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Abstract

In January 2008 there was an intensive and extensive upwelling event in the southern Hum-

boldt Current System. This event produced an intrusion of water with low dissolved oxygen

into Coliumo Bay, which caused massive mortality and the beaching of pelagic and benthic

organisms, including zooplankton. During this event, which lasted 3 to 5 days, we studied

and evaluated the effect of the hypoxic water in the bay on the abundance of macrozoo-

plankton, nanoplankton and microphytoplankton, the concentration of several nutrients and

hydrographic conditions. At the beginning of the hypoxia event the water column had very

low dissolved oxygen concentrations (<0.5 mL O2 L-1), low temperatures and high salinity

which are characteristics of the oxygen minimum zone from the Humboldt Current System.

Redox, pH, nitrate, phosphate, silicate and chlorophyll-a values were the lowest, while

nitrate and the phaeopigment values were the highest. The N:P ratio was below 16, and the

abundance of nano- and microphytoplankton were at their lowest, the latter also with the

lowest proportion of live organisms. Macrozooplankton had the greatest abundance during

hypoxia, dominated mainly by crustacean, fish eggs and amphipods. The hypoxia event

generated a strong short-term alteration of all biotic and abiotic components of the pelagic

system in Coliumo Bay and the neighboring coastal zone. These negative effects associ-

ated with strong natural hypoxia events could have important consequences for the produc-

tivity and ecosystem functioning of the coastal zone of the Humboldt Current System if, as

suggested by several models, winds favorable to upwelling should increase due to climate

change. The effects of natural hypoxia in this coastal zone can be dramatic especially for

pelagic and benthic species not adapted to endure conditions of low dissolved oxygen.
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Introduction

Coastal upwelling in the Humboldt Current System (HCS) off central-south Chile begins with an

increase in southwest winds, favoring the arrival of deeper water rich in nutrients and low in dis-

solved oxygen (i.e. Equatorial Subsurface Water; ESSW, [1]). Although the fertilizing effect of

upwelling on the surface layer of the ocean at a seasonal time scale is well known (e.g. [2, 3]), the

initial stage of the process at a time scale of hours/days has not been well studied. The initial

arrival of low-oxygen water in shallow areas has a negative effect on their inhabitants, mainly on

species poorly adapted to anaerobic conditions [4–6]. The magnitude of this effect depends on

the intensity of the event and the residence time of the low-oxygen water in the coastal zone; it

may have benign consequences or generate strong local perturbations in the ecosystem [7–9]. Sev-

eral studies have proposed that values of dissolved oxygen less than 1.4 mL O2 L-1 produce nega-

tive effects on marine biota, including death and massive stranding (e.g. [5, 10–13]). The effect of

low oxygen conditions on plankton has mostly been studied in oceanic waters (e.g. [14]) and

from the middle to the outer continental shelf (e.g. [15]), whereas the effect on ecosystems from

the interior continental shelf has not been well studied, with the exception of the dead zones asso-

ciated with the discharge of large rivers (e.g. [16]), hypoxic events in estuaries (e.g. [17]) and hyp-

oxia related to anthropogenic causes [13]. Rabalais et al. [13] proposed a conceptual model that

relates the spatial and temporal scales of hypoxic events to the relative influence of human activity

and natural processes. In this model temporal events of days to weeks tend to be related to small-

scale spatial systems (small tributaries, rivers-estuaries and fjords), with causes strongly related to

human activity. In this study we describe the effect of a strong natural hypoxia event caused by

coastal upwelling that occurred at a temporal scale of days in a small, shallow bay of the HCS.

Off the south-central coast of Chile in the first days of January 2008, there was an intense and

extensive upwelling event that involved a spatial scale of hundreds of kilometers. This produced

an intrusion into the coastal area of ESSW from the oxygen minimum zone (OMZ), and pro-

duced massive mortality and beaching of fish, crustaceans and molluscs in Coliumo Bay [18–

21], as well as zooplankton (see Fig 1). The OMZ in the Humboldt Current System is character-

ized by an oxygen concentration of<20 μmol kg−1 (0.5 mL O2 L-1) (e.g. [22–25]). This raises the

question of what were the immediate effects of, and the dynamic response to the entrance of this

hypoxic water on the hydrography, nutrients and plankton of Coliumo Bay. Our hypothesis was

that natural hypoxia events in shallow coastal zones would produce a strong perturbation of the

neritic ecosystem. However, the final ecosystem response depends on the spatial scale affected by

hypoxia and the duration of the event. Given the intense water exchange of Coliumo Bay with

the open ocean, the negative effects may have been absorbed rapidly, which would have been

observed as a short-term succession of species and environmental conditions, with recovery in a

few days. This can be evaluated by following the hypoxic event over a short time scale (i.e. days),

using information about the hydrographic characteristics of the water column and plankton

abundance and composition in Coliumo Bay. Thus, the objectives of this study were to quantify

the dynamics of the neritic ecosystem during and after this natural strong hypoxia event using

information on (i) hydrographic variables (ii) nutrients concentration, (iii) abundances of the

main taxa of nanoplankton (iv) the abundances of the main taxa of microphytoplankton, and (v)

abundances of the main groups of macrozooplankton.

Material and methods

Ethics statement

Coliumo bay is a free access marine area and no specific permits were required to conduct

sampling activities. The oceanographic sampling was authorized by the Hydrographic and
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Fig 1. Photographs of the intertidal zone facing site E4 in Coliumo Bay. (a, b) The grey patches are

thousands of beached and dead individuals of Miscidaceae (Neomysis sp.). Also note the whitish color of the

bottle to measure dissolved oxygen mixed with the chemicals for the Winkler method analysis (c).

https://doi.org/10.1371/journal.pone.0179023.g001
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Oceanographic Service of the Chilean Navy (SHOA; ORDINARIO N˚13270/24/238/Vrs). The

field studies did not involve endangered or protected species.

