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Abstract: Nitric oxide (NO) is an important regulator of vascular tone, and is also an 

antithrombotic, anti-inflammatory, antiproliferative, and antiatherogenic factor. Endothelial 

function is altered in patients with coronary artery disease, stroke, and peripheral artery disease, 

and endothelial dysfunction correlates with the risk factor profile for a patient. Hypertension and 

type 2 diabetes are risk factors for vascular disease, and are both pathologies characterized by loss 

of NO activity. Indeed, endothelial dysfunction is usually present in diabetic and/or hypertensive 

patients. Tetrahydrobiopterin is an essential cofactor for the NO synthase enzyme, and insufficiency 

of this cofactor leads to uncoupling of the enzyme, release of superoxide, endothelial dysfunction, 

progression of hypertension, and finally, proatherogenic effects. Tetrahydrobiopterin is also an 

important mediator of NO synthase regulation in type 2 diabetes and hypertension, and may be 

a rational therapeutic target to restore endothelial function and prevent vascular disease in these 

patients. The aim of this paper is to review the rationale for therapeutic strategies directed to 

biopterins as a target for vascular disease in type 2 diabetic hypertensive patients.

Keywords: tetrahydrobiopterin, endothelial dysfunction, diabetes, hypertension, oxidative 
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Introduction
The endothelium maintains the integrity of the vascular system via interaction between 

nitric oxide (NO) and vasoconstrictive factors.1 Endothelial dysfunction develops 

when the bioavailability of NO decreases, triggering a vasoconstrictive, proliferative, 

proinflammatory, and procoagulant condition that facilitates vascular damage.1,2

Both type 2 diabetes and hypertension increase oxidative stress and lead to 

endothelial dysfunction.1 Endothelial dysfunction plays a key role in the pathophysiology 

of atherogenesis and diabetes-associated vascular disease, and explains, at least in part, 

the enhanced progression of cardiovascular disease in type 2 diabetes.3

Despite being a radical, oxygen is sparingly reactive because its two unpaired 

electrons are situated in different molecular orbits. However, in endothelial cells, 

oxygen undergoes univalent reduction to form superoxide by means of enzymes such 

as nicotinamide adenine dinucleotide phosphate (NADH/NADPH) oxidase.4 Vascular 

NADH/NADPH oxidase is active during normal metabolism,5 and sustained activation 

of this enzyme occurs in response to several stimuli, including angiotensin II, thrombin, 

platelet-derived growth factor, endothelin-1, tumor necrosis factor-alpha (TNFα), 

hypercholesterolemia, and hyperglycemia.6 Also, some vascular flow conditions may 

determine regulation of NADPH oxidase, whereby laminar shear stress downregulates 
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NADPH oxidase activity, whereas oscillatory shear stress 

induces a sustained increase in oxidase activity.4

Tetrahydrobiopterin
It was once believed that the only function of tetrahydrobiop-

terin (BH4) was as a cofactor for the activity of phenylalanine, 

tyrosine, and tryptophan hydroxylases during neurotransmitter 

synthesis. However, 20 years ago, when nitric oxide synthase 

(NOS) was characterized, BH4 was soon identified as one of 

its essential cofactors.7 Since this observation, BH4 has been 

implicated as a significant determinant of NO bioavailability 

and concomitant conduit/resistance vessel functions.

Each monomer of endothelial NOS (eNOS) has one 

BH4 binding site in the oxygenase domain and because the 

enzyme acts functionally as a dimer, two molecules of BH4 

are incorporated into each eNOS complex.8 In the active 

site, BH4 stabilizes the ferrous-dioxygen complex, and the 

cofactor also donates electrons to the oxygenase domain, and 

this is the initiating step of L-arginine oxidation.9,10 If BH4 

is reduced, electron transfer from eNOS becomes uncoupled 

from L-arginine oxidation, the ferrous-dioxygen complex 

dissociates, and the enzyme produces superoxide instead 

of NO.

