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Nitroethane is a potent methane-inhibitor for ruminants but little is known

regarding simultaneous effects of repeated administration on pre- and post-gastric

methane-producing activity and potential absorption and systemic accumulation of

nitroethane in ruminants. Intraruminal administration of 120mg nitroethane/kg body

weight per day to Holstein cows (n = 2) over a 4-day period transiently reduced

(P < 0.05) methane-producing activity of rumen fluid as much as 3.6-fold while

concomitantly increasing (P < 0.05) methane-producing activity of feces by as much as

8.8-fold when compared to pre-treatment measurements. These observations suggest

a bacteriostatic effect of nitroethane on ruminal methanogen populations resulting

in increased passage of viable methanogens to the lower bovine gut. Ruminal VFA

concentrations were also transiently affected by nitroethane administration (P < 0.05)

reflecting adaptive changes in the rumen microbial populations. Mean (± SD) nitroethane

concentrations in plasma of feedlot steers (n = 6/treatment) administered 80 or 160mg

nitroethane/kg body weight per day over a 7-day period were 0.12± 0.1 and 0.41 ± 0.1

µmol/mL 8 h after the initial administration indicating rapid absorption of nitroethane,

with concentrations peaking 1 day after initiation of the 80 or 160mg nitroethane/kg

body weight per day treatments (0.38 ± 0.1 and 1.14 ± 0.1 µmol/mL, respectively).

Plasma nitroethane concentrations declined thereafter to 0.25 ± 0.1 and 0.78 ± 0.3

and to 0.18 ± 0.1 and 0.44 ± 0.3 µmol/mL on days 2 and 7 for the 80 or 160mg

nitroethane/kg body weight per day treatment groups, respectively, indicating decreased

absorption due to increased ruminal nitroethane degradation or to more rapid excretion

of the compound.
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INTRODUCTION

The production of methane by methanogens within the rumen
represents a digestive inefficiency for the host that results in
the loss of up to 12% of the gross energy consumed by the
animal and contributes nearly 27% of the total United States’
emissions of this potent greenhouse gas (1, 2). Despite its
contribution to the loss of assimilable carbon and energy to the
host, the production of methane within the rumen performs
a valuable ecological function for the microbes inhabiting the
rumen by maintaining hydrogen concentrations below 1 kPa (3).
Hydrogen concentrations higher than 1 kPa inhibit microbial
hydrogen gas-evolving hydrogenase activity thereby precluding
an important method for re-oxidization of reduced nucleotides
produced during fermentation and preventing re-entry of the
re-oxidized electron carriers into fermentative pathways (3).
Consequently, in the search for interventions to inhibit rumen
methane emissions, microbiologists have often sought strategies
that may promote flow of reducing substrates produced during
fermentation away from methanogenesis and into alternative
energetically favorable electron sinks (4). The administration of
supplemental nitrate (NO−

3 ) to the diets of ruminants is one of
few alternative electron strategies currently being investigated
(5–7). The advantages of nitrate as an alternative electron
acceptor are that its reduction to nitrogen gas or ammonia within
the rumen microbial community is energetically favorable and
stoichiometry comparable tomethanogenesis in terms of electron
consumption, consuming 6 to 8 electrons for complete reduction
of nitrate to nitrogen or ammonia, respectively (8, 9). This
technology is not yet commercially available, however, and awaits
the development of practical, producer-friendly technologies
to manage risks of animal toxicity associated with excessive
accumulations of nitrite, a toxic metabolic intermediate of nitrate
metabolism within the rumen (8, 9). Feeding nitrate requires
diets to have adequate amounts of readily fermentable substrate
to provide sufficient reducing power to sustain dissimilatory
nitrate reduction (8, 9). It is known also that ruminants can be
gradually adapted to high nitrate-containing diets to enrich in
situ populations of nitrate- and nitrite-metabolizing bacteria (8,
9). Livestock producers, however, may be reluctant to implement
an adaption strategy because it adds extra work and time during
to their production cycles. Recently, another strategy being
investigated seeks to reduce risks of nitrite toxicity during high
nitrate supplementation via co-administration of a hyper-active
nitrite-metabolizing ruminal bacterium as a direct fed microbial
to ensure rapidmetabolism and detoxification of nitrite produced
in the rumen during metabolism of fed nitrate (10, 11).

