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Abstract: CD44 promotes metastasis, chemoresistance, and stemness in different types of cancer and
is a target for the development of new anti-cancer therapies. All CD44 isoforms share a common
N-terminal domain that binds to hyaluronic acid (HA). Herein, we used a computational approach
to design new potential CD44 antagonists and evaluate their target-binding ability. By analyzing
30 crystal structures of the HA-binding domain (CD44HAbd), we characterized a subdomain that
binds to 1,2,3,4-tetrahydroisoquinoline (THQ)-containing compounds and is adjacent to residues
essential for HA interaction. By computational combinatorial chemistry (CCC), we designed 168,190
molecules and compared their conformers to a pharmacophore containing the key features of
the crystallographic THQ binding mode. Approximately 0.01% of the compounds matched the
pharmacophore and were analyzed by computational docking and molecular dynamics (MD). We
identified two compounds, Can125 and Can159, that bound to human CD44HAbd (hCD44HAbd) in
explicit-solvent MD simulations and therefore may elicit CD44 blockage. These compounds can be
easily synthesized by multicomponent reactions for activity testing and their binding mode, reported
here, could be helpful in the design of more potent CD44 antagonists.

Keywords: tetrahydroisoquinoline; CD44; computational combinatorial chemistry; pharmacophore;
molecular dynamics

1. Introduction

CD44 is a transmembrane glycoprotein that functions as a receptor for the gly-
cosaminoglycan hyaluronic acid (HA), an integral component of the extracellular ma-
trix [1,2]. CD44 is expressed on multiple cells, including embryonic stem cells and dif-
ferentiated cells, mediating cellular functions such as adhesion, homing, migration, and
extravasation [1,2]. CD44 transcript can undergo alternative splicing, generating multiple
isoforms of CD44, but all of them conserve intact the HA-binding domain (HAbd) and,
therefore, can be activated by HA [3].

CD44 expression correlates with unfavorable clinical outcomes in multiple types of
cancer [4–8]. CD44 activation by HA in cancer cells induces transcriptional and epige-
netic changes that stimulate signaling pathways controlling invasiveness and metastasis,
chemoresistance, and stemness [9–11]. For instance, in breast cancer cells, HA binding
to CD44 induces epithelial–mesenchymal transition, which increases cell migration and
invasive capacity [12], and promotes survival under detached conditions during the devel-
opment of metastasis [13]. Moreover, CD44 is expressed in cancer stem cells that survive
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chemotherapy in models of glioblastoma [14], breast [15], pancreatic [16], colorectal [17],
and prostate [18] cancer. Consistent with its key role in cancer progression, CD44 silencing
impairs chemoresistance, clonogenicity, tumorigenicity, and/or metastasis [19–21]. There-
fore, blockage of HA-binding to CD44 has been proposed as a potential therapeutic strategy
for cancer.

The CD44HAbd is located in the N-terminal end of the extracellular region of the
receptor. Structural analysis of murine CD44HAbd crystals showed that only 13 residues
along a shallow groove mediate HA-binding [22]. The residues Arg41, Tyr42, Arg78,
Tyr79 in hCD44HAbd (Arg45, Tyr46, Arg82, Tyr83 in mCD44HAbd) have been previously
described as essential for HA-binding by directed mutagenesis experiments or crystal
analysis [23,24]. Given the lack of an obvious druggable pocket in the HA-binding site,
small molecule inhibitors that interact with allosteric sites within the CD44HAbd have been
developed [24–27]. However, those compounds bind to CD44HAbd in the high micromolar
or even low millimolar range, limiting further applications. Therefore, there is a need for
new CD44 antagonists with improved affinity, efficacy, and physicochemical properties for
future effective translation to the clinic.

Herein we designed and evaluated the binding of new potential CD44 antagonists
using an in silico strategy. We identified that small molecules sharing a 1,2,3,4-tetrahydroiso
quinoline (THQ) motif are frequently co-crystallized with CD44HAbd in a subdomain
adjacent to the residues that are essential for HA-binding. By computational combinatorial
chemistry (CCC), we generated libraries including more than 168,000 THQ-containing
molecules. The new molecules (i) could be easily synthesized by multicomponent reactions,
(ii) are diverse, and (iii) display drug-like physicochemical properties. We selected a subset
of 163 candidates matching the key features of the reported THQ binding mode for further
analysis by computational docking. The nine candidates with the highest frequency of
poses reproducing the reported THQ binding mode were analyzed by molecular dynamics
(MD). Our results allowed the identification of two compounds predicted to stably bind to
hCD44HAbd in an aqueous solution. Those compounds may be useful as CD44 antagonists,
and the information of their binding mode can be employed as the basis for the design of
new bioactive molecules that target CD44.

