 24 June 2021

Accepted: 15 July 2021

Published: 21 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Electrical Engineering, University of Jinan, Jinan 250022, China; 202021100375@mail.ujn.edu.cn (C.C.);
202021200742@mail.ujn.edu.cn (M.C.); cse_wangzp@ujn.edu.cn (Z.W.)
* Correspondence: cse_hankz@ujn.edu.cn

Abstract: A new active fault tolerant control scheme based on active fault diagnosis is proposed
to address the component/actuator faults for systems with state and input constraints. Firstly, the
active fault diagnosis is composed of diagnostic observers, constant auxiliary signals, and separation
hyperplanes, all of which are designed offline. In online applications, only a single diagnostic observer
is activated to achieve fault detection and isolation. Compared with the traditional multi-observer
parallel diagnosis methods, such a design is beneficial to improve the diagnostic efficiency. Secondly,
the active fault tolerant control is composed of outer fault tolerant control, inner fault tolerant control
and a linear-programming-based interpolation control algorithm. The inner fault tolerant control is
determined offline and satisfies the prescribed optimal control performance requirement. The outer
fault tolerant control is used to enlarge the feasible region, and it needs to be determined online
together with the interpolation optimization. In online applications, the updated state estimates
trigger the adjustment of the interpolation algorithm, which in turn enables control reconfiguration
by implicitly optimizing the dynamic convex combination of outer fault tolerant control and inner
fault tolerant control. This control scheme contributes to further reducing the computational effort of
traditional constrained predictive fault tolerant control methods. In addition, each pair of inner fault
tolerant control and diagnostic observer is designed integratedly to suppress the robust interaction
influences between estimation error and control error. The soft constraint method is further integrated
to handle some cases that lead to constraint violations. The effectiveness of these designs is finally
validated by a case study of a wastewater treatment plant model.

Keywords: active diagnosis; active reconfiguration; constrained systems; fault tolerance; interpola-
tion control; linear programming

1. Introduction

Fault tolerance is already a common design property to be considered for most control
systems. In terms of the system structure, faults can be classified as sensor faults, actuator
faults, and component/parameter faults [1,2]. In general, the first two do not directly affect
the intrinsic stability of the system, while the component faults tend to directly change
the dynamic characteristics of the system. In the literature, the methods to handle these
types of faults can be divided into active fault tolerant control (AFTC) and passive fault
tolerant control (PFTC) [3]. PFTC draws on robust control theory to suppress the effects of
faults, while AFTC uses fault information to adjust or reconfigure control actions to match
the dynamics of the faulty system. Due to such matching adjustments, AFTC typically
provides better reliability than PFTC. Many representative results can be found in the
survey papers [4–7].

Recently, the design of optimal AFTC for systems with state/input constraints has
been received a lot of attention. Unlike the design of unconstrained FTC, the design of
constrained FTC has to take into account more requirements, including robust stability,
feasibility, optimization efficiency, etc. Particularly, the faults occurring in constrained
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systems often cause constraint violations, and the unconstrained FTC designed without
considering feasibility may result in an empty set of feasible solutions for a given control
objective. This often further leads to the eventual loss of closed-loop stability. In the
literature, some typical design methods for constrained FTC have been reported, such as
Barrier Lyapunov function method [8], command governor [9,10], saturation control [11],
model predictive control (MPC) [12], etc. Among these methods, the MPC-based FTC
method is widely considered, since MPC has the inherent and flexible capacity to address
constrained optimization problems. The representative studies include FTC based on
min-max MPC [13], FTC based on explicit MPC [14], multi-actuator/sensor FTC based on
set theoretic MPC [15–18], FTC based on dual model MPC [19,20], etc.

Most of the above mentioned MPC-based FTC designs are developed for actuator
and sensor faults, whereas relatively few results are reported for component/parameter
faults. Since the component faults often change the structural parameters of the system,
determining the real-time operating mode of the system is a prerequisite for achieving
fault tolerance. A common approach to this problem is to use multiple observers to
first discriminate the fault modes, and then activate the corresponding control law of
the isolated mode to achieve switching control reconfiguration [21]. Such an approach
can be viewed as a passive fault diagnosis (PFD)-based AFTC scheme. Actually, due to
the potential lack of diagnostically relevant information in the input–output data, the
PFD method may fail to isolate a fault or may isolate a fault incorrectly. Moreover, for
high-dimension systems, the multiple observers for parallel applications usually occupy
a large amount of memory, and the involved modal discriminant optimization problem
is generally computationally demanding. One promising way is to integrate the active
fault diagnosis (AFD) methods into FTC, i.e., the AFD-based AFTC. The central idea in
AFD is to design a small harmful test/auxiliary input signal that can ensure maximal
or full separation among the model predictions corresponding to the different modes of
operation [22]. According to different design methods of AFD, some representative results
have been presented, such as AFTC based on Youla–Kucera parametrization [23], AFTC
based on set detection and isolation [24], AFTC based on performance transformation [25],
AFTC based on distributed fault isolation [26], etc.

The above studies have provided different ideas for the construction of AFD and
AFTC. Inspired by these results, we find two more problems whose handling can be further
improved:

(i) In terms of the implementation of AFD in AFTC, the test inputs used for modal
separation are usually optimized online. For the small-scale systems, such computa-
tional requirements can be satisfied. However, as the number of system dimensions
increases, the computational burden tends to become heavier, which often results in
much longer delays of correct fault mode isolation. Recently, an effective solution was
proposed in [27], where an implicit expression of the residual limit set is adopted and
a constant auxiliary signal and the associated separation hyperplane used to separate
the potential system modes are constructed offline. After a fault is detected, only the
constant test signal is injected into the system and the current diagnostic observer.
Then, the true system mode can be isolated by discriminating the position of the
generated residuals in relation to the previously computed separation hyperplane.
Given its advantages, such as simple implementation and fast isolation, this approach
can provide an effective perspective for the design of control reconfigurations. There-
fore, this paper will first attempt to adapt this active fault isolation approach to be
integrated into the framework of AFTC to provide critical modal update information
for timely regulation of constrained systems.

(ii) In terms of the design of constrained active reconfiguration FTC, most MPC-based
methods need to solve computationally intensive optimization problems online. Gen-
erally, this often places stringent requirements on the system scale, sample interval,
and hardware controller performance. As an alternative solution to constrained op-
timization, the interpolation control (IC) methods exhibit excellent features [28–30].
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The main idea is to optimize an interpolation coefficient in real time based on the
updated system states and use this coefficient to make a smooth convex combination
of a outer controller and a inner controller. The outer controller is used to enlarge the
controllable feasible domain, while the inner controller is used to satisfy the given
control performance requirements. In general, the inner controller is optimally de-
signed offline, while the outer controller is determined online simultaneously when
the interpolation coefficient is optimized. This method of offline designing some
parameters of the controller in advance helps to reduce the online calculation burden.
Moreover, the optimized interpolation coefficient enables a smooth transition between
the inner–outer controllers and ensures a fast convergence of the states to the set point
under the constraints. In particular, the associated optimization problem belongs
to standard linear programming (LP), which can be readily solved in the practical
implementation. Given these characteristics, the IC-based optimization can provide
a good compromise among computational load, feasible region size, performance,
etc. Therefore, the development of the IC strategy to solve the constrained AFTC
problem would be very promising. To the authors’ knowledge, no relevant results
have been reported.