When large amounts of reactive oxygen species (ROS) 

are present in the endothelial cell, electron transfer within the 

active site of eNOS becomes “uncoupled” from L-arginine 

oxidation. This process is known as eNOS uncoupling and 

under those conditions, electron flow through the enzyme 

results in reduction of molecular oxygen at the prosthetic 

heme site rather than formation of NO, and molecular 

oxygen is reduced to form superoxide, leading to endothelial 

dysfunction.11

Several studies have shown that when BH4 is oxidized 

to dihydrobiopterin (BH2), the bioavailability of BH4 for 

eNOS is reduced. This is seen when BH4 reacts with super-

oxide or with peroxynitrite, which leads to eNOS uncoupling 

and finally, to endothelial dysfunction.11 In addition, BH2 

(which has no cofactor activity) may compete with BH4 

for the oxygenase domain in eNOS, leading to decreased 

eNOS activity.8

Tetrahydrobiopterin synthesis
Biosynthesis of BH4 can occur by one of three pathways, 

ie, from guanosine triphosphate cyclohydrolase I (GTP-CHI) 

via a de novo synthetic pathway, from sepiapterin via the 

salvage pathway, and via recycling pathways.12

Via the de novo pathway, BH4 synthesis is initiated by 

the action of GTP-CHI, which represents the rate-controlling 

enzyme and initiates GTP degradation to 7,8 dihydroneopterin 

triphosphate, which is converted to 6-pyruvoyl-tetrahydropterin 

by the 6-6-pyruvoyl synthase enzyme. Finally, the 6-pyruvoyl-

tetrahydropterin is reduced to BH4 by NADPH-dependent 

sepiapterin reductase (Figure 1).

Via the salvage pathway, sepiapterin is metabolized to 

7,8-BH2 and finally, to BH4 by two NADPH-dependent 

enzymes, ie, sepiapterin reductase and dehydrofolate 

reductase (Figure 1). However, sepiapterin is not a physi-

ologic metabolite in humans or animals.9

In the recycling pathway, BH4 is generated differently, 

depending on the enzymes involved. When aromatic 

aminohydrolases are present, BH4 is regenerated from 

BH4α-carbinolamine in a two-step process, whereby 

pterin-4α carbinolamine dehydratase produces the quinonoid 

BH2 intermediate, which is subsequently reduced by 

6,7-dihydropteridine reductase. When NOS is involved, BH4 

is transformed to a BH3.H+ radical, which is subsequently 

reduced in the next catalytic cycle by electron transfer from 

eNOS flavins9 (Figure 1).

Regulation of tetrahydrobiopterin
As mentioned in the previous section, the GTP-CH enzyme 

is critical for BH4 synthesis, and several studies have 

demonstrated that vascular agonists may increase BH4 

production through GTP-CH mRNA induction. Incubation 

of endothelial cells with phenylalanine increases mRNA 

levels for GTP-CH by 2.2-fold after 6 hours,13 and interest-

ingly, similar concentrations of phenylalanine increase BH4 

levels in bovine coronary endothelial cells by 16%.14 Insulin 

increases mRNA for GTP-CH, which enhances endothelial 

BH4 through the activation of the de novo pathway.15 Addi-

tion of 17β-estradiol to culture medium elevated both mRNA 

levels for CGT-CH and intracellular BH4 levels in brain 

microvascular endothelial cells.16 Inflammatory cytokines, 

such as interleukin (IL)-1β, interferon-γ or TNFα, increase 

BH4 synthesis, probably through the effect of increasing 

mRNA for GTP-CH.17 Finally, statins and cyclosporine can 

increase BH4 synthesis and GTP-CH mRNA in cultures of 

endothelial cells.14,18

Table 1 Factors that increase guanosine triphosphate cyclohydrolase I 
activity

Cytokines Transcriptional factors Inflammatory 
mediators

Interferon γ
Tumor necrosis 
factor α

Nuclear factor κB  
Signal transducer  
and activator  
of transcription 1/3

Lipopolysaccharides
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On the other hand, several studies have demonstrated that 

