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Noninvasive optical activation of Flp recombinase
for genetic manipulation in deep mouse brain
regions
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Sungsoo Kim1, Doyeon Woo2, Hee-Sup Shin2, Byung Ouk Park2 & Won Do Heo1,2,3

Spatiotemporal control of gene expression or labeling is a valuable strategy for identifying

functions of genes within complex neural circuits. Here, we develop a highly light-sensitive

and efficient photoactivatable Flp recombinase (PA-Flp) that is suitable for genetic manip-

ulation in vivo. The highly light-sensitive property of PA-Flp is ideal for activation in deep

mouse brain regions by illumination with a noninvasive light-emitting diode. In addition, PA-

Flp can be extended to the Cre-lox system through a viral vector as Flp-dependent Cre

expression platform, thereby activating both Flp and Cre. Finally, we demonstrate that PA-

Flp–dependent, Cre-mediated Cav3.1 silencing in the medial septum increases object-

exploration behavior in mice. Thus, PA-Flp is a noninvasive, highly efficient, and easy-to-use

optogenetic module that offers a side-effect-free and expandable genetic manipulation tool

for neuroscience research.
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Studies of complex brain functions require highly sophisti-
cated and robust technologies that enable specific labeling
and rapid genetic modification in live animals. A number of

approaches for controlling the activity of genes or proteins in a
spatiotemporal manner using light, small molecules, hormones
and peptides have been developed for manipulating intact circuits
or functions1–5. Cre/loxP recombination employing chemically
inducible systems such as Cre-ERT2, DD-Cre, and inducible
promoter-directed Cre is the most commonly used in vivo gene-
modification system6–9. Other approaches include selective or
conditional Cre-activation systems within subsets of green
fluorescent protein (GFP)-expressing cells (Cre-DOG)10 or dual-
promoter-driven intersectional populations of cells11. However,
these methods are limited by the considerable time and effort
required to establish knock-in mouse lines and by constraints on
spatiotemporal control, which relies on a limited set of available
genetic promoters and transgenic mouse resources.

Beyond these constraints, optogenetic approaches enable to
control the activity of genetically defined neurons in the mouse
brain with high spatiotemporal resolution. Recently, two opto-
genetic modules of photoactivatable-Cre recombinase (PA-Cre)
have been developed using split-Cre components, one in which
each component is fused to CRY2 and CIB112–14, and the other in
which they are fused to positive Magnet (pMag) and negative
Magnet (nMag)15. In both cases, illumination with blue light
induces heterodimerization. To date, however, an optogenetic
module for gene-manipulation capable of revealing spatio-
temporal functions of specific target genes in the mouse brain has
remained out of reach.

Cre/loxP recombination has been established as an efficient
genetic manipulation system in mammals, and constitutes the
overwhelmingly prominent technology underlying currently
existing conditional gene knock-out/in mouse resources16.
Applications of the Flp/Frt system to sophisticated genetic
manipulations in vivo, including in brain tissue, have developed
at an accelerating pace17,18 since most recent improvement in Flp
recombinase to produce a thermostable, codon-optimized version
(Flpo) that functions efficiently in mammals19–21. The combina-
torial use of Cre and Flp in Cre/Flp lines, in which expression is
driven by tissue- or cell-type-specific promoters, has enabled
more detailed investigations of different cell populations through
conditional or selective genetic mutagenesis in vivo16,22. To date,
however, no such light-inducible Flp system has been developed.
Accordingly, we sought to develop a photoactivatable Flp
recombinase (PA-Flp) that takes full advantage of the high spa-
tiotemporal control offered by light stimulation.

Here, we demonstrate that the utility of PA-Flp as a non-
invasive in vivo optogenetic manipulation tool for use in the
mouse brain, even applicable to deep brain structures reaching
hippocampus or medial septum (MS) by external LED light
illumination (1–2 mWmm−2). Furthermore, we engineer a Flp-
dependent Cre driver as a module without leaky Cre expression in
viral vector system, finally showing noninvasive light-dependent,
Cre-mediated Cav3.1 gene silencing in MS neurons, which results
in increased objective exploration behavior.

Results
Development of PA-Flp. In designing PA-Flp, we employed a
strategy in which Flpo was split into two pieces that reassemble in
response to a light stimulus (Fig. 1a). Since a possible site at
which Flpo could be split so as to restore activity upon recon-
stitution has not yet been reported, we first empirically addressed
this question. To this end, we considered nine, aqueous-exposed
loop regions of Flpo as possible sites, based on the structure of the
full-length protein (Supplementary Figure 1a-c). Next, we sought

to introduce an efficient light-responsive module fused to each
split-Flp site that satisfied the following four criteria: (1) light-
inducible heterodimerization, (2) utilization of endogenous
cofactors present at sufficient levels in mammals, (3) relatively
small size to allow packaging in an adeno-associated virus (AAV),
and (4) a high-affinity light-dependent interaction that minimally
perturbs reassembly of split Flp. On the basis of these criteria, we
selected the Magnet system (17.1 kDa)23 as a suitable platform.
This system offers a symmetry advantage compared with other
light-responsive modules, such as CRY2 (65-70 kDa)-CIB1(21-22
kDa) pairs, which employ binding partners that are unbalanced in
size.