Motivated by the above observation, we seek to further push the development of the
field of constrained FTC for component/actuator faults by proposing a new AFD-based
interpolating FTC synthesis scheme. The central ideas of the technical route are: (1) the
passive fault detection (FD) is firstly designed by using a diagnostic observer in the current
mode; (2) after a fault is detected, the active fault isolation (FI) and mode identification
are then achieved by using a constant test signal and a separated hyperplane; and (3)
after the actual mode is isolated, the constrained AFTC is finally determined by virtue of
optimizing the interpolation coefficient to combine the inner FTC and outer FTC. How to
comprehensively solve the problems involved in this technical route is the main research
content of this paper.

Compared with the recent results on constrained AFTC studies (e.g., [13,16,20]), our
main contributions can be reflected in the follows aspects: (i) A new and efficient AFD-
based AFTC approach for component/actuator faults is proposed. In this work, only one
observer is applied in real time to achieve FD and FI, while most of the existing studies use
multiple observers for online parallel diagnosis; the fault mode separation is achieved by
using auxiliary signals and separating hyperplanes designed offline, rather than by solving
receding horizon optimizations and set membership discriminations online; the real-time
control reconfiguration-based AFTC is achieved by solving simple LP problems instead of
solving quadratic or semi-definite positive programming problems. (ii) When designing
diagnostic observers and FTCs, the interaction influences between estimation error and
control error is further handled based on integrated design and constraint tightening so as
to improve the robust feasibility of AFTC optimization algorithm. (iii) The soft constraints
IC-based AFTC strategy is also designed to address some infeasible scenarios, such as, the
deviation of states from the maximum controllable invariant set after fault isolation, or the
constraints violation caused by some unanticipated factors.

The remainder of this paper is structured as follows. Section 2 provides the problem
formulation. In Section 3, the proposed AFD-based interpolating AFTC scheme is explained
in detail and an integrated algorithm is also given to summarize the involved offline design
and online application steps. In Section 4, the algorithm verification is given. Some
conclusion and future work are discussed in Section 5.

Notation 1. diag{X1, X2, X3} is a diagonal matrix with diagonal elements X1, X2, and X3.
AT P(∗) = AT PA. 1m is a m-dimensional column vector with all elements of 1, while Im is a
m-dimensional unitary matrix. Let p ∈ P and q ∈ Q be two sets of Rn. Then, P⊕Q = {p+ q|p ∈
P, q ∈ Q} is the Minkowsi sum of two sets. For two sets satisfying Q ⊂ P, x ∈ P ∼ Q represents
x ∈ P, but x /∈ Q. A polyhedron is the intersection of a finite number of open and/or closed
half-spaces, and a polytope is a closed and bounded polyhedron.
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2. System Description and Problem Formulation

Consider the following uncertain discrete-time systems affected by unknown compo-
nent faults, actuator faults and disturbances:

xk+1 = Al xk + Bluk + dk, yk = Cxk + vk (1)

where xk ∈ X ⊂ Rn is the state vector; uk ∈ U ⊂ Rnu is the actuator input vector;
dk ∈ D ⊂ Rnd is the unknown process disturbance vector; vk ∈ V ⊂ Rnv is the un-
known measurement disturbance vector; yk ∈ Rny is the measurement output vector.
The matrices Al , Bl and C are constant and have appropriate dimensions. The index
l is associated with the configuration in which the system is actually operating, i.e.,
(Al , Bl) ∈ {(A0, B0), (A1, B1), · · · , (An f , Bn f )}, l ∈ [0, n f ]. Without loss of generality,
we assume that l = 0 corresponds to the healthy condition (A0, B0) while any other l ≥ 1
corresponds to a faulty condition. In addition, X ,U ,D,V are defined as the bounded poly-
hedral constraint sets [30,31]: X = {x ∈ Rn : Hxx ≤ bx},U = {u ∈ Rnu : Huu ≤ bu},D =
{d ∈ Rnd : Hdd ≤ bd},V = {v ∈ Rbv : Hvv ≤ bv}, where Hx, Hu, Hd, Hv, bx, bu, bd, bv are
predetermined.

Remark 1. The model (1) can represent some uncertainties. Firstly, the changes in the configuration
of the system (i.e., l ∈ [0, n f ]) due to the appearance or disappearance of faults are essentially a
description of the uncertainty of the system [1]. Secondly, the disturbance terms (dk, vk) included
in the model can directly reflect the multiple uncertainties in the system. For instance, let Al = A0,
dk = ∆Axk + δk with unknown but bounded term ∆A, (1) can represent a class of additive
parametric uncertainty models; let Al = A0, dk = A0(I − ∆A)xk + δk, (1) can represent a class of
multiplicative parametric uncertainty models; let dk be a time-varying/time-invariant uncertainty
term only, (1) can represent the uncertainty case for a class of mechanistic models with bounded
offsets of modeling error, etc. All of these scenarios can be used to reflect a mismatch between the
model and the reality.

Remark 2. The model (1) can represent both component and actuator faults [1]. For example,
Al = A0 + ∑n

i=1 Aiθi
k with unknown faulty factor θi

k can represent some component/parameter
faults; Bl = B0diag{θ1

k , θ2
k , · · · , θnu

k } with θi
k ∈ [0, 1] can describe some actuator effectiveness

loss faults.

For the sake of simplicity, the dynamics of the l-th system configuration can be
rewritten as

xl
k+1 = Al xl

k + Blul
k + dk, yl

k = Cxl
k + vk

s.t. xk ∈ X , uk ∈ U , dk ∈ D, vk ∈ V
(2)

The following assumptions are given for systems (1) and (2).

Assumption 1. The typical system configurations of concern can be modeled in advance, and these
system configurations are controllable.

Remark 3. We recognize that not all systems and faults can be tolerant by only one FTC method.
Therefore, we make the above assumptions to explain the situations in which the proposed method
can be applied.

Definition 1. Let S be a neighborhood of the origin. The closed-loop trajectory of (1) is said to be
Uniformly Ultimately Bounded (UUB) in S , if ∀ x0, ∃T(x0) > 0 such that xk ∈ S for k ≥ T(x0).

The control objective is to construct an AFD-based robust and feasible AFTC strategy
such that the states of the controlled system (1) can be steered inside a neighborhood of
origin (i.e., UUB) in a way of minimizing the following optimization problem
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min
uk
Jxk ,uk =

∞

∑
t=0

U(xk+t, uk+t)

s.t. xl
k+1 = Al xl

k + Blul
k + dk, yl

k = Cxl
k + vk

xk ∈ X , uk ∈ U , dk ∈ D, vk ∈ V
l ∈ [0, n f ]

(3)

where U(xk, uk) = xT
k Ξxk + uT

k Θuk, Ξ > 0, Θ > 0 is a utility function.

3. Main Results
3.1. The Overall Scheme of the Proposed AFD-Based Interpolation AFTC Method

The overall scheme of the proposed AFD-based interpolation AFTC method is shown
in Figure 1. In the subsequent analysis, we let that the index l ∈ [0, n f ] denotes the
unknown actual system operating condition and the index i ∈ [0, n f ] denotes the recently
identified system operating condition. Then, according to the flowchart in Figure 1, the
AFTC method works as explained below. First, the I/O data of the practical system (i.e.,
the lth model) is collected by the ith estimator to give the state estimates x̂i

k and generate
the residuals ri

k. Second, the fault detection unit performs change detection based on the
estimator outputs. When there is no change (i.e., l = i), the interpolation control algorithm
currently in use continues to regulate the system. When a change/fault is detected (i.e.,
l 6= i), the fault isolation unit is activated, and in this case the pre-designed auxiliary test
signal ui

FI is injected into the system and the estimator to perform modal discrimination.
Next, after the practical system condition is isolated (i.e., i = l), the decision results of
the fault isolation unit will update the operating condition index of the estimator and
the reconfiguration controller. Next, the suitable interpolation optimization should be
selected according to the location of states in relation to the feasible set of controller (i.e.,
robust control invariant set). Namely, if the states belong to the feasible set of the isolated
controller, the general interpolation control is applied; otherwise, the relaxed interpolation
control should be activated. Finally, these control actions will adjust the system states to the
desired operating region. The design of each unit in this flowchart is given in detail below.