Sampling design and laboratory analysis

Herein, we use the term hypoxia as those environmental conditions where the dissolved oxy-

gen level in the water column is less than 1.4 mL O2 L-1, which is a threshold known to produce

negative effects on marine biota (e.g. [5, 10–13]). Coliumo bay is a shallow embayment no

more than 25 m deep at its mouth, which is located to the north (Fig 2) and it covers an area of

approximately 6 km2 (36˚32.767˚S; 72˚57.113˚W). During the hypoxia event with massive

mortality of organisms [15], we sampled the bay on five separate occasions between January

3rd, and 18th, 2008, (Jan. 3rd, 4th, 7th, 9th, and 18th). At each of the sampling sites within (sites

E2, E3, E6) and outside the bay (sites E4 and E7), we measured nutrients (nitrate, nitrite, phos-

phate and silicic acid), chlorophyll-a, phaeopigments, nanoplankton, microphytoplankton,

macrozooplankton, and hydrographic variables of the water column (temperature, salinity,

dissolved oxygen) (Figs 1 and 2).

To characterize the hydrography of Coliumo Bay, vertical profiles for salinity, temperature

(˚C) and dissolved oxygen (mL O2 L-1) were taken at the sampling sites, measured with a

CTD-O (SAIV A/S, model SD204). We also recorded pH and redox (mV) with a multi-param-

eter sensor YSI-556MPS at the surface and the bottom of the water column. The dissolved oxy-

gen concentration was calibrated with a semi-automatic version of the Winkler method [26] as

modified by [27]. The calibration was based on a photometric end-point detector, a Dosimat

665 (Metrohom) and a chart recorder.

We also obtained a time series of continuous records of the subsurface sea temperature,

tide height, winds and satellite images of sea surface temperature (SST). Subsurface tempera-

ture was measured with thermistors (HOBO Data Loggers UTBI-001 TidbiTv2) installed in

Coliumo Bay at a depth of 3m (Fig 2), set to record data every 10 minutes. Data on tide heights

(m) were obtained from the Hydrographic and Oceanographic Service of the Chilean Navy

(SHOA: www.shoa.cl). The wind data time series was collected at Faro Hualpén (36˚45’25’’ S,

73˚11’51’’ W) field station (Fig 2). Wind magnitude and direction were recorded hourly. Both

wind and subsurface sea temperature data were represented using smoothed average values.

Satellite images of SST (˚C) were obtained from the ANTARES Observation Network (http://

antares.ws).

Seawater samples for nutrient analysis were collected at the surface and the sea bottom

using a Niskin bottle; 120 ml of seawater from each sample was filtered through a 0.7 μm pore

Millipore glass fiber filter, 25 mm in diameter, to eliminate particulate material. The remaining

water sample was frozen until laboratory analysis. Nitrate (μM) was determined by the spec-

trophotometric method using a cadmium sponge [28]; nitrite (μM) using spectrophotometry

[29], and phosphate (μM) and silicic acid (μM) were determined by the method described in

[30]. In addition, at each sampling site 500 mL of surface and bottom seawater were filtered

using GF/F filters (0.7 μm), then frozen (-20˚C) and kept in the dark for later chlorophyll a
and phaeopigment determination in the laboratory (mg/m3). Determinations were made

using a Turner Designs fluorimeter following the methods described in [31].

Subsurface nano- and microphytoplankton samples were collected using 5-L Niskin bottles

and immediately concentrated and preserved in a glass bottle (250 mL) with an acid solution

of iodine (2% final concentration). The nano- and microphytoplankton samples were analyzed

with an inverted microscope (Nikon Eclipse TE2000S), following the Ütermohl method [32]

with 1000x resolution. Counts were made until at least 200 cells of the dominant taxa per sam-

ple were recorded in the nanoplankton and until at least 100 cells of the dominant taxa per
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sample in the microphytoplankton composition. Cell counts were classified into live and dead;

live cells were defined as those with intact cytoplasm, while dead cells included frustules, thecae,

coccoliths and empty shells. Cells were grouped into diatoms, dinoflagellates, ciliates, cocolitho-

phorids and cyanobacteria. The following guides were used for the taxonomic identification

[33–42]. Nano- and microphytoplankton abundances were expressed as Cel mL-1 (See also S1

Database).

In addition, samples from the nanoplankton fraction were analyzed by epifluorescence to

distinguish trophic function (autotrophic or heterotrophic). Water samples were transferred

to 20 and 50-mL tubes and immediately preserved with glutaraldehyde (2% final concentra-

tion) and stored under cold (~4˚C) and dark conditions. After a few days, these samples were

Fig 2. Coliumo Bay study area and sampling sites. E: sites sampled during the hypoxia event. C: sites

sampled seasonally from 2007 to 2009. The black triangle in San Vicente Bay indicates the location of the

wind measurement station. E6: Site where sub-tidal temperature was recorded with data loggers.

https://doi.org/10.1371/journal.pone.0179023.g002
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stained with a mixture of Proflavine (3–6 diamino-acridine hemi-sulfate) and DAPI (4, 6-dia-

midino-2-phenylindole) at a final concentration of 0.005% [43], and filtered onto polycarbon-

ate black filters (0.8 μm pore). These filters were mounted on glass slides and stored at -20˚C

in the dark until subsequent analysis. Nanoplankton was counted at 1600x magnification with

an epifluorescence microscope (Zeiss Axioscope Plus 2) equipped with multiple light filters

(UV, blue and green). The counting included at least 100 cells of the most dominant taxa from

each sample. Cells were grouped as autotrophic and heterotrophic. Nanoplankton abundances

are reported as Cel mL-1.

Macrozooplankton was collected by oblique tows, using a conical net with a mouth 50 cm in

diameter and a mesh size of 500 μm equipped with a calibrated Hydrobios flowmeter. Zooplank-

ton counts were standardized to N˚ Ind. 100 m-3 (See also S1 Database). Tows were conducted

between the surface and 5 to 15 m, depending on the depth at each sampling site. Samples were

fixed in 96% ethanol, separated, counted and identified in the laboratory using an Olympus SZ-

61 stereoscopic microscope. In addition, for comparative purposes, on a longer time scale, we

used the data from seasonal/trimestral samples of macrozooplankton that were taken in Coliumo

Bay between January 2007 and January 2009 (9 sampling periods in the sites C1, C2 and C3; Jan-

uary, May, August, and November 2007, January, April, July, and October 2008, and January

2009; See Fig 2). These samplings were conducted with a bongo net with a mouth of 60 cm in

diameter and a 500 μm mesh size equipped with a calibrated Hydrobios flowmeter. The tows

were oblique from the surface to 5–15 m depending on the depth at each sampling site. Zoo-

plankton was preserved, analyzed, and standardized (N˚ ind 100 m-3) similarly to the samples

collected during the hypoxia period (See also S1 Database).