2. Results
2.1. Identification of a Target Subdomain within the CD44HAbd and Generation of a
THQ-Based Pharmacophore

Aiming to identify relevant regions for drug design, we compared the 30 crystal
structures available in Protein Data Bank (PDB) that comprise the HA-binding domain
of human (three structures) or mouse (27 structures) CD44 (Table S1). The three human
structures correspond to the apo form of CD44HAbd. For mCD44HAbd, 2JCP represents
the apo-CD44HAbd, three structures are co-crystallized with HA (2JCQ, 2JCR, and 4MRD),
and the rest are co-crystallized with molecules weighting 100–250 Da. Within the structures
containing small molecules, 21 of them are co-crystallized with compounds containing the
THQ motif. Sequence identity analysis showed 100% identity among all hCD44HAbd, 99–
100% among mCD44HAbd, and 86–88% between hCD44HAbd and mCD44HAbd (Figure
S1A). Due to the high identity among CD44HAbd structures, we compared all of them in a
structural analysis. The root mean square deviation (RMSD) profiles for alpha-carbons and
full atoms showed the higher deviations on some residues previously reported as essential
for HA-binding by direct mutagenesis experiments (Arg41, Tyr42, Arg78, and Tyr79) in
hCD44HAbd [23] (Figure S1B).

Analysis of the 21 structures co-crystallized with THQ-containing small molecules
identified that all these ligands bind to a pocket contiguous to the HA-binding domain
(Figure 1A). Their binding drives a shift in multiple residues of mCD44HAbd, including
some of the key residues participating in HA-binding, namely, Arg45, Arg82, and Arg155
(Figure 1B). Alignment of THQ-composing atoms showed that the binding mode is highly
conserved among the 21 crystals analyzed (Figure 1C). Thus, we model a pharmacophore
from the co-crystallized molecules containing the THQ substructure. The generated model
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included four pharmacophoric descriptors—aromatic, two hydrogen bond donors, and a
positively charged ion (Figure 1D).
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Figure 1. Generation of a 1,2,3,4-tetrahydroisoquinoline (THQ)-based pharmacophore. (A) CD44HAbd (white surface) has
a subdomain where the THQ-containing molecules can bind (blue) and partially overlaps with the region containing the
key residues for CD44–HA binding (Arg45, Tyr46, Arg82, and Tyr83-orange-). HA is shown in pink. (B) Spatial positions of
the lateral chain of residues Asn29, Glu41, Gly44, Arg45, Arg82, and Arg155 from mCD44HAbd in the HA-bound form
(residues shown as beige sticks; HA in pink) vs. the form bound to a THQ-containing molecule (residues shown as grey
sticks; ligand in blue). Dashes represent the residue shifts between both states. (C) Structural alignment and root mean
square deviation (RMSD) comparison of the THQ scaffold (orange) of the molecules co-crystallized with mCD44HAbd.
(D) Pharmacophore model generated using THQ-containing molecules as a template. Purple sphere: aromatic; yellow
sphere: hydrogen bond donor; white sphere: merged hydrogen bond donor and positively charged ion. A molecule with
the THQ substructure is included (blue) to show the interacting residues in CD44 (grey sticks) and its proximity to residues
essential for HA-binding (orange sticks).

2.2. Generation of THQ-Containing Libraries

To identify new compounds with the potential capability to interfere with the CD44–
HA binding, we employed CCC to generate two libraries of compounds that include the
THQ scaffold. To facilitate the synthesis of our compounds in subsequent research, we
decided to use multicomponent reactions (MCR) synthesis routes. Considering the char-
acteristics of the THQ-containing small molecules co-crystallized with mCD44HAbd, we
implemented the Ugi four-component tetrazole synthesis [28,29] and Ugi three-component
reaction [30] for our CCC experiments. For each MCR route, we obtained 84,096 different
compounds (Scheme 1).
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2.3. Cheminformatic Analysis of CCC Compounds