some vascular agonists may decrease BH4 production through 

GTP-CH mRNA downregulation. Johns et  al found that 

dexamethasone decreases the expression of GTP-CH mRNA 

and BH4 levels in endothelial cells.19 Similarly, inflamma-

tory cytokines, such as IL-4, IL-10, and transforming growth 

factor-beta, decrease BH4 synthesis, probably through 

GTP-CH mRNA downregulation.20

In addition to regulation of BH4 synthesis through these 

already described mRNA mechanisms, there are two other 

conditions where changes in BH4 bioavailability have been 

demonstrated. It has recently been reported that increasing 

concentrations of L-arginine raised intracellular levels of BH4 

production in cultured bovine coronary endothelial cells. This 

effect is specific for the L-isomer and is not affected by the use 

of arginase inhibitors.14 This in vitro observation was further 

supported by in vivo studies in which dietary supplementation 

of L-arginine increased BH4 availability in coronary endothelial 

cells from control and diabetic rats.21 In light of the reducing 

properties of BH4, the possibility that oxidative stress may 

affect BH4 availability arises. Indeed, the use of peroxynitrite 

in intact arteries demonstrated that oxidative stress is associated 

with BH4 reduction.22 Moreover, the hypothesis that BH4 acts 

as a reducing agent is further supported by the demonstration 

that vitamin C stabilizes BH4 in cultured endothelial human 

cells, through a mechanism not related to the interaction of 

vitamin C and superoxide anions.23

Interaction between 
tetrahydrobiopterin  
and nitric oxide synthase
NO is synthesized from L-arginine by NOS. Molecular 

cloning has identified three distinct NOS isoforms,24 two of 

which are expressed constitutively in neurons and vascular 

endothelial cells, and are activated by increased intracellular 

calcium levels. The expression of the third isoform is induced 

in a calcium-independent fashion by several agonists. All NOS 

isoforms catalyze the reaction of 1.5 mol NADPH + 1 mol 

L-arginine to 1 mol citrulline + 1 mol NO + 1.5 NADP+. 

This reaction is fully dependent on BH4. NOS contains a 

prosthetic heme group catalyzing the reductive activation of 

molecular oxygen which is required for L-arginine oxidation, 

as well as tightly bound flavins shuttling NADPH-derived 

electrons to the heme (Figure 2).25 In this reaction, heme Fe3+ 

is reduced by flavin mononucleotide to heme Fe2+, which binds 

molecular oxygen to form an unstable dioxygen complex 

(heme-Fe-O-O) that, in the presence of BH4, is converted 

to heme-Fe3+-O-OH, then converted to heme-Fe5+=O, to par-

ticipate in the release of NO (Figure 2). BH4 in this reaction 

participates in the following events: BH4 binding to NOS 

GTP
BH4 synthesis

7-8 dihydroneopterin triphosphate

6 Pyruvoyletetrahydrobiopterin

BH4

Tetrahydrobiopterin
4α-carbinolamine

BH3.H+ NOS-FlavinNOS

PTPS

GTP-CH

Aromatic

SR

Sepiapterin

7-8 diHydrobiopterin

Sepiapterin
reductase

 

diHydrofolate
reductase

 

Quinoid-dihydrobiopterin

PCD

DHPR

Figure 1 Tetrahydrobioterin synthesis.
Abbreviation: BH4, tetrahydrobiopterin; GTP-CH, GTP cyclohydrolase; PTPS, pyruvoyl tetrahydrobiopterin synthase; SR, sepiapterin reductase; DHPR, dihydrofolate 
reductase.
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stabilizes loose dimer conformation;26 BH4 binding to NOS 

enhances L-arginine binding to heme and inhibits superoxide 

release from the heme oxygenase domain of the enzyme.27

NO synthesis by eNOS can be affected by different stimuli, 

ie, signaling molecules (integrated into caveolae), phospho-

rylation (by Akt) at serine 177 residues in response to shear 

stress or hormones (such as estrogens or insulin) activating the 

enzyme, whereas phosphorylation at threonine 459 (by protein 

kinase C) decreases the activation of eNOS. Dephosphorylation 

of threonine 459 in response to bradykinin activates eNOS.8

Deficient BH4 levels in several in vitro and in vivo 

animal models have correlated with low NO production in 

vascular tissue.28 Recent studies suggest that disruption of 

the zinc-thiolate complex at the dimer interface, close to the 

BH4 binding site, leads to loss in BH4 from the binding site, 

enzymatic uncoupling, and destabilization of eNOS dimers.29

The data suggest that eNOS uncoupling and increased 

nitrosylation of eNOS, decreased expression of GTP-CHI 

and sepiapterin reductase, and subsequent reduced BH4 

bioavailability, may be important contributors to endothelial 

dysfunction and its consequences.