In initial screens, we constructed fusions of each of the nine
split-site variants of Flp fused at their C-terminus with
nMagnetHigh1 (nMagH; nMagnet variants) or pMagnetHigh1
(pMagH; pMagnet variants), which are the strongest light-
dependent dimerization pair among Magnet system23. To assess
Flp activity in HEK293T cells, we used a Flp reporter plasmid in
which FRT-stop-FRT-GFP is driven by a CMV promoter that
produces a GFP signal upon catalytic activation of Flp. In these
screens, we found that blue light-emitting diode (LED) illumina-
tion (470 ± 10 nm, 5-s pulse duration at 3-min intervals for 24 h)
slightly increased Flp activity of split-site 1 (sp1:FlpN27/FlpC28)
and split-site 7 (sp7:FlpN169/FlpC170) variants compared with
the corresponding variants incubated in the dark (Supplementary
Figure 1d). To further optimize the configuration, we next
constructed sp1- and sp7-conjugated Magnet in both orienta-
tions, with or without a nuclear localization signal (NLS).
Surprisingly, C-terminally fused split-FlpC showed dramatically
increased (5- to 10-fold) recombination efficiency compared with
N-terminally fused split-FlpC (see Supplementary Figure 1e
compared with Supplementary Figure 1d). We termed sp1- and
sp7-series with FlpNX-nMagH and pMagH-FlpCX orientation as
PA-Flp1 or PA-Flp7, respectively. Additionally, we fused NLS N-
terminally on PA-Flp1 or PA-Flp7 sites of FlpNX-nMagH, which
showed that the potent NLS-tagging site for better efficacy is PA-
Flp1 (Supplementary Figure 1d,e). Since, the efficiency of
heterodimerization of between pMag and nMagH pair was
comparable with pMagH and nMagH pair23, we also tested pMag
among PA-Flp1 variants. Finally, we found that among (NLS)-
Nflp1-nMagH with (NLS)-pMag(H)-(NLS)-Cflp1-(NLS) tested,
NLS-Nflp1-nMagH with pMagH-Cflp1 showed the highest light-
dependent Flp activity (Supplementary Figure 1e,f). Notably, sp1
of split-Flp could also be used with other heterodimerization
modules, such as FKBP-FRB or PHR-CIBN, suggesting the
universality of this split site (Supplementary Figure 1g). To
further characterize the efficiency of PA-Flp1 or 7 variants, we
tested them in stable cell lines bearing Frt-STOP-Frt to
concurrently validate genome accessibility and light sensitivity.
Ultimately, we chose one of PA-Flp1 variants, NLS-Nflp1-nMagH
with pMagH-Cflp1 pair (hereafter simply PA-Flp), which showed
high light sensitivity (EC50= 3.1 μW cm−2), fast recombination
kinetics (t1/2= 1.1 h), and 2- to 8-fold induction compared with
the other PA-Flp1 or PA-Flp7 variants tested (Supplementary
Figure 2a, b).

Performance of PA-Flp in vivo. To verify PA-Flp in vivo, we
electroporated PA-Flp with fDIO-YFP plasmids in embryonic day
15 (E15) embryonic mouse brains. Light illumination at P1
induced a substantial increase in Flp reporter (GFP) signal 2 days
later compared with that observed in the dark (Fig. 1b). We also
verified delivery of PA-Flp via an AAV vector in WT mice by co-
infecting PA-Flp with fDIO-YFP, an exogenous Flp reporter,
demonstrating a 30.4-fold increase in Flp reporter signal in the
light-stimulated group compared with the non-light-stimulated

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-018-08282-8

2 NATURE COMMUNICATIONS |          (2019) 10:314 | https://doi.org/10.1038/s41467-018-08282-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


b

mCherry EYFP DAPI

w/o Light
(room light)

w/ Light

FlpN1-MagH

pMagH-FlpC1

ITR

ITR

ITR EF1α

EF1α

EF1α

mCherry ITR

ITR

ITRfDIO-EYFP

c

mCherry EYFPiRFP

Dark

w/ Light

E15
electorate

+
–

G
F

P
+

 /
 m

C
h,

 iR
F

P
+

 c
el

ls
 (

%
)

pMagH-FlpC1

FlpN1-nMagHCAG

CAG

CAG fDIO-EYFP

mCherry

iRFP

G
F

P
+

 /
 D

A
P

I+
 m

C
h+

 c
el

ls
 (

%
)

a

GFPFRT
STOP GFP

FRT FRT

Blue light

FlpN27 FlpC28

nMagHigh1 pMagHigh1

Recombination

Active FlpReconstitution

GFP

***

***

P2A-NLS

P2A

DARK
Lig

ht

w/o
 L

igh
t

w/ L
igh

t
0

2 0

4 0

6 0

8 0

1

0

20

40

60

80

100

0

20

40

60

80

100

mCherry GFPMerge

Bregma
–1.88

Bregma
–1.70

Bregma
–2.06

ML 1.35

ML 1.35

ML 1.35

(ii)

(iii)

(ii)

(iii)

(iv)

(i)

(iv)

(i)

AAV
targeting site

Merge

473 nm laser
(1 uW mm–2,
Ø 50 μm core,

optic fiber, 12 h)

d

Rostral

Caudal AAV targeting site
(Bregma –2.0 mm)

Optic fiber
implanted site

Bregma
–1.82 mm

Bregma
–2.06 mm

Bregma
–1.70 mm

Bregma
–1.94 mm

ML 1.35
e

f

0

20

40

60

80

100

Distance from
bregma (mm) 

Rostral Caudal

–1
.6

4

–1
.7

–1
.7

6

–1
.8

2

–1
.8

8

–1
.9

4 –2

–2
.0

6
g h

G
F

P
+

 /
 m

C
h+

 c
el

ls
 (

%
)

ML1.35 ML0.5

G
F

P
 in

te
ns

ity
 A

.U
 (

×1
03 )