In order to explore the chemical diversity and physicochemical properties of the
designed compounds, we employed a series of cheminformatic analyses, calculating 30 dif-
ferent 2D/3D-shape and physicochemical molecular descriptors. For comparison, we also
studied the compounds within DrugBank Database 5.0.10, a library of 1542 FDA-approved
small molecules [31]. The diversity analysis of 1500 randomly sampled compounds of
each library, using t-distributed stochastic neighbor embedding (tSNE) employing Molecu-
lar ACCess System (MACCS) keys [32], showed that the compounds from the tetrazole
and Ugi libraries display similar structural diversity to the compounds inside DrugBank.
The K-means clustering showed that compounds from the CCC and DrugBank libraries
distribute similarly on five out of six clusters, whereas the sixth cluster was enriched in
DrugBank small molecules (Figure 2A).

A normalized principal moments ratio (NPR) analysis was conducted to assess the
molecular shape distribution of compounds. The results showed that the minimum en-
ergy conformers of the compounds from the three libraries presented similar 3D shapes,
predominantly rod- and disk-shaped, with only a few compounds displaying a spherical
shape (Figure 2B). We also performed a principal components analysis (PCA) employing
non-redundant molecular descriptors selected by their correlation (Figure S2). PCA showed
that the compounds in CCC-generated libraries possess similar molecular descriptors and
physicochemical properties to those of the DrugBank Database, displaying a dense accu-
mulation of the compounds at the origin of the principal components (PCs), PC 1 and PC2.
Topological polar surface area (TPSA) and logarithmic partition coefficient (LogP) were
the primary descriptors, correlating positively with PC1 and PC2 and negatively with PC2,
respectively (Figure 2C).

Finally, the extended Lipinski’s rule of five (Ro5) analysis showed that most newly
designed compounds comply with the physicochemical properties required for oral use [33].
Interestingly, the CCC-generated libraries displayed a more homogeneous distribution
inside the extended Ro5 than the group of compounds in DrugBank (Figure 2D).
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Figure 2. Characteristics of the generated libraries. (A) t-distributed stochastic neighbor embedding (tSNE) chart of
structural diversity analysis for the compounds generated by Ugi three-component reaction (Ugi) or Ugi four-component
tetrazole synthesis (Tetrazole). For comparison, a database containing FDA-approved molecules was included (DrugBank).
(B) Normalized principal moments ratio (NPR) analysis. (C) Principal components analysis (PCA) for molecular and physic-
ochemical descriptors. (D) Lipinski’s rule of five (Ro5) analysis, which included molecular weight (MolWt), logarithmic
partition coefficient (LogP), number of hydrogen bond donors (NumHDonors) and acceptors (NumHAcceptors), and the
topological polar surface area (TPSA). A gray line represents each compound, and the density indicates the frequency of
compounds.

2.4. Virtual Screening

To identify new compounds with the theoretical ability to bind CD44, we generated
expanded libraries containing 20 energetically favorable conformers for each compound
within the CCC-generated libraries, retrieving 3,363,840 conformers. The expanded li-
braries were screened by alignment to the pharmacophore, followed by local optimization
in CD44HAbd and visual inspection. We identified 864 conformers from 163 unique
compounds that matched the selection criteria (Figure 3A). Only those molecules were
employed for the subsequent experiments.

The docking protocol employed for filtering was validated by docking the 21 THQ-
containing molecules co-crystallized with mCD44HAbd into protein 5BZM. We observed
that the crystal pose was more frequently reproduced in compounds with smaller sub-
stituents on the THQ motif (Figure S3A) Thus, additional analysis of candidates considered
only the position of the THQ atoms.
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Figure 3. Virtual screening of THQ-containing molecules as potential CD44 antagonists. (A) The compounds within
the CCC-generated libraries were sequentially filtered using the depicted strategy. (B) RMSD analysis comparing the
THQ position in crystals vs. the poses obtained by docking of 163 unique compounds to human or mouse CD44HAbd.
(C) Analysis of the frequency of poses with RMSD < 2 Å allowed the selection of nine candidates (orange dots). (D) Structure
of the nine candidates selected by virtual screening with the THQ motif highlighted in blue.