NO produced by endothelial cells protects blood vessels 

from thrombosis, and has antiatherosclerotic activity. Enhanced 

NO bioactivity reduces atherosclerosis progression through 

multiple mechanisms (Table 2). All major risk factors for ath-

erosclerosis are associated with impairment of NO activity.15

Superoxide generation has been implicated in a variety of 

experimental and clinical vascular disease states, including 

diabetes, cigarette smoking, hypertension, chronic nitrate 

tolerance, and overt atherosclerosis, not only because of the 

increased production of ROS but also because of the reduced 

formation of the protective molecule NO.31

Tetrahydrobiopterin in disease
In the absence of enough BH4, instead of oxidizing L-arginine, 

eNOS reduces molecular oxygen to superoxide, leading to 

endothelial dysfunction.32 When NO reacts with superoxide, 

it loses its vasodilatory, antiatherogenic, antithrombotic, anti-

inflammatory, and antiproliferative effects.33

e+

NADPH

NADP

FAD

FMN

Fe

CaM

BH4

Fe

CaM

e+

NADPH

NADP

FAD

FMN

O2

O2

NO

O2

O2-*

L-Arg L-Arg

Coupled NOS Uncoupled NOS

Figure 2 Interaction between tetrahydrobiopterin and nitric oxide synthesis.

Table 2 Antiatherosclerotic effects of nitric oxide

• Decreases endothelial permeability
• Inhibition of low-density lipoprotein oxidation
• Reduces influx of lipoproteins into the vascular wall
• Inhibition of proliferation of vascular smooth muscle cells
• Prevention of leukocyte adhesion to vascular endothelium
• Inhibition of leukocyte migration into the vascular wall
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BH4 prevents peroxynitrite-induced nitration of proteins, 

and the prevention of nitration of tyrosine residues in cells 

stimulated by proinflammatory cytokines avoids the affec-

tation of proteins involved in energy production, fatty acid 

metabolism, apoptosis, and oxidative stress induced by 

peroxynitrite.34

Experimental evidence reveals that altered glucose 

metabolism results in low BH4 bioavailability, and also that 

BH4 levels are reduced in diabetic rats. Interestingly, dietary 

supplementation with BH4 in insulin-resistant rats prevents 

impaired endothelial-dependent vasodilatation.12

The main cause of impaired endothelium-dependent 

relaxation in insulin-resistant rats is abnormal metabolism 

of BH4. The mechanism seems to be an imbalance between 

NO and superoxide anion.32 NO regulates vascular tone 

and blood pressure, and a reduction in NO bioavailability 

increases vascular tone and raises blood pressure,4 so BH4 

may be involucrate in the maintenance of blood pressure 

and a decrease in its bioavailability may play a role in the 

pathways that lead to hypertension.12

Therapeutic considerations
BH4 as a therapeutic agent
Several in vivo studies in animals and in humans have shown 