FlpN1-MagH

pMagH-FlpC1ITR

ITR EF1α

EF1α

mCherry ITR

ITR

P2A-NLS

4

3

2

1

0

Ap 
–1

.7
0

Ap 
–1

.8
8

Ap 
–2

.0
6

Ap 
–1

.8
8

Fig. 1 Development of PA-Flp. a Schematic depicting PA-Flp reconstitution and activation upon blue light illumination, and detection of GFP signals by PA-
Flp-mediated deletion of a stop cassette in a Frt-floxed construct. b PA-Flp and fDIO-YFP (Flp reporter) expression plasmids were electroporated into an
embryonic mouse brain (E15), with (w/) subsequent noninvasive light stimulation (0.5 mWmm−2, blue fluorescent gun) at postnatal day 1–2 (P1–2) or
maintained in dark conditions. Pup brains were harvested at P3-4. c AAV-EF1a-PA-Flp and AAV-EF1a-fDIO-YFP were co-infected into the hippocampus of
8-wk-old mice, with 30min light (0.4 mWmm−2, 20 Hz, 20% duty cycle) or without (w/o) light stimulation 2 wks after infection and sacrificed 1 wk after
light stimulation. A blue line indicates laser light path through implanted optic fiber. b, c Measurement of GFP positive cells among both mCherry and iRFP
positive (GFP+/mCh+iRFP+) cells or among both DAPI and mCherry positive (GFP+/DAPI+mCh+) cells in 4–8 coronal slices at each group. Scale bar:
100 μm. Data represent means ± s.e.m. (n= 2 mice/group; ***P < 0.0001, two-tailed Student’s t-test). d, e Schematic depicting AAV infection in the mouse
hippocampus and local light stimulation via implanted optic fiber (d), and AAV targeting sites (green) and optic fiber implantation sites (red) (e), in
coronal sections of hippocampus. f Left: representative images showing local labeling of GFP signals from RCE:FRT mice at different depths along the
rostral-caudal (RC) axis. Yellow arrowhead indicates the medial-lateral (ML) 1.35 coordinate. Right: sites (i)–(iv) at left marked in white-dashed squares are
shown in higher-magnification views in the correspondingly labeled rows. Sites (i), (ii), and (iv) indicate the same ML coordinate along the RC axis; (iii)
indicates a distal site with a different ML coordinate on the same coronal section of bregma (−1.88 mm). Scale bar: 100 μm. g, h Analysis of percentage (g)
and intensity (h) of GFP signals along the ML axis at the same RC coordinate (bregma −1.88mm) or RC axis on the same ML coordinate (ML 1.35).
Measurement performed in each coronal slice. Data represent means ± s.e.m. (n= 1 mouse)
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group (Fig. 1c). We then evaluated whether PA-Flp is capable of
manipulating endogenous target sites with high efficiency using a
Flp reporter mice line (RCE:FRT, Gt(ROSA)26Sortm1.2(CAG-EGFP)
Fsh/Mmjax)24. To assess the effects of light-delivery conditions on
the performance of PA-Flp in RCE:FRT mice, we delivered blue
light (400μWmm−2) via an optic fiber for varying illumination
times (5 s to 30 min). PA-Flp efficiency increased with increasing
duration of light exposure up to 5 min, at which point efficiency
saturated (Supplementary Figure 3b,c).

‘Local genetic labeling’ in the mouse brain by precise light
targeting. Since the highly light-scattering nature of brain tissue
requires more precise light-targeting conditions25, we sought to
minimize light diffusion/scattering using thin optic fibers
(50–60 μm) with varying laser intensity, frequency (Hz), and
duty cycle (%) (Supplementary Figures 3d,e and 4; see Methods
for details). Applying these parameters in an optimization
strategy, we validated the concept of ‘local genetic labeling’ in
the hippocampal dentate gyrus (DG) and the M1 cortex (Sup-
plementary Figures 5 and 6). We found that it was possible to
adjust labeling over a relatively broad range (300–400 μm) with
gradients (Supplementary Figure 5a, b) and to a smaller range
(~100 μm) with sharper patterns (Supplementary Figure 5c) in
hippocampal DG. To verify three-dimensional labeling pat-
terns, we analyzed the dorsal DG along the rostral-caudal and
medial-lateral axes in every coronal section in the dorsal DG.
Through demonstrated that three-dimensionally restricted
(~200 μm), anatomically defined areas could be genetically
manipulated (Fig. 1d–h).

PA-Flp activation by transcranial LED illumination. To max-
imize the utility of the highly light-sensitive characteristics of PA-Flp,
we tested its action by noninvasive light without prior implantation
of an optic fiber. We found that light illumination using a light guide
coupled LED (Ø 0.6 cm) at an intensity of 50 μW mm−2 for 30min
effectively delivered light to the cortex regions of mouse brain and
produced highly efficient recombination performance (Supplemen-
tary Figure 7). Considering these results together with the captured
images of noninvasive LED light penetrating through the mouse
brain (Supplementary Figure 8), we anticipated that stronger light
power (up to 5mWmm−2) would provide sufficient light to activate
PA-Flp at the depth of the hippocampus. Following PA-Flp
expression in the hippocampus, we illuminated the mouse head
with LED light at intensities of 0.1, 1, and 5mWmm−2 for 30 s or
30min with the fur removed, leaving the skull and skin intact.
Surprisingly, we found that LED illumination with an intensity as low
as 1mWmm−2 for 30 s was sufficient for full activation of PA-Flp in
the hippocampus (Fig. 2a–c). Stronger LED intensity (~5mWmm
−2) or increased illumination time (~30min) did not lead to pro-
portionally higher PA-Flp efficiency, indicating that LED illumina-
tion at 1mWmm−2 for 30 s provided sufficient light to induce
maximal PA-Flp activity (Supplementary Figure 9). To test PA-Flp
activation in regions of the brain deeper than the hippocampus, we
illuminated the medial septum (MS), a region 3.5–4.0mm distal from
the skull surface. These experiments showed that LED illumination at
2mWmm−2 for 30 s was sufficient to activate PA-Flp in the MS
(Fig. 2d–f).