Statistical analyses

Multidimensional scaling analysis for the microphytoplankton (live and dead cells), macrozoo-

plankton and the hydrographic-environmental conditions of the water column were done as

follows: (i) microphytoplankton and macrozooplankton assemblages: non-metric multidimen-

sional scaling analysis (nMDS) using the Bray-Curtis dissimilarity resemblance measure with

non-transformed data, and Jaccard similarity coefficient with the data converted to presence-

absence [44, 45], (ii) hydrographic-environmental variables: multidimensional scaling analysis

(MDS) using Euclidean distances with normalized data. PERMANOVA was used to evaluate

statistical differences according to the factors “sampling zone” and “period” using resemblance

matrices similar to those for the nMDs and MDS analyses. “Sampling zones” correspond to

sampling sites inside or outside Coliumo Bay. Because there was no microphytoplankton and

hydrographic/environmental sampling before the hypoxia event, the factor “period” covers only

data obtained during or after the hypoxia event. In the case of macrozooplankton, the factor

“period” included before, during and after the hypoxia event. Accordingly, we used data obtained

during the hypoxia event and from the seasonal/trimestral samples collected over three years. In

this macrozooplankton analysis (nMDS and PERMANOVA) we used Jaccard similarity coeffi-

cient with the aim to minimize the potential effect of capturing higher abundances of organisms

with bongo plankton net with a larger diameter. All PERMANOVA analyses used the unrestricted

model with 9999 permutations. Multivariate over-dispersion of the data was evaluated with the

PERMDISP routine using resemblance matrices similar to those of PERMANOVA. Posteriori

pair-wise tests were conducted when statistical differences were found in PERMANOVA. Analy-

ses were made with the software PRIMER v6 and PERMANOVA+ for PRIMER [46–48]. Com-

plementary analysis of partial least squares (PLS) was performed for the days of the hypoxia event.

We evaluated which hydrographic variables obtained from the water column explained the

temporal variability of the live and dead microphytoplankton and total macrozooplankton.

Effects of a strong natural hypoxia event on plankton
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The analyses were made with MINITAB v15. Finally, we evaluated the correlation between

the abundances of main groups of macrozooplankton and dissolved oxygen concentration

using the Spearman rank correlation with all available data (N = 40 samples).

Results

Upwelling event

The coastal area influenced by waters from the OMZ (i.e. ESSW) was about 50,000 km2,

including ca. 500 linear km between approximately 34˚00’ and 39˚00’ S and up to 74˚00’ W

(S1 Fig). The upwelling event began on December 31st, 2007, when southwest winds intensi-

fied, transferring their momentum and friction to the superficial layer of the water column.

They continued intermittently until January 25th, 2008, (S2 Fig). The transfer of momentum

from the sea wind was detected in Coliumo Bay on January 1st, 2008, one day after wind inten-

sity increased (S2 Fig). The temperature recorded in the sub-tidal zone of Coliumo Bay (3 m

depth) showed a strong decline of about 4˚C, coincident with the neap tide, that is, with the

lowest monthly amplitude. The temperature remained below 14˚C until about January 23rd,

2008, increasing in the following days until it reached values close to 16˚C, which were those

recorded before the event. The temperature increase was a consequence of the decreased

intensity of southwest winds (S2 Fig).

Hydrographic variables

On January 3rd, and 4th, 2008, (fourth and fifth days of the upwelling event), which were the

days of acute hypoxia, dissolved oxygen concentration in the entire water column of the bay

were less than 0.5 mL O2 L-1, while outside the bay they were 1–2 mL O2 L-1. The lowest tem-

peratures (10.5 to 11.5˚C) were found up to 2 m deep inside and outside of the bay. Salinity

was over 34.2 at the surface, both inside and outside the bay (S3 Fig). Between January 7th, and

9th, colder and saltier waters with less dissolved oxygen deepened both inside and outside

Coliumo Bay. Most oxygen values were above 2 mL O2 L-1, attributable to the replacement of

water in the bay and the ventilation due to mixing (S3 Fig). Beginning on January 16th, there

was a second upwelling event; dissolved oxygen decreased again, but with values mostly above

1 mL O2 L-1, indicating that the hypoxic event was less intense than the previous one (S3 Fig).

During the hypoxia event (January 3rd, and 4th) the lowest pH and redox values were observed.

pH fluctuated between 7.47 and 7.56 and the redox was between -31 to 40 (bottom) and 55 to

90 (surface). Under non-upwelling conditions (January 7th, and 9th) pH was between 7.70 and

8.00, while redox was between 40 and 250 (bottom) and 62 to 277 (surface).

Nutrients and biological variables dynamics

The lowest concentration of nitrate, phosphate, and silicic acid were recorded during the hyp-

oxia event. Mean nitrite concentrations were the highest inside and outside of the bay during

the hypoxia event. During the event the N:P ratio inside and outside of the bay was close to

15, increasing in the following days to nearly 16. The mean chlorophyll a concentration showed a

tendency to increase from the hypoxia event to January 9th. Phaeopigments showed the opposite

tendency with higher concentrations during the hypoxia event (Fig 3, See also S4 Fig). Autotro-

phic nanoflagellates (ANF) increased both in and outside the bay over time from the hypoxia,

whereas heterotrophic nanoflagellates (HNF) and nanodinoflagellates showed the lowest abun-

dance during the hypoxia event in and outside the bay (Fig 3, See also S5 Fig). The abundance

of total diatoms in and outside the bay increased with the hypoxia event (except January 3rd,

within the bay). The total abundance of dinoflagellates (live and dead) in and outside the bay also
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increased beginning with the hypoxia event (Figs 3 and 4). No live ciliates or cocolithophorids

were found in the entire study period. In the case of cyanobacteria, live cells were only found on