the beneficial effect of BH4 on endothelial dysfunction and 

its vasoprotective properties. Therefore, enhancing BH4 

synthesis or bioavailability in endothelial cells may be a good 

strategy for the prevention and treatment of cardiovascular 

disease, especially in high-risk patients, such as hypertensive 

and diabetic subjects.34

When BH4 is administrated in healthy volunteers, the 

bioavailability of NO is increased. Several clinical trials have 

evaluated the use of BH4 for the management of endothelial 

dysfunction, and it has been shown that this cofactor increases 

acetylcholine-induced vasodilatation in coronary arteries in 

patients with coronary heart disease.35

The administration of BH4 improves forearm circulation in 

smokers, and diabetic or hypercholesterolemic patients, then, 

actions that lead to improve BH4 availability may be effective 

in restoring NO-mediated endothelial function and limiting 

vascular disease progression in several conditions, such as 

atherosclerosis, diabetes, and hypertension.36 Indeed, infusion 

of BH4 improves the endothelial-dependent vasodilation 

response to acetylcholine but not the endothelium-independent 

vasodilation response to nitroprusside. In patients with type 2 

diabetes, the cofactor has no effect in control subjects.32

In healthy subjects, impairment of endothelial function 

induced by an oral glucose challenge was reversed by the 

active cofactor BH4, but not by an inactive stereoisomer.37 

In patients with type 2 diabetes, infusion of BH4 corrects 

endothelial dysfunction via an NO-dependent pathway.12

The administration of BH4 to spontaneously hypertensive 

rats is associated with improvement of endothelial function and 

prevention of hypertension and ventricular hypertrophy.12

Porkert et al found that oral administration of BH4 400 mg 

had a significant antihypertensive effect in poorly controlled 

hypertensive patients.38 They also found an improvement of 

endothelial function in this study, and the beneficial effect of 

BH4 was maintained during the eight-week study duration 

without tachyphylaxis. However, only patients receiving the 

BH4 dose of 400 mg or higher responded to the biopterin, 

whereas patients at a daily dose of 200 mg did not achieve a 

significant reduction in blood pressure.

Settergren et al showed that the administration of L-arginine 

and BH4 improves endothelial function and reduces endothelial 

dysfunction induced by ischemia-reperfusion in type 2 diabetic 

patients with coronary artery disease.39 However, both agents 

were given in combination, so it was not possible to evaluate 

if administration of each agent alone would demonstrate the 

same results or if the combination is necessary. It is important 

to say that L-arginine as monotherapy was not effective, and 

perhaps harmful, in patients with intermittent claudication and 

peripheral artery disease.40

BH4 has shown efficacy in the treatment of erectile 

dysfunction. Sommer et al found that BH4 administration led 

to a significant increase in duration of penile rigidity, making 

BH4 suitable as a treatment for erectile dysfunction.41

Oral administration of BH4 slows the progression of 

atherosclerosis and reduces the expression of NADPH 

oxidase and inflammatory factors in hypercholesterolemic 

apolipoprotein E-knockout mice.42

Other pharmacologic interventions 
to restore BH4 bioavailability  
and eNOS function
Nitrates
Nitrates (isosorbide, nitroglycerin) have been used as NO 

donors because they release NO.43 Unfortunately, chronic 

administration of nitroglycerin has been associated with 

vascular production of superoxide and poor clinical 

benefits.12,44 A long-acting nitrate, pentaerythritol tetranitrate, 

may confer a better long-term cardiovascular prognosis.44

L-arginine
Several clinical studies have shown vasodilatation and 

enhanced NO production after administration of L-arginine. 
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Drexler et al (cited by Tenenbaum et al45) showed that L-arginine 

enhanced the blood flow response to acetylcholine in patients 

with coronary artery disease but not in controls. Since then, 

there have been many studies with L-arginine in healthy 

human subjects and in patients with various cardiovascular 

conditions.45

In contrast, there have been several relatively small clinical 

studies with experimental endpoints that failed to show benefi-

cial effects of L-arginine on vascular function. The evidence 

suggests that there may be subgroups of patients whose vascular 

function is improved by L-arginine supplementation, and other 

subgroups of patients who do not respond to this intervention. 