Extended utility of PA-Flp to Cre-loxP system. To extend the
applicability of PA-Flp to the many existing loxP-flanked (floxed)
lines, we investigated how to activate recombination at loxP sites
using PA-Flp. To this end, we designed a Flp-dependent Cre
driver (FdCd) by inserting Cre into an fDIO cassette (fDIO-Cre).
In initial experiments employing transient plasmid expression
in vivo, we found that Flp activity was effectively transferred to

activation of Cre (Supplementary Figure 10). However, packaging
this fDIO-Cre construct in AAV or lentivirus resulted in unex-
pectedly high basal Cre activity in both cultured neurons and
mouse brains (Supplementary Figure 11b-d). We hypothesized
the viral nascent ITR/LTR promoter-driven transcripts with
antisense direction generated a substantial number of Cre mole-
cules to react with substrate DNA sequences under long-
expression conditions, despite weakness of the ITR/LTR pro-
moters26–28. To solve this problem, we designed a new FdCd
candidate to block translation of ITR/LTR promoter-driven Cre
(Supplementary Figure 11a). A strategy repositioning the NLS
and Kozak sequence outside of the upstream of fDIO cassette
dramatically decreased the expression of Cre derived from anti-
sense transcripts (Supplementary Figure 11a-e). Through this
strategy, antisense transcripts lost both strong kozak and func-
tional NLS sequences of Cre in basal state, but sense transcripts
(target promoter-driven NLS-tagged Cre)-mediated expression is
fully induced after Flp activation. Additionally, we introduced
point mutations (Methionine to Leucine) on putative Kozak
consensus sequences29,30 at amino acid position 11th and 13th of
Cre, which has no impact on its catalytic activity. The final ver-
sion which repositioned the NLS and Kozak sequences with the
dual mutations of Cre showed the least basal Cre activity among
tested candidates in cultured neurons (Supplementary Figure 11b,
c) or in vivo brain (Supplementary Figure 11d,e), while robustly
increasing Cre activity following Flp activation (Fig. 3a–f and
Supplementary Figures 12 and 13). We termed this candidate,
Leak-Free FdCd (LF-FdCd).

Applications of PA-Flp-dependent Cre system. To evaluate
applications of the PA-Flp–dependent Cre (PA-FdCre) system to
neurobehavioral research, we targeted mixtures of AAVs
expressing PA-Flp, LF-FdCd, and floxed-stopped–shCav3.1
(LoxP-STOP-LoxP flanked small hairpin RNA [shRNA] targeting
Cav3.1) to the MS of wild-type mice (Fig. 4a). Our previous study
revealed that silencing Cav3.1 T-type calcium channels in
GABAergic neurons in the MS that project to the hippocampus
increased object-exploration behavior in mice31. We thus vali-
dated this previous finding by silencing Cav3.1 specifically in the
MS using light-triggered PA-FdCre. To evaluate object-
exploration behavior, we first injected mice with PA-FdCre and
floxed-stopped–shCav3.1, and then exposed them to LED illu-
mination (shCav3.1 w/ LED mice) or room light conditions
(shCav3.1 w/o LED mice); as a control, mice were injected with
PA-FdCre and floxed-stopped–shControl (scrambled control
shRNA construct) followed by LED illumination (shControl w/
LED mice) or room light conditions (shControl w/o LED mice).
Thereafter, mice were exposed to novel objects in a familiar arena
and monitored for 20 min (Fig. 4b). Tracking of mouse move-
ments revealed enhanced object-exploration behavior by
ShCav3.1 w/ LED mice compared with shCav3.1 w/o LED,
shControl w/ LED, and shControl w/o LED mice (Fig. 4d), as
confirmed by measurements of total exploration (Fig. 4e, f).
Consistent with our previous observation31, the locomotor
activity of shCav3.1 w/ LED mice, measured as total distance
moved, was not significantly different from that of shCav3.1 w/o
LED or shControl w/ LED, and shControl w/o LED mice during
the habituation period of the object-exploration task (Fig. 4g). To
assess the extent of gene silencing, we sacrificed mice after the
completion of behavioral tests and measured Cav3.1 expression in
MS neurons using immunohistochemistry. The proportion of
Cav3.1-positive neurons in the MS decreased in shCav3.1 w/ LED
mice compared with shCav3.1 w/o LED (Fig. 4c), indicating that
PA-FdCre–mediated shCav3.1 silencing reduced endogenous
Cav3.1 expression in the MS.
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Discussion
In this study, we developed PA-Flp by searching out new split sites
of Flp recombinase that was not previously identified, being
capable of reconstitution to be active. We validated the highly
light-sensitive, efficient performance of PA-Flp through precise
light targeting by showing transgene expression within anatomi-
cally confined mouse brain regions. The concept of ‘local genetic
labeling’ presented here suggests a new approach for genetically
identifying subpopulations of cells defined by the spatial and
temporal characteristics of light delivery. Importantly, genetic
labeling is a permanent marking system that enables tracking of
locally labeled subpopulations of cells, such as migrating, differ-
entiating or proliferating cells, without loss of the labeled signal.

PA-Flp activation through noninvasive light illumination deep
inside the brain is advantageous in that it avoids chemical- or
optic fiber implantation-mediated side effects, such as off-target
cytotoxicity or physical lesions, that might influence animal
physiology or behaviors32,33. Our optogenetic system is very easy
to set up and simple to use, requiring only an LED (blue or cool-
white) source that satisfies light power and amount criteria,
indicated above, for application to deep mouse brain regions, and
it does not necessitate injury to the skull or skin for light delivery.