Earlier studies showed that the naturally occurring
phytotoxin, 3-nitro-1-propionate, was a potent inhibitor of
ruminal methane production (12, 13). In this case, 3-nitro-1-
propionate and another related naturally occurring phytotoxin,
3-nitro-1-propanol were found to exert direct inhibitory activity
against methanogens in rumen microbial populations having
no prior exposure to these nitrocompounds. However, the
microbial populations exhibited the ability to adapt to the
nitrocompounds by using them as alternative electron acceptors
(12). This adaptation within the rumen microbial community

was hypothesized to occur due to a 1,000–1,000,000-fold
enrichment in numbers of an obligate anaerobic-respiring
nitro-utilizing bacterium reported to normally be present at
<103 organisms/mL within the rumen (14). Denitrobacterium
detoxificans, appears at present to be the only known ruminal
bacteria to exhibit appreciable nitroalkane-metabolizing
activity (15, 16). Other xenobiotic short chain nitrocompounds
such as nitroethane, 2-nitroethanol, 2-nitro-1-propanol,
dimethyl-2-nitroglutarate, 2-nitro-methyl-propionate, and
ethyl-2-nitroacetate have also been shown to inhibit ruminal
methane production in vitro (17–22). In the case of 3-nitro-1-
propionate, 3-nitro-1-propanol and nitroethane, their reduction
to their respective amines β-alanine, 3-amino-1-propanol and
ethylamine has been demonstrated (23, 24). The fate of the other
tested nitrocompounds has yet to be conclusively elucidated.

In vivo studies examining the methane-reducing potential
of the naturally occurring 3-nitro-1-propionate and 3-nitro-1-
propanol have not yet been undertaken; however, in vivo studies
have examined the effects of nitroethane, 2-nitro-1-propanol or
2-nitroethanol administration to cattle or sheep (25–29) with all
indicating efficacious decreases in ruminal methane-producing
activity or rumen methane emission. While published reports
exist for absorption of nitroethane as well as other short chain
nitroalkanes in non-ruminants, mainly for investigations relating
to occupational exposures to nitroalkanes as reviewed by Smith
and Anderson (30), much less is known regarding nitroethane
absorption in cattle or sheep. The objectives of the two separate
trials of the work presented here were to fill in knowledge
gaps pertaining to oral nitroalkane administration by assessing
the potential impact of repeated nitroethane administration on
pre- and post-gastric methane-producing activity as well as on
potential absorption or systemic accumulation of nitroethane
in ruminants.

MATERIALS AND METHODS

Rearing, care, and use of cattle in the following studies
was approved by the USDA/ARS Southern Plains Agricultural
Research Center’s Animal Care and Use Committee. In the
first study, two non-lactating rumen-cannulated Holstein–
Friesian cows (each ∼500 kg live body weight) maintained
on a predominantly rye grass pasture were intra-ruminally
administered nitroethane (CH3CH2NO2) at 120 mg/kg body
weight per day in two equal sized portions (0800 and 1600)
over a 4-day administration period which was followed by a
subsequent 2-day post-administration period. The nitroethane
treatments were administered as a sodium salt solution prepared
as described by Majak et al. (31). Briefly, 131mL nitroethane
(density = 1.05 g/mL) was mixed with 345mL 5N sodium
hydroxide, stirred vigorously for 15min and then combined
with 665mL 0.4M sodium phosphate buffer (pH 6.5) to achieve
a 125 g nitroethane/liter solution. Rumen fluid was collected
from contents obtained through the rumen cannula and strained
through a nylon paint strainer (32) and fecal contents were
collected via rectal palpation. Collection times were 2 h before the
first nitroethane administration and at 2, 8, and 16 h and 1, 2, 3,
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and 4 days after the initial pre-administration sampling and again
at 5 and 6 days after the initial sampling. The latter two samplings
were 24 and 48 h after the last nitroethane administration. For
determination of methane-producing activity in collected rumen
fluid and feces, 5mL portions of the freshly collected rumen
fluid or 2 g portions of freshly collected feces were distributed,
in triplicate for each cow and each sampling period, to 18mm ×