Reconfigure the 

index of observer 

and controller

Estimator (4)

Fault 

detection (6)

Interpolation-

based FTC 

Activate fault

isolation

Inject auxiliary 

test signal into 

system/estimator

Collect 

residuals after 

t samples

Fault 

isolation (12)

States belong to 

M-step robust control

invariant set

Interpolation-

based FTC

Relaxed

interpolation-

based FTC

No 

change
Change

Yes No

Plant (1)
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( � i, �!", #")
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" = $

%i&'
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" ≠ $
" = $

 ∈ *+
-  ∈ *+

-/
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Figure 1. Scheme of AFD-based interpolation AFTC. The fault detection and active fault isolation
constitute AFD, which will be designed in Section 3.2; AFTC consists of outer FTC, inner FTC
and interpolation optimization, where outer FTC and interpolation optimization are designed in
Section 3.4 and inner FTC with observer is designed in Section 3.3.
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3.2. AFD: Fault/Mode Change Detection and Isolation

Without loss of generality, the following i-th observer is adopted to estimate states
and generate residuals

x̂i
k+1 = (Ai + LiC)x̂i

k + Biui
k − Liyi

k

ŷi
k = Cx̂i

k, ri
k = yi

k − ŷi
k

(4)

where x̂i
k ∈ Rn denotes the estimated state vector; ŷi

k ∈ Rny is the estimated output
vector; ri

k ∈ Rny is the generated residual signal that is used to provide key information of
abnormal condition for achieving AFD. Li is the observer gain.

Assumption 2. For the sake of discussion, we assume that the observer (4) for each i ∈ [0, n f ]

has been designed in advance, and (Ai + LiC) is Schur stable. The detailed design conditions of Li

are given in Theorem 1.

Remark 4. In a cycle of AFD, the FI is always triggered by the FD [22]. Moreover, when a fault is
detected at time kd, the closed-loop FTC controller that is currently being used should preferably
be put on standby to avoid that the feedback function hides the effect of the fault. In this setting,
only the auxiliary input is used to stimulate the faulty system. In principle, the design of such
an auxiliary input should (1) minimize the harmful influence to the currently matched system
operation and (2) accurately identify and isolate the real system operating condition l.

In Figure 1, there are two cases about the generated residual signal ri
k. One is that the

ith observer currently in use is matched to the real system mode l, and the other is the
opposite. In the sequel, we will discuss the characteristics of the corresponding residuals
for each of these two cases.

(1) Case I (design of FD logic for i = l): First, based on Remark 4 and (1)–(4), the
following estimation error system can be established:

exi ,k+1=(Ai + LiC)exi ,k+Livk+dk, ri
k =Cexi ,k+vk (5)

where exi ,k = xi
k − x̂i

k. Given i ∈ [0, n f ], the relevant disturbance term Livk + dk is bounded
by a deterministic set ∆i,i

e = (LiV)⊕D. Then, based on a series of finite set iterations along
(5) using ∆i,i

e , an approximate maximal RPI set Ωi,i
e (see Definition 2) can be computed

and the limit set of residual ri can be directly obtained as Ri,i
FD = CΩi,i

e ⊕ V . According
to Figure 1 and Remark 4, the detection of mode changes and the triggered action can be
formulated as {

ri
k /∈ Ri,i

FD ⇒ Mode change⇒ Activate FI

ri
k ∈ R

i,i
FD ⇒ No change ⇒ Continue detection

(6)

Remark 5. Considering the possibility of fault occurrence, transformation, or recovery, we uni-
formly use mode change in (6) to indicate any phenomenon that causes a change in the system
behavior.

(2) Case II (design of FI logic for i 6= l): The case i 6= l implies that the real status
of system has changed and it generally leads to ri

k /∈ Ri,i
FD. In this case, the fault/mode

isolation should be activated. According to the analysis method in [27] and Remark 4, an
auxiliary input ui

FI will be used to replace the AFTC input ui
C,k. A relevant augmentation

representation is firstly constructed as

χl,i
k+1=Al,i

χ χl,i
k +Bl,i

χ ui
FI+Ei

χσk, rl,i
k =Cχχl,i

k +Dχσk (7)
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where χl,i
k =

[
(xl

k)
T (x̂i

k)
T]T , Al,i

χ =

[
Al 0
−LiC Ai + LiC

]
, σk ∈ E = {

[
dT

k vT
k
]T : d ∈

D, v ∈ V}, Bl,i
χ =

[
Bl

Bi

]
, Ei

χ =

[
I 0
0 −Li

]
, Cχ =

[
C −C

]
, Dχ =

[
0 I

]
. Clearly, the

term Ei
χσk lies in the set ∆i

χ = Ei
χE . Then, given ui

FI and based on Assumption 1, an

approximate maximal RPI set Ωl,i
χ for each pair (l, i), i 6= l, can be determined by finite set

iterations along (7). Accordingly, the limit set that is used to achieve modal isolation can be
obtained asRl,i

FI = CχΩl,i
χ ⊕ DχE . The approximated calculation method ofRl,i

FI is given in
Appendix A.

A crucial condition for the existence of ui
FI that discriminates between configurations

ζ and η in finite time isRζ,i
FI ∩R

η,i
FI = ∅, ζ 6= η. According to [27], such discrimination can

be achieved by checking whether the distance between the two sets is positive. Without
loss of generality, the following distance metric is defined as

disi
ζ,η = inf

(qζ∈R
ζ,i
FI ,pη∈Rζ,i

FI )

‖ qζ − pη ‖2 (8)

Clearly, for each pair (ζ, η) ∈ {[0, n f ] ∼ i}, ζ 6= η, we need to solve (8) to determine a
suitable auxiliary input ui

FI such that the distance metric disi
ζ,η is positive. The distance

metric (8) has the following properties.

Lemma 1. [27] The distance metric function disi
ζ,η is convex and hence its maximum is reached

on certain vertices of the input constraint set.

Based on Remark 4 and Lemma 1, the optimization design problem of auxiliary input
signal ui

FI , ∀i ∈ [0, n f ] can then be formulated as
min γ

s.t. disi
ζ,η > 0; ui

FI ∈ vert(γU ); σk ∈ E ;

ζ, η ∈ {[0, n f ] ∼ i}; ζ 6= η.