Finally, our technique provides expandable utilities for trans-
gene expression system stringently upon Flp activity in vivo, by
designing a viral vector for minimal ‘leaky’ expression influenced
by viral nascent promoters, such as ITRs or LTRs, located at 5′ or
3′ end in AAV or Lentivirus. Accordingly, we showed that the
PA-Flp-dependent Cre expression system called PA-FdCre is an
expandable modality of PA-Flp, demonstrating the applicability
of a light-inducible, Cre-dependent RNAi system to neurobeha-
vioral research. The ability to support applications involving
loxP-containing mouse lines or vector systems further highlights
the versatility of PA-FdCre. Furthermore, PA-FdCre is a module
of light-inducible Flp- and Cre-dual activation system, but Cre
expression is activated by Flp activity along with the neuron-
specific promoter-directed LF-FdCd as an intersectional manner.
According to our observations, the probability of leaky Flp
activity (attributed by spontaneous auto-assembly of split-Flp
components) is far less likely to occur in driving two orthogonal
reactions of Flp-FRT. Therefore, the design of gene expression
cassette turned ON only under the sequential or intersectional Flp
and Cre activation events21 would offer greater reliability with
robust amplitude of inducible gene regulation systems in vivo.
Taken together, our findings indicate that PA-Flp is a highly
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Fig. 2 Noninvasive LED illumination activates PA-Flp in deep brain structures down to the hippocampus and MS. a, d Schematic depicting AAV-EF1a-PA-
Flp targeting in the hippocampus (a) or MS (d) followed by LED illumination. b, e Representative images of mCherry (PA-Flp) and GFP (Flp reporter)
signals from RCE:FRT mice (8–12-wk-old), with (w/) and without (w/o) LED illumination. Two wks after infection, light was illuminated noninvasively with
white LED at an intensity of 1 mWmm−2 (b) or 2 mWmm−2 (e) for 30 s through the intact skull and skin. Mice were maintained under room light as
described in Methods. All mice were sacrificed 3 wks after infection. Scale bar: 500 μm. c, f GFP positive cells among both DAPI and mCherry positive (GFP
+/DAPI+mCh+) cells were measured in the hippocampus (c) and MS (f) region of 4–7 coronal slices, as shown in b and e, respectively. Data represent
means ± s.e.m. (c, n= 4 mice/group, ****P < 1 × 10−10; f, n= 2 mice/group, ***P < 0.0001; two-tailed Student’s t-test)
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efficient genetic manipulation tool that is capable of providing a
noninvasive optogenetic module with greatly expandable appli-
cations in neuroscience research.

Methods
Design and construction of PA-Flp. DNA and amino acids sequences of notable
constructs used in this study are described in detail in Supplementary Note 1. Most
constructs were generated with Gibson Assembly Cloning (New England Biolabs)
using previously generated molecular biology reagents as PCR templates. The
platform for screening PA-Flp series was created by first generating a pQC-
mCherry-IX vector using standard cloning techniques. An AgeI/BglII-digested
fragment containing mCherry from the pmCherry-C1 vector (Clontech) was
inserted into the pQCXIX vector between AgeI and BamHI sites, placing it under
control of a CMV promoter. Each pair of PA-Flp recombinase series was generated
by Gibson assembly Cloning. Split Flp fragments were amplified from the coding
sequence of improved Flp (FLPo), obtained from Addgene plasmids (ID:55634).
nMagHigh and pMagHigh were synthesized by Genescript. Each PCR fragment
was inserted into a pQC-mCherry-IX vector at a single EcoRV restriction site under
the control of an IRES in different configurations. The sequence encoding Nflp1
and nMagH was PCR-amplified using each primer pair 5′-CAC GCG TCT CGA
GAT ATC ACC ATG GCT CCT AAG AAG AAG AGG-3′ (forward) and 5′-GCC
ACC TCC GCC TGA ACC GCC TCC ACC GCT GGG CCT CTC GAA T-3′

(reverse) or 5′-AGG CGG AGG TGG CAG CGG CGG TGG CGG ATC GCA CAC
CCT GTA CGC CCC CG-3′ (forward) and 5′-GCC TGG ACC ACT GAT ATC
TTA CTC GGT CTC GCA CTG GAA GC-3′ (reverse), respectively. The PCR
fragments are reacted with EcoRV-linearized pQC-mCherry-IX vector by Gibson
assembly to generate pQC-mCherry-IRES-Nflp1-nMagH. The sequence encoding
Cflp1 and pMagH was PCR-amplified using each primer pair 5′-CAC GCG TCT
CGA GAT ATC ACC ATG CAC ACC CTG TAC G-3′ (forward) and 5′-GAA
CCG CCT CCA CCC TCG GTC TCG CAC TGG-3′ (reverse) or 5′-CAC GCG
TCT CGA GAT ATC ACC ATG CCC AAG AAG AAG AGG AAG GT GGG CGA
GAA GAT CGC CAG CGA TCC GCC TGT TGA TGT AGC TGC-3′ (forward)
and 5′-GCC TGG ACC ACT GAT ATC TTA GAT CCG CCT GTT GAT GTA
GCT G-3′ (reverse), respectively. The PCR fragments are reacted with EcoRV-
linearized pQC-mCherry-IX vector by Gibson assembly to generate pQC-
mCherry-IRES-pMagH-Cflp1. Gibson homology region, glycine-serine linker, HA
tag, P2A, and NLS sequences, obtained from SV40 sequences, were introduced
using PCR primers. AAV-EF1a-mCherry-FlpN1-nMagH and AAV-EF1a-pMagH-
FlpC1 were generated by PCR-amplification of each fragment from pQC-mCherry-
IRES-Nflp1-nMagH and pQC-mCherry-IRES-pMagH-Cflp1, respectively, followed
by cloning into BspEI and EcoRI sites of the pAAV-Ef1a-DIO EYFP vector by
Gibson assembly. For in utero electroporation, pCAG-iRFP-P2A-FlpN1-nMagH
and pCAG-mCherry-P2A-pMagH-FlpC1 constructs were prepared by assembling
PCR fragments from mCherry, iRFP, PA-FlpN and PA-FlpC at the BspEI/EcoRI
site of the pCAG-fDIO-EYFP vector. pCAG-fDIO-EYFP and pCAG-DIO-EGFP
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Fig. 3 Verification of PA-Flp-dependent Cre (PA-FdCre) system in ROSA26RCE:FRT/Ai14 mouse line. a Schematic depicting AAVs carrying PA-Flp and Leak
Free Flp-dependent Cre driver (LF-FdCd) as PA-Flp dependent Cre (PA-FdCre) systems. b Schematic depicting the generation of ROSA26RCE:FRT/Ai14 mice.
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Cre activation in the hippocampal DG (c) or MS (d) of ROSA26RCE:FRT/Ai14 mice (8–12-wk-old). Scale bar: 100 μm. e, f Correlation between GFP and
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were cloned into the EcoRI/NotI site of the pCAG-C1 vector using PCR-amplified
fragments from pAAV-EF1a-fDIO-EYFP (Addgene ID:55641) and pAAV-EF1a-
DIO-EGFP (Addgene ID:37084), respectively. LF-FdCd was generated by intro-
ducing Kozak and NLS sequences in front of the fDIO-Cre cassette by PCR
amplification. The hSyn promoter was PCR-amplified from the pAAV-hSyn-DIO-
EGFP vector (Addgene ID:50457).