150mm crimp top glass tubes preloaded with 0.2 g ground alfalfa.
The tube contents were then mixed with 5 or 8mL anaerobic
buffer, respectively, added while under a continuous flow of
hydrogen:carbon dioxide gas (50:50) (26). The anaerobic buffer
was that of Bryant and Burkey (33) modified to contain 16mM
sodium formate. Tubes were capped immediately after addition
of buffer and then incubated at 39◦C for 3 h. Amounts ofmethane
produced in the tubes at the end of incubation were measured
by gas chromatography as described by Allison et al. (34) and
methane-producing activity was calculated as the net amount
of methane produced divided by 3 h and is expressed as µmol
methane produced/g rumen fluid or feces per h with rumen
fluid and feces assigned a density of 1 g/mL. Portions of rumen
contents were also used for determination of ruminal volatile
fatty acid (VFA) concentrations which were measured via gas
chromatography (35). Concentrations of VFAwere not measured
in fecal collections.

In a second study, conducted to investigate the metabolism
and absorption of nitroethane, blood samples were collected via
jugular venipuncture from 18 steers (403 ± 26 kg BW; mean
± SD) fed a concentrate diet. The steers were offered a diet
consisting of 50% dry rolled corn, 25% chopped alfalfa, 13%
cotton seed hulls, 7% molasses, 3% soybean meal (49% crude
protein), and 2% premix, containing vitamins, urea, limestone,
and salt (26). Treatments (0, 80, or 160mg nitroethane/kg BW)
were administered individually to steers (6 steers/treatment) each
reared in separate pens by oral gavage twice daily (0800 and
1630) for 14 days using an oral drench gun. Results pertaining
to methane-producing and nitroethane-degrading activity in
ruminal and fecal contents collected from these were reported
earlier (26). Blood samples were collected into heparinized tubes
prior to each mornings’ treatment administration on days 0, 1,
2, and 7 of the study. Blood samples were also collected 2 h
after the initial treatment administration. All blood samples were
frozen (−20◦C) until analysis for nitroethane concentrations
which were determined colorimetrically (36) as well as by
high performance liquid chromatography (37). Samples were
clarified prior to analysis using zinc sulfate-sodium hydroxide
precipitation method (38).

Associations between rumen and fecal methane-producing
activity were assessed by Pearson correlation. Associations
between plasma nitroethane measurements determined
colorimetrically or by high performance liquid chromatography
were similarly compared using Pearson correlation. To test for
differences in ruminal and fecal methane-producing activity
before, during, and after cessation of oral nitroethane treatment,
each animal served as its own control and rates of methane-
producing activity as well as ruminal concentrations of VFA were
compared across each sampling day using a repeated measures
analysis of variance, with a fixed effect of day, and an LSD

multiple comparison of means. In the second study, tests for
effect of treatment on plasma concentrations of nitroethane were
conducted using a repeated measures analysis of variance, with
fixed effects of day and dose of nitroethane, and an LSD multiple
comparison of means. All analyses were conducted using
Statistix9 Analytical Software (Tallahassee, FL). Significance was
declared at P ≤ 0.05.