Because patients on “optimized medical treatment” and those 

with advanced coronary stenoses showed less effect, and L- 

arginine was more effective when early changes in vascular func-

tion were chosen as endpoints. It is possible that this amino acid 

may have a role as a nutraceutical agent (daily doses below 2 to 3 

g/day appear to be without beneficial effect) in the modification 

of functional impairment and in the prevention of vascular dis-

ease, but not as a therapy to reverse manifest atherosclerosis.45,46 

In animal models, long-term administration of L-arginine 

inhibits the formation of atherosclerotic plaques.44

Folic acid
Because folic acid participates in the BH4 recycling pathway, 

several studies have been performed to investigate its use 

for the treatment of cardiovascular disease. Some results 

had shown that this agent may restore endothelial function 

in diabetic patients, as well as in hypercholesterolemic sub-

jects, and that it reduces atherosclerotic plaques in mice.44,46 

Unfortunately, those results have not been confirmed by 

recent clinical trials.47

Ascorbate
Ascorbate increases BH4 in endothelial cells via preven-

tion of oxidation of this biopterin, without an effect on its 

synthesis, and may explain the effect of ascorbate on blood 

pressure in hypertensive patients.33

Sepiapterin
Because sepiapterin is a precursor in the alternative BH4 

synthesis pathway, it has been proposed as a therapeutic 

approach for endothelial dysfunction.12 Indeed, acute studies 

have shown that administration of sepiapterin restores 

endothelial function.44 However, because sepiapterin com-

petes with BH4 for the oxygenase domain in eNOS, higher 

doses of this precursor may increase superoxide production 

and decrease NO bioavailability.12,44 There are no studies 

that have evaluated the long-term effects of sepiapterin in 

vascular disease. This agent did not increase BH4 levels, but 

decreased BH2 concentrations,44 and a recent study shows 

that the BH4/BH2 ratio may be even more important than 

absolute BH4 levels for eNOS functioning.49

Statins
Statins (3-hydroxy-3-methylglutaryl coenzyme A reductase 

inhibitors) are used in the management of dyslipidemia. 

These drugs have cholesterol-independent effects, may 

upregulate NO expression, and there is evidence that statins 

modulate atherogenesis, plaque rupture, and thrombosis.50

Hattori et al found that statins elevate GTP-CH mRNA. 

Because GTP-CH is the rate-limiting step in the synthesis 

of BH4, statins elevate levels of this biopterin in vascular 

endothelial cells, and they also enhance eNOS expression 

and increase the ratio of BH4/BH2.51

Because statins enhance BH4 synthesis, increase NO 

production, and prevent relative shortages of BH4, they 

also inhibit vascular NADPH oxidase and reduce oxidative 

stress,44 thereby normalizing endothelial function. In humans, 

statins not only reduce cardiovascular morbidity and mortal-

ity, but also reduce progression of coronary atherosclerosis 

in patients with coronary heart disease.52

Antagonism of the renin-angiotensin-
aldosterone system
Angiotensin II activates NADPH oxidase via AT

1
 receptor 

activation in vascular cells. However, NADPH oxidase is 

probably not the only source of ROS stimulated by angio-

tensin II. As we have reviewed, one consequence of increased 

superoxide production in response to angiotensin II is inacti-

vation of NO and resulting endothelial dysfunction, which is 

one of the earliest steps in the atherosclerotic process.52

Several studies have shown that inhibition of AT
1
 receptor 

activation by AT
1
 receptor antagonists or angiotensin-

converting enzyme (ACE) inhibitors normalizes oxidative 

stress and improves endothelial dysfunction, and ACE 

inhibitors are known to retard the progression of atheroscle-

rosis and heart failure.53 Both AT
1
 receptor antagonists and 

ACE inhibitors provide an equivalent beneficial effect on 

risk of death and cardiovascular events.54

Like angiotensin II, aldosterone may also promote 

endothelial dysfunction and vascular disease. Imanishi et al 

found that eplerenone, an aldosterone antagonist, alone or 

combined with enalapril, reduces NADPH activity, and 

elevates both BH4 levels and NO bioavailability in endothe-

lial cells of hyperlipidemic rabbits.55
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Aliskiren, a direct renin inhibitor, as monotherapy or in 

combination with an AT
1
 receptor antagonist, also decreases 

NADPH oxidase activity, increases BH4 levels, and enhances 

NO bioavailability. Aliskiren also has an antiatherosclerotic 

effect.56

Conclusion
BH4 availability is a critical determinant of eNOS regula-

tion in atherosclerosis and is a rational therapeutic target to 

restore NO-mediated endothelial function and reduce disease 

progression in high-risk patients.

Strategies aimed at increasing BH4 biosynthesis or levels, 

reducing BH4 oxidation, or enhancing BH4 regeneration 

seem to be useful and safe therapeutic options for the preven-

tion of macrovascular complications in patients at high risk 

for cardiovascular complications, in particular patients with 

type 2 diabetes and/or hypertension.
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