Stable cell line. A HEK293T cell line stably expressing Frt-stop-Frt-EGFP was
produced by transduction of a lentiviral construct, prepared by PCR-amplifying a
fragment from pCAFNF-GFP (Addgene ID:13772) and cloning it into a pLenti
vector under the control of an EF1a promoter by Gibson assembly. Lentivirus was
packaged by co-transfection of HEK293T cells on 15-cm plates with VSVG, pDelta,
and payload constructs using polyethylenimine (#23966-2, Polyscience). After 4 h,
the medium was changed and cells were cultured for an additional 72 h. Culture
supernatants were collected at 48 and 72 h, pooled, and filtered through a 0.45-μm
filter. HEK293T cells were transduced with lentivirus particles, and stable clones

were selected by culturing with 300 µg/ml G418 (Geneticin) beginning 48 h after
transduction. Single-cell clones of transduced HEK293T stably expressing Frt-stop-
Frt-EGFP were collected by pipetting, after which recombination of Frt-stop-Frt-
EGFP in each single cell clone lines was verified by transfection of Flp recombinase.

Cell culture, transfection, and live-cell imaging. HEK293T cells were acquired
from the American Type Culture Collection (ATCC, Manassas, VA, USA) and
were assessed for contamination using a PCR-based mycoplasma detection kit
(Cell-Safe, BioMycoX). HEK293T cells were grown in high-glucose Dulbecco’s
Modified Eagle Medium (DMEM; PAA Laboratories GmbH) supplemented with
10% FBS (Invitrogen) and 1% penicillin-streptomycin (Invitrogen). Cells were
incubated at 37 °C in a humidified 10% CO2 incubator. For experiments, dis-
sociated HEK293T cells were plated at a density of 1 × 104 cells/well in 96-well
plates and transfected in duplicate with 200 ng total DNA using a Fugen6 trans-
fection kit (Promega) according to the manufacturer’s protocol. Cells were stained
with 500 ng/ml Hoechst 33342 (Invitrogen) for 30 min at 37 °C before acquiring
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illumination 2 wk after infection. b Schematic depicting object-exploration behavior in PA-FdCre–mediated, MS-specific, Cav3.1-knockdown mice.
c Immunohistochemical detection of Cav3.1 in the MS following co-infection with PA-Flp-, LF-FdCd- and flox-shCav3.1-expressing AAVs. PA-Flp (mCh) and
flox-shCav3.1 (GFP) fluorescence, Cav3.1 immunofluorescence (violet), and merged images are presented. Arrowheads indicate Cav3.1-positive cells.
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images. Images were acquired at the indicated time points with an ImageXpress
Micro XLS automated epifluorescence microscope (Molecular Devices) using a ×20
Plan Fluor objective and a 4.66 megapixel CMOS camera with a 16-bit readout.
Image analysis was performed using MetaXpress software (Molecular Devices).

In utero electroporation and light stimulation. In utero electroporation was
performed following the procedure as described in the literature34. Briefly, wild-
type, timed-pregnant (embryonic day 15 [E15]) C57BL/6 mice were anaesthetized
with isoflurane in an oxygen carrier. An endotoxin-free, purified 1–2 μl DNA
solution (1 μg/μl) was injected into the brain ventricle of embryos using a pulled
micropipette and Picospritzer III (#052-0500-900, Parker). DNA-injected embryos,
held through the uterus using forceps-type electrodes (#45-0489, Tweezertrodes
Kits), were delivered four to five electric pulses (duration, 50ms), via an ECM 830
electroporator (#45-0052, BTX). On postnatal day 1–2, pups were remotely sti-
mulated with light (1 mWmm−2) three times (5 s each) over the course of 1 h using
a DFP-1 Dual Fluorescent Protein Flashlight (440-460 nm; Nightsea) or were
exposed to 30-s pulses of computer software-controlled blue LED illumination (470
nm peak, 250 μW mm−2 [TouchBright; Live Cell Instrument]) at 3-min intervals
for 2 h. Mice were sacrificed 2 d after light stimulation (postnatal days 3-4).

AAV production. AAVs (serotype DJ/8) were produced using a previously
described three-plasmid cotransfection system35. Briefly, endotoxin-free solutions
of purified helper plasmid (pHelper), packaging plasmid (pRC-DJ/8), and transfer
plasmid (containing the transgene expression cassette) DNA were mixed at a 2:1:1
(μg) ratio (final concentration, 1–1.5 μg/μl). HEK293T cells were plated on a 15-cm
dish (8 × 106 cells/dish) in 20 ml DMEM, and 24 h later were transfected with 0.75
μg/ml of a 2.5:1 mixture of DNA (μg)/PEI (μg) ratio in media using poly-
ethylenimine. Seventy-two hours after transfection, cells were collected and
resuspended in 14 ml lysis buffer (50 mM Tris–Cl pH 8.0, 150 mM NaCl, 2 mM
MgCl2), followed by addition of 10% sodium deoxycholate (final concentration,
0.5%) and benzonase (final concentration, 50 U/ml). Cell lysis solutions were
incubated at 37 °C for 30 min, after which lysates were subjected to three freeze-
thaw cycles and centrifuged. The resulting supernatant was loaded onto an
iodixanol gradient and centrifuged at 69,000 rpm (350,000 × g) for 1 h at 4 °C. The
40% iodixanol fraction was isolated, washed with phosphate-buffered saline (PBS)
in a 100,000 WMCO tube filter, and concentrated to 100–200 μl. AAV titers were
measured using an AAVpro Titration Kit for Real Time PCR (#6233, TaKaRa);
titers of all AAVs used for in vivo infection were in the range of 1 × 1012 to 1 × 1013

viral genomes (vg)/ml.