RESULTS AND DISCUSSION

Consistent with earlier reports (25–27), intraruminal
administration of 120mg nitroethane/kg body weight decreased
(P < 0.05) methane-producing activity of the rumen fluid by
as much as 72% compared to pre-treatment activity. Unlike the
earlier studies, the present study examined effects of intraruminal
nitroethane administration on methane-producing activity of
collected feces and found up to a 9-fold increase (P < 0.05)
in methane-producing activity of the feces that was inversely
correlated (Pearson’s correlation coefficient=−0.84, P< 0.0001)
with the observed decrease in methane-producing activity of the
rumen fluid. Moreover, results revealed that methane-producing
activities of the rumen fluid and feces returned to pre-treatment
levels upon cessation of nitroethane administration indicating
that nitroethane needed to be present to sustain inhibition of
methanogenesis (Figure 1). These assays, which were conducted
with non-limiting amount of substrate, indirectly reflect numbers
of methanogens and thus it seems reasonable to conclude that
intraruminal nitroethane administration bacteriostatically
caused a decrease in numbers of methanogens within the
rumen. The concomitant increase in methane-producing activity
of the feces suggests the passage of surviving methanogens
through the abomasum to the lower gut. Whether or not the
viable methanogens arriving to the lower gut of these cattle
were able to produce appreciable amounts of methane in
the large intestine is not discernable from the data available
here but further research may be warranted to investigate the
impact of such a possibility on overall efficacy of this or similar
bacteriostatic methane-reduction technologies. More recently,
Zhang et al. (39) reported from in vitro studies that nitroethane,
2-nitroethanol and 2-nitro-1-propanol significantly decreased
numbers of methanogens during in vitro fermentation of freshly
collected rumen fluid via inhibition of expression of coenzymes
contributing to methanogenesis. In their study, however, they
reported that while populations of Methanobacteriales were
decreased they were not eliminated even after 72 h incubation
(39). Populations of Methanomicrobiales and Methanococcales
were also decreased by nitrocompound treatment during the
first 12 h of incubation but by 24 h of incubation the abundance
of these methanogens had decreased to very low numbers or
undetectable levels in the treated as well as untreated incubations
(39). Anderson et al. (18) had suggested that nitroethane and
other tested nitroalkanes inhibited methanogenesis by inhibiting
the oxidation of hydrogen and formate, the major reducing
substrates for methane production. Zhang et al. (39) reported
that the decrease in methanogen numbers observed in their in
vitro study was associated with decreased expression of mcrA
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FIGURE 1 | Ruminal (circles) and fecal (squares) methane-producing activity

measured in pastured cows during pre-treatment, twice daily intraruminal

administration (closed symbols), and post-treatment with 160mg

nitroethane/kg body weight (BW). Pre- and post-treatment values are

presented with open symbols. Main effects of day were observed (P = 0.0057

and < 0.0001, respectively) on ruminal and fecal methane-producing activity.

Means (± SD from n = 2 cows) with unlike lower-case (ruminal) and

upper-case (fecal) letters differ at P < 0.05.

encoding methyl-coenzyme M reductase as well as amounts
of coenzymes F420 and F430, all important contributors to
methanogenesis. It is not clear from the results reported by
Zhang et al. (39) if the nitroalkanes actually inhibited the
activity of the co-enzymes, but the methane-inhibiting activity
of 3-nitrooxypropanol investigated by others was reported to
be due to targeted inhibition of methyl-coenzyme M reductase
activity via binding to the coenzyme active site (40).

Ruminal accumulations of VFA in this study were affected (P
< 0.05) by nitroethane administration (Figure 2). In this case,
concentrations of the acetate, propionate and butyrate gradually
decreased from pre-treatment concentrations, although not
necessarily significantly, during the first 2 days of nitroethane
administration (Figure 2). Concentrations of acetate, propionate
and butyrate then abruptly increased (P < 0.05) in the
rumen to near pre-treatment concentrations on the 3rd day
of nitroethane administration which was then followed again
by a decrease (P < 0.05) in concentrations on the fourth
(last) day of nitroethane administration. This pattern of VFA
concentration potentially reflects an unstable change within
the rumen microbial population due to nitroethane treatment.
For instance, it is possible that the microbial population may
not have had sufficient time to adapt to the twice daily
intraruminal nitroethane administration during the first 2 days
of the study thereby allowing nitroethane concentrations to
accumulate to levels inhibitory to fermentative bacteria. It is
known that Denitrobacterium detoxificans, at present the only
ruminal bacteria known to express appreciable nitroalkane-
metabolizing activity, can be enriched in numbers in the presence
of nitroethane or other suitable acceptors yet the sustainability

FIGURE 2 | Ruminal accumulations of acetate (circles), propionate (squares),

or butyrate (triangles) observed in pastured cows during pre-treatment, twice

daily intraruminal administration (closed symbols), and post-treatment with

160mg nitroethane/kg body weight (BW). Pre- and post-treatment values are

presented with open symbols. Main effects of day were observed (P = 0.0324,

0.0243, and < 0.0089, respectively) on ruminal acetate, propionate and

butyrate concentrations. Means (± SD from n = 2 cows) with unlike

lower-case (acetate), upper-case (propionate), and underlined upper-case

letters (butyrate) differ at P < 0.05.