(9)

Once the problem in (9) is solved for each i, the corresponding separation hyperplane
(denoted as Πi

ζ,η) that is used to isolate the new mode can be further calculated through

Πi
ζ,η = {r : (r− r̆η)T(r− r̆η) = (r− r̆ζ)T(r− r̆ζ)}

= {r : (r̆ζ − r̆η)Tr =
(r̆ζ − r̆η)T(r̆ζ + r̆η)

2
}

(10)

where r̆ζ ∈ Rζ,i
FI and r̆η ∈ Rη,i

FI are two points at minimum distance from Πi
ζ,η , and they can

be determined when solving (9). Then, these off-line designed separation hyperplanes will
be used for real-time isolation. For simplicity, the isolation function is constructed as

Isoi
ζ,η = sign[(r̆ζ − r̆η)Trk −

(r̆ζ − r̆η)T(r̆ζ + r̆η)

2
] (11)

Then, for the residual signals generated in real time, the online FI logic can be de-
signed as {

Isoi
ζ,η > 0⇒ Mode ζ is effective

Isoi
ζ,η < 0⇒ Mode η is effective

(12)

The current system mode can thus be discerned by making no more than n f comparisons
using (11) and (12).
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3.3. Integrated Design of Observer and Unconstrained Controller

When the practical system mode index l ∈ [0, n f ] is isolated, the control reconfigu-
ration should be activated immediately, i.e., the control action ul

C,k is reconfigured with
the new isolated mode index l. Now we will design the control policy ul

C,k. Here, we
consider for now the case where the constraints (x ∈ X , u ∈ U ) are not triggered
and ul

C,k can then be designed only as an estimator-based robust feedback control policy
ul

C,k = Kl x̂l
k, ∀l ∈ [0, n f ]. Under such settings, the closed-loop system dynamics can be

obtained as

xl
k+1 = Al xl

k + BlKl x̂l
k + dk

= (Al + BlKl)xl
k − BlKlexl ,k + dk

= Āl xl
k + B̄lexl ,k + dk

(13)

where Āl = Al + BlKl , and B̄l = −BlKl .

On the other hand, by defining a virtual output variable vector zl
k =

[
Ξ1/2

0

]
xl

k +[
0

Θ1/2

]
ul

k, the unity function of cost function (3) can be represented by U(xl
k, ul

k) = (zl
k)

Tzl
k.

Then, the closed-loop virtual output by ul
C,k can be deduced as

zl
k = C̄l xl

k + D̄lexl ,k (14)

where C̄l =

[
Ξ1/2

0

]
+

[
0

Θ1/2

]
Kl and D̄l = −

[
0

Θ1/2

]
Kl .

According to [20,32], there may exist robustness interaction influences between esti-
mation accuracy and unconstrained control performance, since the estimation error exl ,k
disturbs the closed-loop system (13) and (14) whilst the unmodeled dynamics dk usually
containing states can affect the estimation system (5). Hence, an integrated design of
composite closed-loop system (5), (13) and (14) must be adopted to obtain the satisfactory
observer gain Ll and control gain Kl , ∀l ∈ [0, n f ]. The following composite closed-loop
system is firstly established:

ψl
k+1 = Ãlψl

k + B̃l$k

zl
k = C̃lψl

k

(15)

where ψl
k =

[
eT

xl ,k (xl
k)

T
]T

, $k =
[
vT

k dT
k
]T , Ãl =

[
Ãl

11 0
Ãl

21 Ãl
22

]
, B̃l =

[
B̃l

1
B̃l

2

]
, Ãl

11 =

Al + LlC, Ãl
21 = −BlKl , Ãl

22 = Al + BlKl , B̃l
1 =

[
Ll I

]
, B̃2 =

[
0 I

]
, and C̃l =

[
D̄l C̄l].

The following theorem presents the integrated design conditions of observer gain and
unconstrained feedback gain.

Theorem 1. For each l ∈ [0, n f ], a robust observer (5) and associated robust feedback control
policy uC,k = Kl x̂l

k can be integratedly determined, if some decision variables α > 0, β > 0,
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Pl
1 = (Pl

1)
T > 0, Pl

2 = (Pl
2)

T > 0, Yl
1, Yl

2, K̄l , L̄l exist as the solutions to the following
optimization problem:

min
Pl

1,Pl
2,Yl

1,Yl
2,K̄l ,L̄l

ςα + (1− ς)β

s.t.

I − Pl
1 � �

0 −α2 I �
Γ31l Γ32l Pl

1 −Yl
1 − (Yl

1)
T

 < 0 (16a)


Pl

2−Sym(Yl
2) � � � �

0 P2−Sym(Yl
2) � � �

0 0 −β2 I � �
Υ41l Υ42l B̃2 −Pl

2 �
Υ51l Υ52l 0 0 −I

<0 (16b)

where Sym(Yl
2) = Yl

2 + (Yl
2)

T , Γ31l = Yl
1 Al + L̄lC, Γ32l =

[
L̄l Yl

1
]
, Υ41l = −BlK̄l , Υ42l =

Al(Yl
2)

T + BlK̄l , B̃l
2 =

[
0 I

]
, Υ51l = −

[
0

Θ1/2

]
K̄l , Υ52l =

[
Ξ1/2

0

]
(Yl

2)
T +

[
0

Θ1/2

]
K̄l , ς ∈

(0, 1). Once the above optimization is solved, the parameters of observer and feedback gain can be
calculated by Kl = K̄l((Yl

2)
T)−1 and Ll = (Yl

1)
−1 L̄l , respectively.

Proof. The proof of Theorem 1 is given in Appendix B.

3.4. Constrained AFTC: Reconfigured Interpolating Control

Based on the set-theoretic concepts in [28,31], several invariant sets are defined.

Definition 2. Given the controller ul
C,k = Kl x̂l

k, the set Ωl
RPI ⊆ X is a robust positive invariant

set (RPI-set) for closed-loop system (13) subject to constraint xl
k ∈ X if for any xl

0 ∈ Ωl
RPI we

have xl
k ∈ Ωl

RPI for all B̄lexl ,k + dk, k > 0. Moreover, Ωl
MRPI is the maximal RPI-set if Ωl

MRPI
contains all the RPI-sets of constrained closed-loop system (13) in X . For simplicity, Ωl

MRPI is
represented in the polyhedral form of Ωl

MRPI = {xl : Fl
I xl ≤ gl

I}.

The following enlarged invariant set is further defined for some constrained allowable
control inputs.

Definition 3. Given the lth model of (2) and the constraints (X ,U ), the set Ωl
RCI ⊆ X is a

robust control invariant set (RCI-set), if for any xl
0 ∈ ΩRCI there exists an admissible control input

ul
k ∈ U such that all the state updates satisfy xl

k ∈ ΩRCI for all dk and exl ,k, k > 0. Similarly, the
maximal RCI-set ΩMRCI contains all robust RCI-sets.

Generally, the determination of ΩMRCI is computationally demanding, in particular
for high-dimension systems. As an alternative, the M-step robust control invariant set can
be used.

Definition 4. The set Pl
M ⊆ X is defined as a M-step robust control invariant set for the lth model

of (2) with respect to the constraints (X ,U ), if there exists an admissible control sequence such
that all states xl

k ∈ Pl
M can be steered into Ωl

MRPI in no more than M steps. For simplicity, Pl
M is

described as Pl
M = {xl : Fl

Mxl ≤ gl
M}.

In general, two cases exist for the location of the states of system after the active FI is
completed, namely xl

k ∈ Pl
M and xl

k /∈ Pl
M. In the sequel, we will construct an interpolating

FTC strategy for each of these two cases.
(1) Case I (xl

k ∈ Pl
M after FI): Firstly, in order to get Ωl

MRPI of (13), the bounded set
of B̄lexl ,k + dk should be determined. By a series of finite set iterations along (5), the
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disturbance invariant set of exl subject to vk ∈ V and dk ∈ D has been computed as Ωl,l
e .

Then, we have B̄lexl ,k + dk ∈ (B̄lΩl,l
e ⊕D). Further, the Procedure 2.1 in [28] can be referred

to calculate Ωl
MRPI of (13).