January 7th, although they represented nearly 40% of the total of microphytoplankton. The

microphytoplankton taxa with the highest percentage of total live cells were Chaetoceros sociales,
Gyrodinium sp., Protoperidinium sp. and Oscillatoria submembranosa (S1 Table). During the hyp-

oxia, the total abundance of macrozooplankton was higher in than outside the bay (Figs 3 and

5A). The highest abundances in the bay were recorded at the beginning and the end of the hyp-

oxia event, while outside the bay mean values increased with time (Fig 5A). The macrozooplank-

ton assemblage in the bay during the hypoxia event was dominated by crustacean and amphipod

eggs, followed by fish eggs, zoea larvae, copepods and gelatinous organisms, while outside the bay

the assemblage was dominated by fish eggs and amphipods. At the end of the hypoxia event

amphipods decreased, while zoea larvae, copepods and gelatinous organisms increased (Fig 5B

and 5C). The macrozooplankton abundances obtained from the sampling carried out seasonally

in Coliumo Bay showed that total abundance in January 2008 was lower than that of the previous

and subsequent seasonal sampling periods, and also lower than in January 2007 and 2009 (Fig

6A). Copepods were the dominant group during the three sampling years (Fig 6B). Only during

January 2008 the proportion of copepods decreased reaching similar relative abundance to that

found within the bay during the hypoxia event (Figs 5B and 6B).

Integrated temporal patterns

The PLS analysis that related the density of nanoplankton, microphytoplankton and macrozoo-

plankton as a function of the set of environmental variables of the water column, produced a

significant model (p = 0.036), whose first two axes together explained 70% of the total variance.

The first PLS component was related mainly to the nanoplankton and microphytoplankton,

while the second was mainly related to the macrozooplankton (S6 Fig). The environmental vari-

ables most related negatively to the first PLS component were surface dissolved oxygen pH at

the bottom and surface, nitrate and phosphate concentration, while the largest positive values

were those of nitrite and phaeopigments (S6 Fig, S2 Table). The environmental variables most

related to the second PLS component (macrozooplankton) were phosphate (negative) and silicic

acid, bottom temperature, chlorophyll a and dissolved oxygen at the bottom (positive) (S6 Fig,

S2 Table). There was a significant positive correlation (rS = 0.608; p<0.001) between total

macrozooplankton abundance and dissolved oxygen. The majority of the taxa and/or groups of

macrozooplankton also showed this pattern. Only crustacean eggs, amphipods and harpacticoid

copepod groups had significant negative correlations (S3 Table).

The PERMDISP analyses, for the factors period and sampling zone, to evaluate multivariate

over-dispersion of the data yielded values of p>0.01 for all the environmental variables and

total and live microphytoplankton (S4 Table). Only the value p = 0.0004 for macrozooplankton

indicates a degree of period factor over-dispersion. However, only one pair-wise comparison

showed values p<0.01 (S4 Table), indicating that there is not an overall over-dispersion of the

data and that the location results given by the PERMANOVA can be conducted. The PERMA-

NOVA analysis, for the factor period, of the set of environmental variables of the water column

showed significant differences (Table 1). The MDS analysis showed that the environmental

variables have temporal dynamics and that surface dissolved oxygen (indicator of hypoxia)

shows directionality beginning on January 3rd, i.e. with the onset of the hypoxia event (Fig 3).

A similar temporal tendency was shown by the nMDS analyses performed with the mean

abundances of total and live microphytoplankton cells (Fig 7). The PERMANOVA analyses,

for the period factor, performed for total and live microphytoplankton also showed significant

differences, both for species relative abundances and species presence-absence (Tables 2 and
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3). The macrozooplankton nMDS analysis based on the Jaccard coefficient for presence-

absence of species, integrating both seasonal sampling and the sampling conducted during the

hypoxia event, shows that during the hypoxia (January 3rd, and 4th, 2008,) the assemblage was

Fig 3. Temporal dynamics of physical-chemical and biological variables measured in Coliumo Bay during

the natural hypoxia event and succeeding days. Larger diameters represent higher values for the variables

quantified using circumferences. The bottom panel shows multidimensional scaling (MDS) analysis of environmental

variables within and outside Coliumo Bay (red and blue circles, respectively) from January 3rd, to 18th, 2008. This

analysis used Euclidian distances and normalized data (Dissolved oxygen, pH, redox, temperature, salinity, nitrate,

nitrite, phosphate, silicic acid, chlorophyll a and phaeopigments). Circles represent the estimated centroid for each

sampling day and their diameters show a proportional value of dissolved oxygen (mL O2 L-1) at the surface of the

water column. Arrows show temporal multivariate environmental trends. Stress = 0.1.

https://doi.org/10.1371/journal.pone.0179023.g003
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less similar than the other sampling periods (Fig 8). The PERMANOVA analyses for macro-

zooplankton showed significant differences among periods (Table 4). The pair-wise tests show

differences among the three periods (S5 Table). Finally, the samples of January 7th, 9th, and

18th, 2008, were more similar to the inter-annual seasonal sampling of January 2007, 2008 and

2009 (Fig 8).

Discussion

Upwelling processes and functionality of the coastal pelagic ecosystem

This study details the changes that occurred in the pelagic coastal ecosystem of Coliumo Bay as

a resultof the intrusion of hypoxic water (ESSW) from the OMZ during an intensive upwelling

event in the summer of 2008. The effects of this natural perturbation, observed in a time win-

dow of days, suggest alterations in physical, chemical and biological components of the ecosys-

tem: hydrography, nutrient concentrations and nutrient ratios, photosynthetic pigments and

abundances of nanoplankton, microphytoplankton and macrozooplankton (Fig 3). Three

dynamic states of the ecosystem can be identified during this process. First, the beginning of

the upwelling event on January 3rd and 4th showed a hypoxic water column, low temperatures

and high salinities. Redox, pH, nitrate, phosphate, silicate and chlorophyll-a levels were at

their lowest of the entire study period, while nitrite and phaeopigments were at their highest.

At this stage, the Redfield ratio was N:P< 16, the abundances of nanoplankton and microphy-

toplankton were the lowest and the latter showed the smallest proportion of live organisms.