of this bacterium at high population levels is not yet certain.
For instance, the abrupt increase in VFA concentrations within
the rumen fluid collected on the 3rd day of nitroethane
administration may reflect an in situ enrichment in numbers
of D. detoxificans, but maintenance of this bacteria at numbers
higher than normally present in the rumenmay have been limited
in this case due to exhaustive consumption of available substrates
needed for growth.

In support of increased ruminal metabolism, rates of
ruminal nitroethane-degrading activity in contents collected
from steers orally administered nitroethane over a 2-week
period were reported to be >2.5-fold higher than rates
observed pre-treatment or in steers administered no nitroethane
(26). This observation suggests, as discussed above, the
enrichment of nitroethane-degrading bacteria in the rumen of
steers administered nitroethane and is consistent with earlier
reports of rumen enrichment of the nitroalkane-metabolizing
activity (14, 31, 41). Conversely, rates of fecal nitroethane-
degrading activity were reported to be unaffected by nitroethane
treatment (26) indicating that nitroethane was not present
at high enough concentrations in the lower gut to affect a
similar enrichment of nitroethane-degrading bacteria in these
steers. Additionally, mean (± SD) nitroethane concentrations
in plasma collected from these steers and analyzed in the
present study were 0.12 ± 0.1 and 0.41 ± 0.1 µmol/mL for
steers administered 80 or 160mg nitroethane/kg BW per day,
respectively, when measured 6 h after the start of nitroethane
treatment indicating rapid absorption of nitroethane. Plasma
nitroethane concentrations peaked 1 day after initiation of the
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FIGURE 3 | Plasma nitroethane concentrations observed during 7-day oral

administration (twice daily, 0800 and 1600) of 0 (circles), 1.1 (triangles), or 2.2

(squares) µmol nitroethane/kg body weight (BW) per day to feedlot steers. An

interaction between treatment and day was observed (P = 0.0001). Means (±

SD from n = 6 steers per treatment) with unlike lower-case letters differ at P <

0.05.

80 or 160mg nitroethane/kg BW per day treatments (0.38 ±

0.1 and 1.14 ± 0.1 µmol/mL, respectively) (Figure 3). Assuming
a 60mL blood volume/kg live body weight (42), total daily
administration of nitroethane would be equivalent 2.1 and 4.3%
the total daily administration of nitroethane (32,240 and 64,480
mg/steer, respectively). These estimates compare favorably to
peak absorption of 1.8% 3-nitro-1-propanol administered as a
single dose of 20 mg/kg body weight to cattle (43). Plasma
nitroethane concentrations declined thereafter to 0.25 ± 0.1
and 0.78 ± 0.3 and to 0.18 ± 0.1 and 0.44 ± 0.3 µmol/mL
on days 2 and 7 for the 80 or 160mg nitroethane/kg
body weight per day treatment groups, respectively. Plasma
nitroethane concentrations presented above were determined
colorimetrically but these values agreed well with those
determined by high performance liquid chromatography (not
shown) with Pearson’s correlation coefficient being 0.96 thus
supporting the findings of the colorimetric analysis. The gradual
decrease in plasma nitroethane concentrations during successive
sampling days supports the suggestion that the reported increase
in rates of ruminal nitroethanemetabolismmay have contributed
to lesser amounts of nitroethane being available for absorption.
As expected, nitroethane was not detected in plasma samples
collected from untreated steers. Absorption of the naturally
occurring 3-nitro-1-propanol and 3-nitro-1-propionic acid from
the bovine and ovine rumen occurs rapidly, accumulating in
plasma mainly as 3-nitro-1-propionic acid as the nitroalcohol
is quickly converted to the nitroacid by hepatic alcohol
dehydrogenase (43, 44). As alluded to earlier, it is generally
thought that strategies that enhance rates of ruminal metabolism
of the natural-occurring nitrocompounds can confer protection
against poisoning by decreasing amounts of toxin available for
absorption (31, 41).