In order to describe the control actions that can regulate the state xl
k from Pl

M back to
Ωl

MRPI in no more than M steps, an augmented control sequence

Ul
M,k =

[
(ul

IC,k)
T (ul

IC,k+1)
T · · · (ul

IC,k+M−1)
T
]T

is defined. In fact, these actions are
expected to regulate the dynamic behavior of the system in the following manner:

xl
k+1 = Al xl

k + Blul
IC,k + dk ∈ Pl

M

...

xl
k+M−1=Al xl

k+M−2+Blul
IC,k+M−2+dk+M−2∈Pl

M

xl
k+M =Al xl

k+M−1+Blul
IC,k+M−1+dk+M−1∈Ωl

MRPI

(17)

Obviously, in (17) we can observe that the migration process of states can be approxi-
mately deduced by the current initial state xl

k and a sequence of inputs Ul
M,k. Considering

the constraints with Definition 4, we can further describe the maximal admissible control
domain of the system (1) with respect to the corresponding control inputs in terms of the
following half-space representation for the augmented state space Ql

M = {xl , Ul
M}:

Ql
M = {xl , Ul

M : F̄l
M

[
xl

Ul
M

]
≤ ḡl

M} (18)

Remark 6. Given the previously obtained Ωl
MRPI and certain M, the augmented set Ql

M can be
calculated by following the algorithm in [28]. In addition, by comparing the definition in (18) and
Definition 4, it can be seen that Pl

M is a projection of Ql
M onto the state space.

Without loss of generality, any state vector xl
k ∈ Pl

M can be decomposed as a convex
combination form

xl
k = sl

kxl
O,k + (1− sl

k)xl
I,k (19)

where xl
I,k ∈ Ωl

MRPI denotes an inner state vector while xl
O,k ∈ Pl

M ∼ Ωl
MRPI denotes an

outer state vector. sl
k∈ [0, 1] is the so-called interpolation coefficient. Since xI,k has already

inside Ωl
MRPI , the previously designed unconstrained optimal control law by Kl xl

I,k can
be directly adopted to achieve UUB regulation of xl

I,k robustly. Thus, for xl
k /∈ Ωl

MRPI ,
(19) means that the problem of finding Ul

M,k to regulate state xl
k back to Ωl

MRPI can be
transformed into the problem of solving Ul

M,k to regulate state xl
O,k back into Ωl

MRPI .
In line with the above state decomposition (19), the following interpolated FTC strat-

egy for the lth model is constructed

ul
C,k = sl

kul
IC,k + (1− sl

k)u
l
I,k (20)

where ul
I,k = Kl xl

I,k is the inner FTC law while ul
IC,k is the outer FTC law to be determined.

It should be noted that ul
I,k is the optimal unconstrained terminal control law, and it

generally presents high control performance. However, for xl
O,k ∈ Pl

M ∼ Ωl
MPRI , the

constraints will be activated and the performance might be poor. Thus, in order to make
the high-performance inner controller as dominant as possible and minimize the constraint
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activation influence simultaneously, it is desirable to set sl
k as small as possible. This can be

achieved by solving the following optimization problem:

s̃l
k = min

sl
k ,xl

I,k ,xl
O,k ,Ul

M,k

sl
k

s.t. Fl
I xl

I,k ≤ gl
I ; F̃l

M

[
xl

O,k
Ul

M,k

]
≤ g̃l

M;

xl
k = sl

kxl
O,k + (1− sl

k)xl
I,k; 0 ≤ sl

k ≤ 1.

(21)

The first constraint in (21) is used to ensure xl
I,k ∈ Ωl

MRPI ; the second inequality is
used to ensure that there exists Ul

M,k such that xl
O,k ∈ P̃l

M ⊆ Pl
M and xl

O,k+M ∈ Ωl
MRPI ; the

third equation guarantees a smooth convex interpolation between xl
I,k and xl

O,k and also
achieves a smooth interpolation between the associated two control laws.

Remark 7. In view of the influence of estimation error on the feasibility of optimization, we have
contracted the constraint condition in (18), and obtained the second constraint condition in (21).
Specifically, by setting ul

IC,k = Kl xl
O,k + cl

k, there is ul
C,k = sl

kul
IC,k + (1− sl

k)u
l
I,k = sl

k(K
l xl

O,k +

cl
k) + (1− sl

k)u
l
I,k = sl

kKl xl
O,k + (1− sl

k)K
l xl

I,k + sl
kcl

k = Kl(sl
kxl

O,k + (1− sl
k)xl

I,k) + sl
kcl

k =

Kl xl
k + c̄l

k, where c̄l
k = sl

kcl
k. Then, following the augmentation analysis technique in dual-mode

predictive control [20], we can calculate a disturbance invariant set of [xk; Ul
M,k] that is driven

by exl ,k and dk. Further, based on the constraint tightening, a conservative constraint set Q̃l
M =

{xl , Ul
M : F̃l

M

[
xl

Ul
M

]
≤ g̃l

M} can be determined, where P̃l
M is a projection of Q̃l

M onto the state space.

Since sl
k, xl

I,k, xl
O,k are unknown, the optimization (21) is nonlinear. Let bl

O,k = sl
kxl

O,k,
bl

I,k = (1− sl
k)xl

I,k, and Tl
M,k = sl

kUl
M,k, the above optimization problem (21) can be then

simplified as a linear programming problem:

s̃l
k = min

sl
k ,bl

O,k ,Tl
M,k

sl
k

s.t. Fl
I (xl

k − bl
O,k) ≤ (1− sl

k)gl
I ;

F̃l
M

[
bl

O,k
Tl

M,k

]
≤ sl

k g̃l
M; 0 ≤ sl

k ≤ 1.

(22)

When the optimal solution of (22) is obtained, the reconfigured interpolation FTC can then
be constructed as ul

C,k = Tl
M1,k + Kl(xl

k − bl
O,k), where Tl

M1,k is the first control input in Tl
M,k.

(2) Case II (xl
k /∈ Pl

M after FI): The soft constraint methods are employed to ensure that
states outside Pl

M can also be steered into Ωl
MRPI after the fault is isolated. Depending on the

requirements of the actual system for state constraints and input constraints, there exist two
general ways to design soft constraints [33,34]. The first is that the input constraints must
not be violated while the boundaries of the state constraints can be relaxed appropriately.
The other is that the boundaries of both constraints can be adjusted. In either case, the
relaxation variable introduced by the soft constraints is non-zero only when the original
constraints are violated. Once the original constraints are restored, the relaxation variable
must be zero. For the sake of simplicity, the second strategy is adopted and we design
the following soft constrained interpolating control algorithm. First of all, we suppose
that the maximal admissible control domain (18) can be relaxed to contain states xl

k /∈ Pl
M

as follows:

Q̃l
ςk ,M = {xl , Ul

M : F̃l
M

[
xl

Ul
M

]
≤ g̃l

M + ςl
kΛ} (23)
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where ςl
k ≥ 0 is the relaxation variable and Λ can be a column vector of ones or an

arithmetic progression vector with the first term 1 and common difference −κ ∈ [−1, 0].
Note that the soft constraints by (23) implicitly define an enlarged M−step robust control
invariant set P̃l

ςk ,M for systems (1) with relaxed constraints of states and inputs.
Then, in a similar way to formulate (19) and (20), we can also update the interpolations

of states and inputs for xl
I,k ∈ Ωl

MRPI and xl
O,k ∈ P̃l

ςk ,M ∼ Ωl
MRPI . Slightly different from

the optimization objective of (21), here the slack variable ςk also needs to be minimized, i.e.,
the degree of constraint violation of P̃l

M should be minimized. To this point, we can further
establish the following optimization problem through the same design of variables as (22):

µ̃l
k = min

sl
k ,bl

O,k ,Tl
M,k ,ς̄l

k

ε1ς̄l
k + ε2sl

k

s.t. Fl
I (xl

k − bl
O,k) ≤ (1− sl

k)gl
I ; 0 ≤ sl

k ≤ 1;

F̃l
M

[
bl

O,k
Tl

M,k

]
≤ sl

k g̃l
M + ς̄l

kΛ; ς̄l
k = sl

kςl
k.