Macrozooplankton abundance was at its highest, dominated mainly by crustacean, fish eggs

and amphipods. The second and third stages (January 7th,to 9th, and, 18th), which correspond

to the relaxation period and the least intense upwelling period, showed a continuum process

with tendencies that were the reverse of the initial state for the majority of the abiotic and

biotic variables. Dissolved oxygen indicated a well oxygenated water column, with no major

changes in temperature or salinity. Redox, pH, nitrate, phosphate, silicate and chlorophyll-a
concentrations increased, while those of nitrite and phaeopigments decreased. The Redfield

Fig 4. Microphytoplankton abundances. An average of (±SD) total abundance, (dead + living cells; in cells

mL-1) of microphytoplankton in Coliumo Bay from January 3rd, to 18th, 2008. (a) Diatoms (b) dinoflagellates. (c

and d) correspond to relative abundance (%) of living diatoms and dinoflagellates, respectively. The grey bars

correspond to within Coliumo bay (E2, E3, E6), and the black bars correspond to outside the bay (E7 and E4).

https://doi.org/10.1371/journal.pone.0179023.g004
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Fig 5. Macrozooplankton abundance during hypoxia. (a) Total macrozooplankton average (±SD)

abundance (ind 100 m-3) in Coliumo Bay, from January 3rd, to 18th, 2008. The sampling was performed using

a conical net (Mouth diameter: 50 cm). The grey bars correspond to inside Coliumo Bay (E2, E3, E6), and the

black bars correspond to outside the bay (E7 and E4). (b) corresponds to relative abundance (%) by main
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ratio stabilized near its theoretical value of 16 [49], and nanoplankton and microphytoplank-

ton increased in abundance, the latter with a greater proportion of live organisms. The total

abundance of macrozooplankton tended to decrease from (January 7th to 9th), and then

increased towards the end of the sampling period, with a change in taxonomic composition

that was dominated by fish eggs and gelatinous organisms.

It is known that changes in nutrient concentrations and ratios strongly influence the compo-

sition and abundance of phytoplankton communities [50]. Deviations from the Redfield ratio

implies that the nutrient with less availability is likely to become limiting for phytoplankton

groups in the bay (E2, E3, E6) for each sampling day and, (c) relative abundance by main groups outside the

bay (E7 and E4).

https://doi.org/10.1371/journal.pone.0179023.g005

Fig 6. Inter-annual abundance of macrozooplankton. Total mean macrozooplankton (±SD) abundance

(ind 100 m-3) recorded during the period January 2007—January 2009 in Coliumo Bay (sites C1, C2 and C3).

Zooplankton sampling was conducted using a bongo net (mouth diameter: 60 cm). (a) Total macrozooplankton

abundance. The grey bars correspond to the January sampling period for each year, and the black bars

correspond to the rest of the year. (b) Relative abundance (%) by main groups for the total sampling period.

https://doi.org/10.1371/journal.pone.0179023.g006
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growth [16, 51]. During the initial stage of the hypoxia event we found a decrease in the Redfield

ratio (N:P< 16), which normalized on January 7th, and 8th (relaxation period). This would be

explained by a decrease in and/or alteration of the concentrations of nitrate and phosphate at

the beginning of the hypoxia event as a product of a water column with reduced conditions (i.e.

negative redox potential between -3 and -31 on January 3rd), when the highest values of nitrite

were also recorded (Fig 3). When more oxidant conditions returned to the water column in the

following days, nitrate and phosphate concentrations increased. Higher concentrations of

nitrite than nitrate have been described for coastal ecosystems of the HCS influenced by ESSW

poor in dissolved oxygen [52, 53], as was observed during this acute hypoxia event. As well,

throughout the period sampled the Si:N ratio was greater than 1 and without major temporal

changes. This would theoretically produce a dominance of diatoms in the microphytoplankton

[54, 55], which we observed mainly within the bay.

Variations in the stoichiometric proportions of nutrients may also be functionally associ-

ated with changes in the abundances of different phytoplankton groups. For example, after

the days of hypoxia we observed growing abundance of autotrophic nanoflagellates and nano-

dinoflagellates, an indication that nanophytoplankton, which belong to the smallest size class,

recovered abundance rapidly, only days after the hypoxia event. This pattern was also observed

earlier for heterotrophic nanoflagellates, perhaps associated with greater availability of dead

microphytoplankton cells. Not only was the lower abundance of larger phytoplankton during

the days of hypoxia notable, but also the high proportion of dead and/or inactive cells of the

microphytoplankton, which in many cases was 100%. The high mortality is concordant with

the greater concentration of phaeopigments recorded for the days of acute hypoxia (Fig 3).

The relation between cell abundance and phaeopigment concentration appears to be very

close during the entire study period. Thus, after the period of hypoxia the proportion of dead

microphytoplankton cells decreased, their abundance increased and the concentration of

phaeopigments decreased, all related to a re-oxygenated water column (Fig 3). Although this

relation may be explained by the mortality of microphytoplankton in the bay due to the hyp-

oxia, part of it may have been due to a mechanism of transportation of dead cells to the coastal

zone by ESSW with low dissolved oxygen from the deeper zone of the continental shelf. In this

scenario of possible combined effects, since the microphytoplankton composition in this study

was not different from those reported previously for Coliumo Bay by [56], we hypothesize that

the intrusion of ESSW, which has a low oxygen content, was the most likely cause for the mor-

tality of the resident microphytoplankton, rather than importation of dead cells from the con-

tinental shelf by advective transport. For instance, Stauffer et al [57] stated that during an

extreme hypoxia that took place in California significant changes in phytoplankton commu-

nity structure were observed together with dramatically reduced photosynthetic yield of the

remaining species, indicating severe physiological stress. In addition, the strong temporal

Table 1. PERMANOVA output for the environmental variables of the water column.