Results from the present study provide new information
pertaining to the pre- and post-gastric effects of ruminal
nitroethane administration on methane-producing microbial
populations in cattle as well as new information regarding
absorption of nitroethane during 7-day nitroethane treatment.
From a practical perspective, results from a limited number
of in vivo studies indicates that application of nitroethane
as well as 2-nitroethanol and 2-nitro-1-propanol (25–27, 29)
as ruminal methane inhibitors may achieve near equivalent
efficacy inmethane abatement as the 3-nitroxycompound current
commercially available in certain markets (45, 46), albeit the
latter at considerable lower doses. An additional advantage of the
nitroalkanes is that the consumption of electrons during their
reduction may help preserve energetic efficiencies associated
with inter-species hydrogen transfer reactions similar to that
achieved with supplemental nitrate feeding (8, 9). Moreover, the
biodegradability of the methane inhibitors may be advantageous
as the absence of methane-inhibiting activity along with the
presence of viable methanogen populations in animal manure
would be compatible with biotechnological waste treatment
technologies intending to produce methane as an economically
valuable renewable energy source. For instance, contrary to
methane production in the rumen, which contributes a source
of carbon to the atmosphere with a global warming potential 28-
times greater than that of carbon dioxide (47), the production of
methane as a renewable energy source provides an opportunity to
recycle carbon already present within the contemporary carbon
cycle. Conceptually, the recycling of carbon already present in the
earth’s atmosphere can decrease the need to extract an equivalent
amount of methane from fossil fuel reserves sequestered deep
within the earth thereby yielding a renewable energy source of
potentially equal or greater economic and societal value.

A disadvantage, however, of xenobiotic nitrocompounds is
their need to undergo extensive testing to address toxicity
and safety concerns and obtain regulatory approval. In the
case of these primary nitroalkanes and substituted nitroalkanes,
toxicity concerns dealing with respiratory irritation will need
to be addressed (30). However, chronic exposure of rats to
100 or 200 ppm nitroethane for 7 h per day, 5 days per
week for 2 years did not result in any measurable adverse
hematological or biological effects as reflected by organ weights
and clinical chemistry (48). Additionally, reports from in vivo
animal studies investigating the methane inhibiting activity of
nitroethane observed no apparent adverse effects on animal well-
being (25–27, 29) which suggests concerns regarding toxicity
may not necessarily be exclusionary. Moreover, at least in the
case of nitroethane and 2-nitropropanol, it is unclear if their
presumed reduction products, ethylamine and aminopropanol,
may be of nutritional value to the ruminant host. It has
been reported that ethylamine can serve as a precursor for
microbial L-theanine synthesis (49, 50) but whether this may
occur within the rumen is not known. Another important
disadvantage of the non-natural compounds is that they may
not be compatible with organic production segments of the
respective meat and dairy industries. In this regard, application
of naturally occurring nitrocompounds may be attractive
for organic segments of the industries, providing of course
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that toxicity issues concerning 3-nitro-1-propionic acid, and
especially 3-nitro-1-propanol, can be satisfactorily controlled.
Whereas, the ultimate fate of 3-amino-1-propanol in the rumen
has yet to be determined, β-alanine, a non-essential amino acid,
is known to be metabolized by rumen microbes to products
that can be used by the host as sources of carbon, nitrogen and
energy (23, 51). Additionally, it seems reasonable that combined
administration of natural 3-nitro-1-propionate sources with
a probiotic-preparation of the naturally occurring ruminal
nitro-reducing microbe D. detoxificans to optimize electron
consumption during metabolism of 3-nitro-1-propionate to
β-alanine (six electron reduction) may effectively minimize
toxicity issues. Results from an early study has indicated
that inoculation of cattle grazing pasture containing 3-nitro-
1-propionate-accumulating forage, another legume known to
accumulate high levels of 3-nitro-1-propionate, with laboratory-
grown D. detoxificans provided measurable protection to the
animals (52) but clearly, further studies are warranted to further
characterize and optimize the methane-abatement potential of
these various nitrocompounds.
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