Stereotaxic surgery and viral injection. Mice were anesthetized with Avertin
(240 mg/kg) or a mixture of ketamine (120 mg/kg) and xylazine (10 mg/kg). A
cocktail of AAV-EF1a-(mCh-P2A)-NLS-FlpN-nMagH-(HA) and AAV-EF1a-
pMagH-FlpC (1:1 ratio, 2.5 × 108 vg each), collectively termed AAV-EF1a-PA-Flp,
was stereotactically co-injected with the Flp reporter, AAV-EF1a-fDIO-YFP (1.25 ×
108 vg), into the hippocampal DG or CA1 regions of 8–12-wk-old C57BL/6 WT
mice.

For Tg (RCE:FRT) experiments, the hippocampal DG, CA1 or MS regions of
8–12-wk-old mice were infected with AAV-EF1a-PA-Flp (5 × 108 vg) in a total
volume of 1.0 μl; the M1 cortex was infected with a cocktail of AAV-CAG-mCh-
P2A-Nflp1-nMagH and AAV-CAG-pMagH-CFlp1 (1:1 ratio, 1.25 × 108 vg each),
collectively termed PA-Flp△NLS, in a total volume of 1.0 μl.

For Tg (RCE:FRT/Ai14) experiments, the hippocampal DG, CA1 or MS region
was co-infected with AAV-EF1a-PA-Flp (5 × 108 vg, HA-tagged version) and
AAV-hSynI (CamKIIa)-KoNLS-fDIO-Cre (MtoL) (LF-FdCd, 5 × 107 vg) in a total
volume of 1.0 μl. All viruses were infused using a WPI 33 g blunt NonoFil needle at
an infusion rate of 0.1 μl/min. To permit diffusion of the AAV mixture into brain
tissue and prevent leakage through the needle tract, we held the needle in place for
10 min after completion of each injection. The stereotaxic coordinates were as
follows: DG region: AP −2.0, ML 1.4, DV 1.7; CA1 region: AP −2.0, ML 1.4, DV
1.25; M1 region: AP 1.5, ML 1.5, DV 0.7; and MS region: AP 0.86, ML 0.0, DV 3.7.

AAVs carrying an shRNA outside two loxP sites (AAV-U6-LoxP-CMV-GFP-
LoxP-shRNA, 1 × 109 vg) (KIST virus facility, KOREA) were used for Cre-
dependent silencing of Cav3.1 in the MS. The shRNA oligonucleotides for targeting
Cav3.1 mRNA (shCav3.1; 5′-CGG GAA CGG GAA GAT CGT AGA TAG CAA A-
3′) and control shRNA (shControl; 5′-AAT CGC ATA GCG TAT GCC GTT-3′)
were created following the information described in the literature31,36. Control
shRNA sequences were used to construct a non-targeting control virus. Mice were
given injections of either shCav3.1 or non-targeting shControl.

Histology. For fluorescence imaging, isolated mouse brains were fixed by incu-
bating in 4% paraformaldehyde (PFA) in PBS for 1 d at 4 °C. Brains in ice-cold PBS
were sectioned into 50–60 μm coronal slices using a VT1200S vibratome (Leica).
Slices were mounted in Fluoromount G (Southern Biotech), with or without DAPI
(4′,6-diamidino-2-phenylindole). For immunohistochemistry, mouse brains were
transcardially perfused with PBS followed by fixation in 4% PFA overnight at 4 °C.
Slices were incubated in blocking solution (5% normal goat serum, 0.3% triton-X in
PBS) for 1.5 h and stained with primary antibody overnight at 4 °C. Anti-HA-Tag
rabbit mAb (1:1000, #3724, CST) and anti-Cav3.1 (1:200, #ACC-021, Alomone

Lab) were used to detect HA-tagged PA-Flp and endogenous Cav3.1, respectively.
After incubating with primary antibodies, slices were washed five times with 0.3%
Triton-X in PBS, incubated with secondary antibody in blocking solution for 1.5 h
at room temperature, and then washed five times in 0.3% Triton-X in PBS. Images
were captured with a Nikon A1 confocal microscope.

Animals. C57BL/6J inbred mice were obtained from the Jackson Laboratory (JAX
Mice and Services, Bar Harbor, ME, USA). The RCE:FRT Flp reporter line (Gt
(ROSA)26Sortm1.2(CAG-EGFP)Fsh/Mmjax)24, was purchased from the Jackson
Laboratory as cryopreserved sperm. Heterozygous mice were obtained by in vitro
fertilization, performed by the KAIST animal facility. The Ai14 Cre reporter line
(Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J)37 was a gift from Dr. Shin (Institute of
Basic Science, Korea). ROSA26RCE:FRT/Ai14 mice were generated by crossing
homozygous RCE:FRT and Ai14 mice; these Flp and Cre reporter lines have been
previously characterized16,37–39. Mice were maintained with free access to food and
water under a 12/12-h light/dark cycle (light intensity in cages measured under
‘room light’ conditions, 2.5–5 μW mm−2). Animal care and experimental proce-
dures followed the guidelines of the Institutional Animal Care and Use Committee
of Institute for Basic Science.

Light source. A Ø 200 μm or 50–60 μm optic fiber (Doric) coupled to a blue diode
473-nm laser (MBL-III-473m; CNI) was used to deliver blue light to broad or local
regions, respectively, within the hippocampal DG (see Supplementary Figure 4 for
details). Immediately after AAV injection, optic fiber ferrules were implanted in
approximately the upper 200-μm region of AAV-targeted sites. Custom-made
(LCI, Korea) external LEDs (white or 470 nm blue), excited through a 0.28 cm2

coupled fiber and controllable up to a power intensity of 10 mWmm−2, were used
for noninvasive light stimulation (See Supplementary Figure 9b for details of LED
performance in the mouse brain). Light intensity was measured at the surface of the
optic fiber or LED coupled-fiber end using the photodetector of a power meter
(#PM120D; Thorlab). The light intensity per unit area (mW mm−2) from an optic
fiber tip was defined as a measured value using the power meter.