Source Df SS MS Pseudo-F P(perm) Unique perms

Period 1 60.623 60.623 5.7954 0.0009 9945

Zone 1 11.554 11.554 1.1046 0.3287 9936

P x Z 1 6.3601 6.3601 0.60801 0.6774 9931

Res 19 198.75 10.461

Total 22 308

The “period” factor represents the sampling day (January 3rd, 4th, during hypoxia, 7th, 9th, and 18th, after hypoxia). The “zone” factor refers to sampling sites

located inside or outside Coliumo Bay. Resemblance analysis was conducted with Euclidian distances and normalized data. In bold, p values < 0.05.

https://doi.org/10.1371/journal.pone.0179023.t001
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Fig 7. Microphytoplankton assemblage in Coliumo Bay. Non-metric multidimensional scaling (nMDS)

analyses showing centroid trends of the microphytoplankton assemblage in Coliumo Bay from January 3rd, to
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sequence of dissimilarity observed in the nMDS for the phytoplankton inside and outside the

bay (Fig 7) suggests that the temporal dynamics of taxa exchange (observed both for relative

abundances and presence-absence) was associated with rapid population growth of the surviv-

ing species. It should be noted that the temporal sequences observed in the different nMDS

estimated for the microphytoplankton were also observed for the set of all the hydrographic

variables and nutrients in the water column during the hypoxia event (Fig 3), suggesting a

close functional relation between environmental conditions and microphytoplankton cells.

To analyze the consequences on macrozooplankton, the temporal dynamics of two vari-

ables, abundance and composition, must be considered. We observed an apparent paradox in

abundance in this hypoxia event that is the greatest abundance of macrozooplankton was

recorded on January 3rd, and 4th, days of acute hypoxia. However, the abundances were repre-

sented mainly by crustacean eggs and amphipods. The former are probably associated with the

mortality of adult organisms (e.g. the crab Cancer coronatus), which occurred in the bay during

the hypoxia [19], while the latter was due to vertical migration and/or free-floating death indi-

viduals, increasing their abundance in the shallowest layer of the water column. Neither domi-

nant taxa in the water column during the hypoxia are characteristic representatives of the

plankton community in Coliumo Bay [58]. Although in lower abundance, fish eggs were also

dominant outside the bay during the days of hypoxia. These may also be associated with the

massive mortality of adult fish during the hypoxia event within the bay [18, 19]. In the days

after the hypoxia, the macrozooplankton ensemble within the bay was dominated by fish eggs

and gelatinous organisms. Towards the end of the study period, after the relaxation and new

upwelling event, total abundances were greater, suggesting a numerical recovery of the compo-

nents of the community given by the presence of zoea states of different crustacean taxa. In the

18th, 2008. (a) Total abundances with Bray-Curtis dissimilarity resemblance, (b) total abundances with

Jaccard similarity coefficient, (c) total abundances with Bray-Curtis dissimilarity resemblance in the bay, (d)

total abundances with Jaccard similarity coefficient in the bay, (e) total living cells abundances with Bray-

Curtis dissimilarity resemblance, (f) total living cells abundances with Jaccard similarity coefficient, (g) total

living cells abundances with Bray-Curtis dissimilarity resemblance in bay, (h) total living cells abundances with

Jaccard similarity coefficient in the bay. Arrows show temporal microphytoplankton assemblage trends. In all

cases stress < 0.01.

https://doi.org/10.1371/journal.pone.0179023.g007

Table 2. PERMANOVA output for total microphytoplankton cells.

(a) Source df SS MS Pseudo-F P(perm) Unique perms

Period 1 6259.4 6259.4 1.9229 0.0111 9900

Zone 1 3490.6 3490.6 1.0723 0.3654 9910

P x Z 1 3512.8 3512.8 1.0791 0.3581 9914

Res 17 55338 3255.2

Total 20 69342

(b) Source df SS MS Pseudo-F P(perm) Unique perms

Period 1 5813.1 5813.1 2.1723 0.0024 9902

Zone 1 2430.7 2430.7 0.90833 0.5859 9909

P x Z 1 2614.2 2614.2 0.97692 0.4920 9896

Res 17 45492 2676

Total 20 57244

(a) Bray Curtis non-transformed data: compositional density of total cells

(b) Jaccard: species presence-absence of total cells. The “period” factor corresponds to sampling days (January 3rd and 4th, during hypoxia, 7th, 9th, and

18th, after hypoxia). The factor “zone” refers to sampling sites located inside or outside Coliumo Bay. In bold p values < 0.05.

https://doi.org/10.1371/journal.pone.0179023.t002
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Table 3. PERMANOVA output for live microphytoplankton cells.

(a) Source df SS MS Pseudo-F P(perm) Unique perms

Period 1 7591.7 7591.7 1.964 0.0129 9900

Zone 1 3952.8 3952.8 1.0226 0.4201 9920

P x Z 1 6584.7 6584.7 1.7035 0.0424 9925

Res 17 65712 3865.4

Total 20 84965

(b) Source df SS MS Pseudo-F P(perm) Unique perms

Period 1 6429.2 6429.2 1.747 0.0339 9903

Zone 1 2921.5 2921.5 0.79385 0.6973 9907

P x Z 1 6365.2 6365.2 1.7296 0.0358 9917

Res 17 62563 3680.2

Total 20 78254

(a) Bray Curtis non-transformed data: compositional density

(b) Jaccard: species presence-absence. The factor “period” corresponds to sampling day (January 3rd, and 4th, during hypoxia, 7th, 9th, and 18th, after

hypoxia). The factor “zone” refers to sampling sites located inside or outside Coliumo Bay. In bold, p values < 0.05.

https://doi.org/10.1371/journal.pone.0179023.t003

Fig 8. Macrozooplankton assemblage in Coliumo Bay. Non-metric multidimensional scaling (nMDS)

analysis based on the presence-absence Jaccard similarity coefficient, showing temporal differences of

macrozooplankton assemblage in Coliumo Bay, from the January 2007 to January 2009 seasonal sampling

period (blue circles: captures with bongo net), and sampling days during the hypoxic event of January 2008

(red circles; January 3rd, to 18th, 2008, captures with conical net). Stress = 0.09.

https://doi.org/10.1371/journal.pone.0179023.g008

Effects of a strong natural hypoxia event on plankton

PLOS ONE | https://doi.org/10.1371/journal.pone.0179023 July 17, 2017 16 / 25

https://doi.org/10.1371/journal.pone.0179023.t003
https://doi.org/10.1371/journal.pone.0179023.g008
https://doi.org/10.1371/journal.pone.0179023


hypoxia month of January 2008 we observed a notable decrease in macrozooplankton total

abundance and in all dominant zooplankton taxa (e.g. copepods) compared to the trimestral

samples of January 2007 (before) and 2009 (after) the hypoxia event. As in the case of micro-

phytoplankton, the massive mortality of macrozooplankton due to the hypoxia may also be

due to the advective transport of organisms to and from the bay or to their evasion of water

low in dissolved oxygen (e.g. [59, 60]). The change in the composition of the ensemble present

in January 2008 and the positive correlation of total macrozooplankton and the majority of the

groups with the concentration of dissolved oxygen (Figs 5 and 6; see also S3 Table) suggests

that the most plausible cause of low abundances and species replacement was the abrupt

decrease in the concentration of dissolved oxygen and changes in the hydrographic-environ-

mental conditions of the water column, resulting in lower abundances for the entire hypoxia

event, as well as effects on total abundance at an inter-annual time scale.