(24)

where ε1 + ε2 = 1. In order to highlight the function of soft constraint FTC, ε1 is generally
set to be larger than ε2.

3.5. The AFD-Based Reconfigured Interpolation FTC Algorithm

A binary parameter ε3 is introduced to unify the optimization problems of (22)
and (24): 

µ̃l
k = min

sl
k ,bl

O,k ,Tl
M,k ,ς̄l

k

ε3(ε1ς̄l
k + ε2sl

k) + (1− ε3)sl
k

s.t. Fl
I (xl

k − bl
O,k) ≤ (1− sl

k)gl
I ; 0 ≤ sl

k ≤ 1;

F̃l
M

[
bl

O,k
Tl

M,k

]
≤ sl

k g̃l
M + ε3ς̄l

kΛ; 0 ≤ ς̄l
k.

(25)

By setting ε3 = 1, (25) reduces to (24), which is used to achieve soft constrained interpolat-
ing control for the case xl

k /∈ P̃l
M. By setting ε3 = 0, (25) reduces to (22) and the standard

interpolating control based FTC can then be achieved. All the above developments allow
us to write down Algorithm 1.
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Algorithm 1 AFD-based interpolation AFTC.

Off-line Design: Given system (1), objective (3) and sets (X , U , D, V). Complete the
following designs: Solve Theorem 1 to obtain Kl , Ll , ∀l = 0, 1, · · · , n f ; Based on
(5), calculate the limit set of residual Ri,i

FD, ∀i = 0, 1, · · · , n f ; Solve the optimization
problem (9) to obtain ui

FI and associated points r̆ζ , r̆η , ∀i, ζ, η = 0, 1, 2, · · · , n f , i 6= ζ,
i 6= η, ζ 6= η, and construct separation hyperplane (10); Formulate the FD logic (6)
using Ri,i

FD and construct the FI logic (12) using (11); Calculate Ωl
MRPI according to

Definition 2 and calculate Q̃l
M based on (18) and Remarks 6 and 7.

On-line Implementation: Set ς, ε1, ε2, µ ∈ [0, 1], state x0 = x̂0 ∈ P0
M and u0

FI = 0. Solve
(25) with ε3 = 0 to obtain u0

C,0 ← T0
M1,0 + K0(x̂0 − b0

O,0). Let i ← 0, k ← 0 u0 ← u0
C,0

and perform the following actions:
1: (x̂k, rk)← (4); C Using (4) to estimate (x̂k, rk)

2: if rk ∈ Ri,i
FD then

3: Solve (25) with ε3 = 0 to compute ui
C,k ← Ti

M1,k + Ki(x̂k − bi
O,k); Set ui

FI ← 0,
uk ← ui

C,k, k← k + 1, and go to step 1;
4: else C A fault is detected
5: Set ui

C,k ← 0, uk ← ui
FI ;

6: end if
7: do
8: (x̂k+τ , rk+τ)← (4); C Generate τ residuals
9: Find ζ such that Isoi

ζ,η > 0, ∀η ∈ [0, n f ] ∼ i, ζ 6= η;
10: end do
11: i← ζ, k← k + τ;
12: if x̂k ∈ P̃i

M then
13: Go to step 3;
14: else C x̂k /∈ P̃i

M
15: Solve (25) with ε3 = 1 to compute ui

C,k ← Ti
M1,k + Ki(x̂k − bi

O,k); Set ui
FI ← 0,

uk ← ui
C,k, k← k + 1, (x̂k, rk)← (4), and go to step 12;

16: end if

4. Algorithm Verification by a Wastewater Treatment Plant Model
4.1. System Model and Parameters

The purpose of a wastewater treatment plant is to purify the sewage and return
clean water to the river. Activated sludge process (ASP) is a very important part of
the cleaning procedure [35]. Generally, ASP systems usually consist of a bioreactor and
a settler. Bioreactors mainly rely on suspended microorganisms for biodegradation of
dissolved substrate. After that, the suspended micro-organisms are completely separated
in the settler. Some of the degraded biomass will be recycled to the bioreactor for further
purification, while the remaining biomass will be discharged to maintain the balance of
limited organisms in the ASP system. The energy needed for the reaction is provided by the
dissolved oxygen, and the resulting carbon dioxide is in turn released. In [36], a simplified
state-space error model describing the mass balances in ASP systems is built around the
equilibrium point (XP, UP) = ([122.7342 49.4714 196.3750 6.8300]T , [0.06 1.35]). Here, to
achieve the fault tolerant mass balance of ASP systems, some uncertain parameters along
the model in [36] are additionally considered as follows:

A=


0.7685−∆A 0.1551 0.0576 0.1273
−0.1438 0.4137+ΓA −0.0859 −0.013
−0.0109 −0.0175 0.0026+∆A −0.0018
0.3396 0.0377 0.0253 0.8335−ΓA



B =


−250.0774 0.9268
398.0189 −1.4129
−13.8515 2.0454
102.6287 0.18

[∆B 0
0 ΓB

]
, C =


0 0
1 0
0 1
0 0


T (26)
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We assume that two types of faults can appear: (∆A =0.2, ∆B =0.7, ΓA =ΓB =0) and
(∆A = ∆B =0, ΓA = 0.3, ΓB = 0.6). The former is identified as fault l = 1 (faulty mode 1)
and the latter is identified as fault l = 2 (faulty mode 2). Clearly, the health condition l = 0
(healthy mode 0) is indicated when (∆A = ΓA = ∆B = ΓB =0). The other parameters are:
Ξ=0.1I4, Θ=0.02I2, n f =2, dk∈ [−0.514 0.514], vk∈ [−0.5I2 0.5I2], and

−90.0342
−37.4714
−143.8750
−5.9300

 ≤ xk ≤


137.2658
15.5286
13.6250
73.1700

,
[
−0.0600
−1.3500

]
≤ uk ≤

[
2.3400
13.6500

]
(27)

4.2. Offline Design of AFD and AFTC According to Algorithm 1 and Relevant Validation

According to Algorithm 1, the following parameters of AFTC policy are designed.
Firstly, by solving Theorem 1, the integrated parameters of observer Ll and inner FTC

gain matrix Kl are obtained as

L0 =


4.7216 0.2884
−1.2215 −0.0229
−0.0518 −0.0051
9.4863 0.6130

, K0 =

[
−0.0016 −0.0010 0.0002 −0.0021
−0.8410 −0.2855 −0.0381 −0.7295

]

L1 =


0.1650 −0.0290
−0.4078 0.0669
0.0095 −0.1675
0.7874 0.0267

, K1 =

[
−0.0031 −0.0017 −0.0002 −0.0048
−0.6755 −0.2408 −0.0910 −0.8303

]

L2 =


0.6487 −0.0128
−0.7432 0.0605
0.0036 −0.0024
0.6966 0.0089

, K2 =

[
−0.0014 −0.0021 0.0001 −0.0008
−0.5591 −0.2930 0.0015 −0.2738

]
(28)

Secondly, by using the disturbance set ∆i,i
e for 3-step set iteration along (5), the limit sets

of residual for each i = 0, 1, 2 are approximately calculated, where the H-representations of
R0,0

FD,R1,1
FD, andR2,2

FD have 23, 38, and 47 inequalities, respectively. Due to the page limit,
they are not listed here.