Optical settings for local light delivery. Light stimulation of broad or local
regions was performed using protocol settings described in Supplementary Fig-
ure 4a. Light-scattering effects of brain tissue were assessed by implanting optic
fibers (Ø 200 μm) into the hippocampus of an anesthetized mouse and monitoring
light-delivery patterns under various light-stimulation conditions using a dissecting
microscope (Supplementary Figure 4b). The observation matched well with GFP
(Flp reporter) signal patterns obtained from each light stimulation protocols. In
addition to this, light diffusion emanating from the optic fiber tip was greatly
reduced by introducing a tiny optic fiber (Ø 50–60 μm), combined with the use of
optical settings with a low numerical aperture (NA; 0.1–0.22). Since total internal
reflection occurs in conditions above critical angle within optic fibers, a lower NA
results in the formation of more straightly oriented light path shapes (Supple-
mentary Figure 4c), producing a light ray that exits the optic fiber tip with a lower
diffusion angle (Supplementary Figure 4d). Tests of PA-Flp in the M1 region
revealed a substantial amount of Flp leakage (~20%) under normal 12 h-light on/
off housing conditions, an effect that was likely attributable to the ultra light-
sensitive characteristics of PA-Flp or possibly relatively high basal activity in the
motor cortex cells where PA-Flp was expressed. Accordingly, we tested a PA-Flp
version without the NLS tag (PA-Flp△NLS), which is less light sensitive than PA-
Flp (Supplementary Figures 1e and 2a,b). Applied to the M1 region as a CAG
promoter-driven form, PA-Flp△NLS exhibited significantly decreased basal Flp
activity in the cortex (~5%) compared with that of PA-Flp (~20%). Local genetic
labeling in the M1 region was validated using PA-Flp△NLS. In these experiments,
an optic fiber (Ø 60 μm) was implanted by placing it in the upper part of layer V
(Supplementary Figure 6a); PA-Flp△NLS expression was relatively broad across
layers I–VI. Two light-intensity conditions (5 or 25 μW mm−2) and two illumi-
nation times (2 or 12 h) were used, and results were analyzed in layers I–III and
V–VI regions. At an intensity of 5 μW mm−2, PA-Flp△NLS efficiency was speci-
fically increased in layer V−VI as the light illuminating duration was increased
from 2 h (29.2% ± 1.5%) to 12 h (73.1% ± 3.0%). There was almost no impact of
light diffusion or scattering patterns on layers I–III, whereas increasing the light
intensity to 25 μW mm−2 resulted in considerable light diffusion or scattering
patterns in all layers (Supplementary Figure 6b,c).

Data analysis. Images from ImageXpress were analyzed using CellProfiler 2.1.0.
Cells in DAPI, mCherry, or GFP channels were detected using the ‘Identify Pri-
mary, Secondary or Tertiary Objects’ module. The recombination percentage was
calculated by detecting GFP-positive (GFP+) cells among mCherry positive (mCh
+) cells using intensity threshold settings. Images from a Nikon A1 confocal
microscope were analyzed using Nikon imaging software (NIS-element AR 64-bit
version 4.10; Laboratory Imaging) or MetaMorph software (version 7.8.1.0, MDS
Analytical Technologies). In vivo-electroporated cells, each with fluorescence sig-
nals satisfying criteria of a mean intensity greater than 1000 arbitrary units (a.u.),
diameter equivalent of 10–20 μm and circularity of 0.5–1.0, were detected auto-
matically using the ‘object count’ tool in Nikon imaging software. Detected cells
were assumed to be marker positive (+) cells for each fluorescence channel. The
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number of GFP+ (or YFP+) cells was then divided by the number of cells
expressing both mCh and iRFP, and multiplied by 100 to obtain the percentage of
GFP+/mCh+iRFP+ cells. The percentage of GFP+ cells among mCh+DAPI+
cells in AAV-infected tissues was calculated from automatic cell counts obtained
using the ‘Multi Wavelength Cell Scoring’ tool in MetaMorph software. Mea-
surements of the mean intensity (native GFP or TdTomato fluorescence) of indi-
vidual cells in single confocal slices were taken from selected cell bodies or DAPI+
areas using ‘Annotations and Measurements’ or ‘object count’ tools in Nikon
imaging software. A P-value < 0.05 was considered statistically significant.

Object-exploration task. The object-exploration task, used to detect differences in
responses toward novel stimuli (novel objects) in a familiar arena, was performed
according to previously described procedures31,36 with minor modifications.
Briefly, each mouse was habituated to a 20 × 32 × 14.5 cm experimental cage
(identical to the home cage) containing bedding for 1 h. Locomotor activity during
habituation was measured using Ethovision 3.1 software (Noldus Information
Technology). After habituation, each mouse was removed from the experimental
cage and briefly placed in a temporary cage. Three non-identical novel objects were
introduced into the experimental cage, and the mouse was immediately reintro-
duced into this cage. Three different shapes of wood blocks—quarter circle (3.0 ×
3.0 × 3.0 cm, 15 g), cylinder (3.0 cm diameter × 6.0 cm depth, 34 g), and cube (3.0 ×
3.0 × 3.0 cm, 18 g)—were used as novel objects in this experiment. More than one
object was used to maximize exploration. We confirmed that the mice showed no
preference for any particular object. The object was placed at three different
positions in the cage (Fig. 3h), and behavior was recorded for 20 min. Exploratory
behavior was defined as satisfying any of the following criteria: (i) persistent
projection of the nose toward the object; (ii) grabbing the object with fore limbs
while keeping hind limbs fixed; (iii) touching the object using nose or whisker; or
(iv) approaching such that the nose of the mouse and object were within 0.5 cm.
Statistical significance was analyzed by one-way analysis of variance (ANOVA) or
two-way repeated measures ANOVA followed by a Bonferroni post hoc test.

Data availability
The data supporting the findings of this study are available within the paper and its
Supplementary Information files. Extra data are available from the corresponding
author upon reasonable request.
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