Response of organisms to hypoxia

The organisms that inhabit the marine coastal zone of the HCS are periodically exposed to low

concentrations of dissolved oxygen produced by upwelling events. Thus, their ecological and

evolutionary success has been the result of developing adaptive mechanisms. For example,

many species that inhabit upwelling areas have developed metabolic adaptations to cope with

hypoxia (e.g. [4, 61]) that have allowed them to survive hypoxic events that can last for days.

Some components of the macrozooplankton community that are less adapted to low oxygen

concentrations have developed biological mechanisms like evasive behavior, limiting them to

live in the surface ocean layer [61–63] or maintain a spatial distribution near the coast where

dissolved oxygen concentrations are greater [64]. Nevertheless, many species do not have

adaptive and/or behavioral mechanisms to cope with hypoxic conditions. Consequently, when

sudden natural hypoxia events occur due to coastal upwelling, mass mortality and large-scale

beaching of organisms can occur [5, 18]. Mortality is taxonomic-dependent, with fish and

crustaceans being the most affected groups [12]. During this natural hypoxia event, as well as

observing the beaching of fish and juvenile and adult crustaceans in the intertidal zone of the

bay and the surrounding area [18, 19], we recorded the beaching of macrozooplankton organ-

isms, especially mysidaceans of the genus Neomysis sp., which reached densities of ca. 10,000

ind. � 100 cm-2 (See Fig 1). It is possible that these organisms, due to the sudden and extensive

event within the bay could not avoid hypoxic water, even though day-night vertical migration

behavior has been described [65]. Vertical migrations and high abundances of Neomysis sp. in

the water column, mainly at night, have been described in Coliumo Bay [66, 67]. Their abun-

dance reaches up to ca. 1,500 ind. � 10 m-3 in the superficial stratum of the bay at night, and

one or two orders lower in the surface and the bottom during the day [66, 67]. The absence of

these organisms in the water column during the hypoxia event (only 0.68 ind. � 10 m-3 on Jan-

uary 3rd, in the E6 site suggests that the acute effect of the hypoxia was dramatic for the popula-

tion. However, this acute effect apparently has a threshold (i.e. < 1 mL O2 L-1) rather than a

Table 4. PERMANOVA output for macrozooplankton in Coliumo Bay from January 2007 to January 2009, including January 3rd,-18th, 2008.

Source df SS MS Pseudo-F P(perm) Unique perms

Period 2 35949 17974 9.7641 0.0001 9902

Res 74 1.3622E5 1840.9

Total 76 1.7217E5

The factor “period” corresponds to sampling days (before, during, and after hypoxia). The resemblance analysis was obtained for species presence-

absence data with Jaccard coefficient. In bold p values < 0.05.

https://doi.org/10.1371/journal.pone.0179023.t004
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gradual response. This is based on the non-significant correlation between the concentration

of dissolved oxygen and the abundance of Neomysis sp. estimated for all samples from January

2007 and January 2009 (see S3 Table); all of them under well oxygenated environmental

conditions.

The effects of acute hypoxia were also detectable at an inter-annual scale. For example, the

copepod Acartia tonsa, which is the most abundant and dominant of the macrozooplankton

ensemble in the bay, was completely absent during the hypoxia event (January 3rd, and 4th),

with a slight recovery in the following days. It has been described that although this copepod

is capable of surviving dissolved oxygen concentrations as low as 1 mL O2 L-1, below this

threshold it shows high mortality [17, 68–70]. This concurs with the strong positive correlation

estimated between the density of A. tonsa and dissolved oxygen between January 2007 and Jan-

uary 2009 (r = 0.747, p< 0.001. This pattern was also reflected in other components of the

ensemble, mainly copepods, with low abundance or total absence at dissolved oxygen concen-

trations below 1 mL O2 L-1 in the January 2007-January 2009 period. Other relationships

between copepods abundance and dissolved oxygen concentrations have been described for

the northern zone of the HCS with contrasting results [62]. Negative relationships have been

found between community parameters of the copepod assemblage and the depth of the OMZ

for the study zone, however, relations have not been reported with respect to the concentration

of dissolved oxygen [71, 72]. Stalder and Marcus [70] experimented with the copepods A.

tonsa, Labidocera festiva and Centropages hamatus, obtained from a geographic area where

hypoxia events do not usually occur. The organisms were placed in tanks where hypoxia events

in the bottom layer were simulated; however, none of the three species showed evasive behav-

ior, suggesting that in coastal zones where hypoxia develops suddenly, the decrease in copepod

abundance is mainly due to mortality rather than evasive behavior and/or advective transport.

Decker et al. [73] found geographic differences in the hypoxia evasion behavior of two popula-

tions of A. tonsa, one in the Chesapeake Bay estuary (USA) and the other in Florida (USA).

The former, which has historically been exposed to gradients of dissolved oxygen in the water

column, evaded areas with low concentration, while the latter, which is not usually exposed to

low dissolved oxygen, did not show evasive behavior from lethal levels of dissolved oxygen and

was thus more vulnerable to hypoxia events. Since the coast of south-central Chile has had

upwelling and associated hypoxia events since at least the last post-glacial period [74], it is

probable that copepod species and other taxa of macrozooplankton resident in the HCS have

developed evolutionary strategies of evasive behavior that have allowed them to minimize their

mortality due to low dissolved oxygen concentrations in spring and summer. Further, not only

acute lethal effects related to hypoxia are important for copepods; sub-lethal effects may also

have consequences over a longer time scale. It has been reported that concentrations below 1

mL O2 L-1 inhibit egg eclosion of A. tonsa [17] and decrease egg production [68, 69], even if

food is abundant [75]. Copepods also tend to develop more slowly and mature at smaller sizes

than in well oxygenated environmental conditions [69]. The above suggests that events of

acute hypoxia in shallow coastal zones may also decrease copepod abundance, especially A.

tonsa, even with a time lag. This may have strong repercussions on population dynamics. For

example a reproductive failure may cause a cascade effect on coastal trophic webs, especially

for species that feed on these micro-crustaceans (e.g. sardines and anchovies).