Thirdly, by solving optimization problem (9), some suitable choices of test input
signals are determined as u0

FI = 1.5× U .V(1), u1
FI = 1.3× U .V(1), u2

FI = 1.1× U .V(1),
respectively. Here, U .V(1) is used to denote the first vertex of the V-representation of
set U . In order to clearly describe the relationship between the FD limit set and the FI
separation line, we simulated the residual responses by injecting the above test input
signal excitation in different modes of the system. As shown in Figure 2, the AFD can be
successfully achieved as long as the residual value exceeds the relevant separation line.
Here, the isolation can be accomplished in a maximum of six steps.

Next, the robust invariant sets Ωl
MRPI and Pl

M are calculated for l = 0, 1, 2, respectively.
In order to describe the relationship among the interpolating AFTC, the controlled states
and the corresponding invariant set for each mode, the evolution of an arbitrary initial
state x0 = [−20 10 − 10 − 1.83]T is simulated. The results of the first three states are
shown in Figure 3. It can be seen from Figure 3a,b that x0 belongs to Pl

M ∼ Ωl
MRPI , l = 0, 1.

Therefore, as shown in sub-Figure 3d, the corresponding interpolation coefficients are not
zero and x0 is adjusted back to Ωl

MRPI in 2-3 steps. Figure 3c illustrates that x0 belongs to
Ω2

MRPI . Hence, the associated interpolation coefficient in Figure 3d is zero.
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Figure 2. Test of the isolation effect of the constructed active fault isolation method in three scenarios

Figure 3. Test of the control effect of the developed interpolating AFTC. The yellow area represents
the set Ωl

MRPI and the green area represents the set Pl
M. (a) Invariant sets for health mode l = 0;

(b) invariant sets for fault mode l = 1; (c) invariant sets for fault mode l = 2; (d) interpolation
coefficient s̃k.

4.3. Simulation Results and Analysis of the above Designed AFD-Based AFTC Method

Based on the parameters obtained above, we next perform performance tests on the
proposed AFD-based AFTC method. First, the following fault scenarios are considered:

Fault scenarios: The system initially works in a healthy condition; when k ∈ [160 550),
the first kind of fault occurs in the system. For k ≥ 550, the previous fault disappears and
the second type of fault appears.

Then, the online AFTC strategy described in Algorithm 1 is implemented to deal with
the above fault situations. The simulation results are collected and depicted in Figures 4–6,
where the occurrence and duration of different faults have been marked using different
color areas, i.e., green area for healthy condition (l = 0), yellow area for type I faults (l = 1)
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and gray area for type II faults (l = 2). As depicted in Figure 4, it takes some time after a
fault occurs to achieve the state regulation to track the equilibrium point XP. The reason
is that the fault detection, isolation, and control reconfiguration need to be completed
during this time. Taking the fault-tolerant process for the first type of fault as an example,
Figure 4 firstly depicts that the estimated values of the states can quickly deviate from
their actual values in the moments after the fault occurs. Their estimation errors caused by
the presence of the fault further generate large residual values, thus facilitating the timely
triggering of FI. In fact, the interpolation coefficient in Figure 6 appears to increase rapidly
at k > 160, which also indicates the occurrence of abnormal system conditions. The inputs
of the corresponding constant value auxiliary test signals are further shown in Figure 5.
It should be noted that both variables in Figure 6 are zero at this time. After a few steps,
it can be seen in Figure 4 that the first three states have been accurately estimated, which
indicates that the FI is completed. However, the estimation of the fourth state still deviates
from the actual value. The reason is that the auxiliary signal injected during FI drives it to
a large deviation (as shown in Figure 2). Hence, additional time is required to achieve its
unbiased tracking.

After FI, the corresponding control reconfiguration is further activated. As shown in
Figure 6, the soft constraint FTC (24) is triggered first, which also leads to a sharp increase
of the control input in Figure 5. When the states are adjusted into P1

M by the soft constraint
FTC, the interpolation FTC (22) is activated timely. At the same time, as illustrated in
Figure 5, the control inputs subsequently become smaller. The decreasing interpolation
coefficient in Figure 6 also indicates that the system states are gradually tuned into Ω1

MRPI .
After that, the states are gradually regulated to track the equilibrium point.

Remark 8. The above process constitutes a complete cycle of AFD and AFTC. Clearly, the decreas-
ing interpolation coefficients and relaxation variables in Figure 6 fully illustrate the convergence of
the proposed Algorithm 1. Correspondingly, the state and control variables in Figures 4 and 5 are
also adjusted to the equilibrium point (XP, UP), which further illustrates that the control system
under the influence of the fault is stabilized and the tracking target is achieved.
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Figure 4. Simulation results of state evolution and estimation under the control of Algorithm 1.
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Figure 5. Simulation results of interpolation-based AFTC input obtained from Algorithm 1.
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Figure 6. Simulation results of interpolation coefficient and relaxation variable obtained from
Algorithm 1.

4.4. Multi-Performance Comparison and Discussion of Active Fault-Tolerant Control Methods

Some qualitative comparisons with the recently reported AFTC methods are given in
Table 1.

Table 1. Performance comparison of different FTC methods.

Performance
Method Algorithm 1 [20] [13] [16]

Types of faults that can be handled Component/actuator faults Actuator fault Actuator fault Actuator fault
Can active fault diagnosis be realized Yes - - -
Number of observers used in real time 1 - - 3
Design principle of fault tolerant control PM-based IC Dual-mode MPC LMI-based MPC PM-based MPC
Expression of fault tolerant feasible domain Polyhedral set Polyhedral set Ellipsoidal set Ellipsoidal set
Optimization problems to be solved LP QP SDP QP
Can active constraint relaxation be achieved Yes - - -
Extensibility of FTC method General General High General

Note: interpolating control (IC), model predictive control (MPC), linear matrix inequality (LMI), linear programming (LP), quadratic
programming (QP), semi-positive definite programming (SDP), M-step robust control invariant set (PM).
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The involved comparisons in Table 1 are explained from the following aspects. Firstly,
as shown in the second row of Table 1, both component faults and actuator faults are
considered in this paper, while only actuator faults are considered in [13,16,20]. In general,
the component faults can significantly affect the system dynamics. In this paper, an AFD
method is embedded to identify the system operating mode in real time in order to achieve
fault tolerance for component faults. Secondly, unlike the multiple-observers-based real-
time diagnosis approach in [16], here only one observer needs to be employed at each
moment to achieve fault mode identification. Theoretically, this facilitates the diagnosis
efficiency and it is also another implicit advantage of using AFD.

In terms of the design and implementation of fault-tolerant methods (i.e., rows 5–7 in
Table 1), the MPC optimization problems in [13] are constructed by relying on ellipsoidal
constraint sets and LMI, which belongs to SDP and whose solution tends to be more
time-consuming. In addition, approximating the feasible domain with ellipsoidal sets
is generally more conservative than polyhedral sets. In [20], the dual-mode prediction
mechanism is adopted to construct a predictive FTC, whose optimization problem belongs
to QP and can be solved relatively efficiently. However, this FTC method is only used
to handle actuator additive offset faults and is not suitable for addressing fault tolerance
problems of multiplicative faults and component faults. Relatively, the receding horizon
set theoretic FTC method in [16] is appealing. This method provides a way to perform
the state figure using switching M-step controllable ellipsoidal sets under different fault
conditions. However, it may be computationally demanding and takes up a large storage
space because of the need to solve real-time QP when the states do not belong to the
corresponding maximum allowable invariant set. In this paper, the interpolation methods
are employed to combine M-step controllable polyhedral sets and inner feedback control
laws to achieve the state figure, and the corresponding fault-tolerant optimization is formed
as LP. Compared to the sets that need to be stored by the FTC method in [16], Algorithm 1
only needs to store the maximum M-step controllable polyhedral set for each operating
condition, which helps to reduce the storage burden.

The penultimate row of Table 1 illustrates that the soft-constrained FTC method is
further integrated into Algorithm 1 and used to deal with some unanticipated situations,
such as uncertain fault amplitudes, system parameter drifts, disturbance overruns, etc.
The last row of Table 1 implies that the design of the FTC method in [13] is more intuitive
and better scalable than the FTC methods in Algorithm 1, [16,20]. It should be noted that
the above comparisons are discussed mainly for the characteristics of the involved fault-
tolerant methods and not for the contents of the overall studies in [13,16,20]. Clearly, they
have different system models and control objectives, and therefore different innovations.

Remark 9. According to Remark 7, the FTC law based on dual-mode predictive control constructed
in [20] can be considered as a special form of the interpolation AFTC developed in this paper. Hence,
the interpolation-based AFTC theoretically has a higher degree of design freedom as well as a more
efficient optimization capability. To verify this, a further numerical comparison was made. Let the
system operate sequentially in two scenarios: scenario I (health l = 0) for 1 ≤ k < 160 and scenario
II (fault l = 2) for 160 ≤ k ≤ 500. To be fair, the same active fault diagnosis and integration design
were used. Table 2 gives the comparisons of these two methods in terms of interval cost function
(3) and running time. It can be seen that the interpolation-based AFTC method runs faster and
provides better tracking accuracy for scenario I. In scenario II, the developed interpolation-based
AFTC remains feasible and continues to optimize the cost function, however the FTC method of [20]
will no longer be feasible after k = 170. Based on the above numerical comparisons, the effectiveness
of the method constructed in this paper can be further verified.
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Table 2. Comparisons of interval cost function (3) and running time.

Scenario Performance [20] Interpolation-Based AFTC

Scenario I Running time 33.2890 (s) 24.6050 (s)
Evaluation of (3) 128.8576 81.7340

Scenario II Running time Infeasible for k ≥ 170 126.7660 (s)
Evaluation of (3) - 359.1910

5. Conclusions

In this paper, a novel activate fault tolerant control scheme is proposed to address
the component/actuator faults for the uncertain systems with state/input constraints. Its
significant merits are that (1) it relies on only one diagnostic observer for online fault
detection and isolation, which helps to reduce the internal memory consumption of the
hardware controller; (2) the auxiliary inputs and separation hyperplanes for fault isolation
are designed offline in advance, which helps to reduce the online computational burden
and increase the freedom of fault isolation decisions; (3) the overall fault tolerant control is
reconfigured by optimizing the interpolation coefficient to dynamically regulate the convex
combination of inner and outer fault tolerant control laws, which can further reduce the
online optimization effort; (4) the inner fault tolerant control and the diagnostic observer
are designed offline in advance, and by such design the robust interaction influence on the
feasibility of the reconfigured fault tolerant control algorithm can be reduced; (5) the soft
constraint method is embedded to achieve a relaxed fault tolerance, which can handle some
cases that lead to infeasible constrained optimization in an emergency. The simulation with
detailed discussions is given to demonstrate the above benefits of the proposed method.

Some issues need to be further addressed in the future work. For instance, the
application of semi-active fault diagnosis to enhance the design flexibility of auxiliary
signals; the combination of soft constraint theory and period invariant sets to construct an
outer fault tolerant control with flexible and adjustable feasible domains; the construction
of parametrization method of interpolated coefficient to avoid solving linear programming
problems, etc.
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Appendix A

The approximated calculation method ofRl,i
FI is given below.

By [31],Rl,i
FI can be explicitly represented asRl,i

FI = {Cχ(I−Al,i
χ )−1Bl,i

χ ui
FI}⊕CχOl,i

χ,∞⊕
DχE , where Ol,i

χ,∞ = {χ : ∑∞
j=0(Al,i

χ )jEi
χσk, σk ∈ E}. Generally, Ol,i

χ,∞ is difficult to deter-
mine, especially for high-dimensional systems. In [27], an external approximation method
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is proposed to enable Ol,i
χ,∞ ⊆ (1 + µT)O

l,i
χ,T , where Ol,i

χ,T = {χ : ∑T
j=0(Al,i

χ )jEi
χσk, σk ∈ E}

can be calculated in a finite time. Then, for given ui
FI , the internal point of residual limit set

Rl,i
FI can be parameterized as Cχ(I− Al,i

χ )−1Bl,i
χ ui

FI +(1+µT)∑T
j=0 Cχ(Al,i

χ )jEi
χσ1,k +Dχσ2,k,

∀σ1,k, σ2,k ∈ E .

Appendix B

The proof of Theorem 1 is given below.

Proof. Let V l
1,k = eT

xl ,kPl
1exl ,k and V l

2,k = (xl
k)

T(Pl
2)
−1xl

k be the Lyapunov functions of (5),

(13) and (14), respectively. Equivalently, V l
1,k + V l

2,k is a Lyapunov function of (15). Define
Kl(Yl

2)
T = K̄l and Yl

1Ll = L̄l . Then, by using −Yl
1(Pl

1)
−1(Yl

1)
T ≤ Pl

1 − Yl
1 − (Yl

1)
T and

congruence transformation diag{I, I, (Yl
1)
−1} to (16a), the inequality −diag{Pl

1 − I, α2 I}+[
Ãl

11 B̃l
1
]T Pl

1(∗) < 0 can be deduced. It further implies that the relation V l
1,k+1 − V l

1,k +

eT
xl ,kexl ,k − α2$T

k $k < 0 holds.

Similarly, by using the inequality −Yl
2(Pl

2)
−1(Yl

2)
T ≤ Pl

2 −Yl
2 − (Yl

2)
T and congruence

transformation factor diag{(Yl
2)
−1, (Yl

2)
−1, I, I, I} to (16b), we get the inequality

−diag{(Pl
2)
−1, (Pl

2)
−1, β2 I}+

[
Ãl

21 Ãl
22 B̃l

2
]T
(Pl

2)
−1(∗)+

[
D̄l C̄l 0

]T
(∗) < 0. Based on

the Lyapunov function V l
2,k and the system model (13) and (14), we can further derive

V l
2,k+1 −V l

2,k + (zl
k)

Tzl
k − eT

xl ,k(Pl
2)
−1exl ,k − β2$T

k $k < 0.

Under zero initial conditions, the summation of V l
2,k+1 −V l

2,k + (zl
k)

Tzl
k − eT

xl ,k(Pl
2)
−1

exl ,k − β2$T
k $k < 0 over k = 0 to k = ∞ can be bounded in the form of ‖ zl

k ‖
2
2≤ ε2 ‖

exl ,k ‖2
2 +β2 ‖ $k ‖2

2, where eT
xl ,k(Pl

2)
−1exl ,k is relaxed by eT

xl ,k(Pl
2)
−1exl ,k ≤ eigmax((Pl

2)
−1)

eT
xl ,kexl ,k = ε2eT

xl ,kexl ,k. Similarly, ∑∞
k=0{V l

1,k+1 − V l
1,k + eT

xl ,kexl ,k − α2$T
k $k} < 0 leads to

‖ exl ,k ‖2
2≤ α2 ‖ $k ‖2

2 under zero initial conditions. Then, we further have ‖ zl
k ‖

2
2≤

(ε2α2 + β2) ‖ $k ‖2
2. Clearly, the integrated optimization of α and β contributes to improving

the synthesized H∞ performances of observer (5) and unconstrained robust control policy
ul

C,k = Kl x̂l
k. The proof is completed.
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