There is information on the composition and abundance of the microphytoplankton com-

munity for this study zone, as well as its temporal variability with respect to oceanographic

conditions [56, 76–79]. However, these studies did not evaluate the quantitative effect of acute

natural hypoxia on survival. The proportions of live/dead cells for the different groups recorded

in this study are the first reported, which in the case of the microphytoplankton mortality was

very high. A similar pattern of temporal change in the microphytoplankton community, in the
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concentration of chlorophyll-a, and nutrients was recorded for an acute hypoxia event in the

northern basin of King Harbor in California [57]. According to Stauffer et al. [6] the acute hyp-

oxia was due to the consumption of dissolved oxygen by respiration due to an exceptionally

high density of the clupeiform fish Sardinops sagax. These authors also indicated a strong

decline in the photosynthetic yield of the phytoplankton that survived the hypoxia due to severe

physiological stress.

Recently Gobler and Baumann [80] reviewed the evidence from published factorial experi-

ments that combine pH and DO levels on different traits, life stages and species across a broad

taxonomic spectrum. They found that the most common response was additive negative

effects of combined low pH and low dissolved oxygen although they also reported synergistic

negative effects. It is well known that OMZ waters have low pH and low oxygen content in

comparison to the ocean surface waters [80–82]. At the beginning of the hypoxia event at

Coliumo Bay pH and dissolved oxygen were at the lowest levels suggesting a possible negative

synergic effect on the survival of phytoplankton and zooplankton.

Future studies should also be oriented to determining how much of the decreased abundance

of microphytoplankton and macrozooplankton during acute hypoxia events is due to advective

transport out of the shallow coastal zone. For example, Escribano and Hidalgo [62] described

advective transport in response to upwelling as a mechanism of zooplankton loss in a deeper

coastal zone. The authors proposed a two-layer mechanism, where surface water is transported

offshore exporting individuals to the more oceanic zone, while a deep layer transports them

back to the coastal zone. However, this mechanism of loss by transport may be attenuated by

the vertical migration of individuals [83], which in any case would be limited by the presence of

water low in dissolved oxygen [17]. The net balance of mortality and loss by transport, both of

microphytoplankton and macrozooplankton, is still to be resolved for this and other shallow

coastal bays. Finally, since coastal upwelling generally occurs at scales of over tens of kilometers,

it is probable that what we documented in this shallow bay has occurred in other shallow, pro-

tected zones of the HCS. In fact, according to satellite images obtained for this acute hypoxia

event, these conditions were repeated in other zones over an area of nearly 500 linear km of the

coast (see S1 Fig). In the future it would be relevant to evaluate the synergic effects that global

warming will have on the coastal ecosystems of the HCS. It has been suggested that upwelling

events produced by southwest winds will increase due to global warming, thus favoring the

intensity and magnitude of natural hypoxias [84]. If this prediction is correct, our results suggest

that the effect of natural hypoxia produced by upwelling in the coastal zone of the HCS may be

dramatic and have important consequences for pelagic and benthic species that are not adapted

to overcoming environments with low concentration of dissolved oxygen.

Supporting information

S1 Fig. Satellite images of the study zone from December 30th, 2007 to January 31st, 2008.

Images were obtained from the ANTARES Observation Network (http://antares.ws) and show

the temporal dynamics of the upwelling during the hypoxia event. White arrows indicate the

location of Coliumo Bay.

(DOCX)

S2 Fig. Time series of the wind intensity/direction, sub-tidal temperatures, and tide height

for the study before, during, and after the hypoxia event. The time series of the intensity/

direction (U and V vectors) of the winds (a), sub-tidal temperature (b) and tide height (c) for

the study before, during and after the hypoxia event. The dashed line indicates the day of mas-

sive mortality and the beaching of organisms (January 3rd). The grey polygon indicates the time
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period in which the hydrographic, physical-chemical and biological samples were obtained.

(DOCX)

S3 Fig. Vertical sections of dissolved oxygen, temperature and salinity for Coliumo Bay

during the hypoxia in January 2008. Vertical sections of: (a, b) dissolved oxygen (mL O2 L-1),

(c, d) temperature (˚C) and (e, f) salinity for Coliumo Bay during the hypoxia in January 2008.

Dots indicate the depths at which the hydrographic data were obtained and used for the con-

tour fitting with Kriging interpolation. The panels on the left are the stations located outside

the bay (E7 and E4); those on the right are the stations inside the bay (E2, E3 and E6).

(DOCX)

S4 Fig. Nutrients and pigments concentrations. Average (±SD) concentration (in μM) of (a)

nitrate, (b) nitrite, (c) phosphate and, (d) silicic acid. Also shown are average ratios of (e) N:P

and, f) Si:N. Plots (g and h) correspond to average concentrations of chlorophyll a (mg m-3)

and phaeopigments (mg m-3), respectively. All measurements are the integrated values of the

entire water column in Coliumo Bay from January 3rd, to 18th, 2008. The grey bars correspond

to inside Coliumo Bay (E2, E3, E6), and the black bars correspond to outside the bay (E7 and

E4). There was no pigment data for January 18th.

(DOCX)

S5 Fig. Nanoplankton and dinoflagellates abundances. Average (±SD) abundance (cells mL-1)

of total nanoplankton in Coliumo Bay from January 3rd, to 18th, 2008 (a) autotrophic nanoflagel-

lates (ANF), (b) heterotrophic nanoflagellates (HNF), (c) dinoflagellates. The grey bars corre-

spond to inside Coliumo Bay (E2, E3, E6), and the black bars correspond to outside the bay (E7

and E4).

(DOCX)
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