The 163 candidates were docked against hCD44HAbd and mCD44HAbd for com-
parison. For each candidate/receptor pair, the docking scores of 25 poses were analyzed
(Figure S4). The docking poses were compared to the coordinates of THQ crystalized on
mCD44HAbd since none of the available human crystal structures contained THQ-derived
compounds. We focused on the compounds showing docking poses matching the crys-
tallized THQ atoms with RMSD < 2 Å (Figure 3B). We selected the compounds with the
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highest frequency of matching poses, ranging from 8/50 to 34/50 (Figure 3C). For the nine
selected molecules (Figure 3D and Table S2), we assessed the THQ-binding site selectivity
by docking the compounds into four/five additional pockets using three relevant forms of
the receptor: apo-hCD44HAbd, HA-bound mCD44HAbd, and THQ-containing molecule
mCD44HAbd. With the exception of the candidate (Can) 142, all molecules were predicted
to bind the region of interest with better or similar affinity than other pockets (Figure
S5). We then performed pose clustering analysis (Figure S6) to identify the best pose for
molecular dynamics (MD) simulations.

2.5. Molecular Dynamics and Free Energy Calculation

We performed solvent explicit MD simulations to characterize the binding of the
selected candidates to hCDHA44. The apo-hCD44HAbd was included as a control. Our
analysis focused on the THQ binding site reported for mCD44HAbd (Figure 4A). By
quantifying the water molecules displacement in the selected region, we identified that
candidate Can58, Can133, Can141, Can142, and Can150 left the cavity during the simulation.
Furthermore, Can58, Can142, and Can150 moved from the binding site at the early steps of
the MD simulation. On the other hand, three compounds, (Can125, Can140, and Can159)
remained on the binding site during the 100 ns of simulation and maintained a constant
number of local water molecules (Figure 4B). Interestingly, the global backbone RMSD
analysis of the systems with those three candidates showed a different profile than the one
generated by apo-CD44HAbd (Figure 4C) or by systems with other candidates (Figure S7).
Additionally, a shift on some residues was observed on the root mean square fluctuation
(RMSF) profile generated for Can125 (Figure 4D).

The frequencies of molecular interactions generated by Can125, Can140, and Can159
were studied during the whole simulation; Can58 was considered in the analysis for com-
parison (Figure S8). As expected from the water analysis, Can58 showed a low frequency
of interactions in the THQ binding site, which included water bridges and hydrogen bonds
with Arg150 and Glu75 (Figure 5A,B). Of the candidates studied by MD, Can125 formed
the highest number of interactions, the most frequent were hydrogen bonds with Arg41
and Glu37, Van der Waals interactions with Arg150, Arg78, and Thr27, and water bridges
with Arg78 and Glu37 (Figure 5A,C). Can140 showed Van der Waals interactions with
residues Arg150, Asn25, and Phe74 predominantly, but it was also able to form water
bridges with Arg78 and Glu37 (Figure 5A,D). Can159 showed a high frequency of π-cation,
and hydrogen bonds interactions with Arg150, and water bridges with Arg78, and Arg150.
Moreover, the Can159 also displayed the frequent formation of Van der Waals interactions
with Asn25 (Figure 5A,E).
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Figure 4. Molecular dynamics (MD) analysis identified Can 125 as a potential CD44 antagonist.
(A) Spatial representation of the analyzed pocket in hCDHAbd. Inset shows the lateral chains of
residues reported as essential for HA-binding (orange sticks) or those that mediate the interaction
with the THQ-containing compounds employed for pharmacophore modeling (blue sticks). (B) Water
molecules displacement analysis for the nine candidates shown in Figure 3D. (C) Pairwise backbone
RMSD matrix along 100 ns of MD simulation from systems including candidates with stable binding
to hCD44HAbd. The unliganded protein (apo-CD44) and the system with Can58 are included for
comparison. (D) Alpha-carbon RMSF analysis for the systems presented in C.
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Figure 5. Identification and importance of residues mediating compound binding. (A) Types of interactions that support
stable candidate/hCD44HAbd interactions and their frequency. Note that Can58, presented here for comparison, left the
binding site during the simulation. (B–E) The 3D molecular interactions of a representative frame from MD simulation of
the complexes between Can58 (B), Can125 (C), Can140 (D), and Can159 (E) with hCD44HAbd (gray sticks). (F) Per-residue
energy decomposition for Can125. Most positive values correspond to His35 and Glu37, and most negative values to Asn25,
Thr27, Arg41, and Arg150.
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Calculation of the binding free energy (Table 1) showed that Can140 has lower binding
energy than Can125 and Can159, with the electrostatic energy as the component that con-
tributes most to these differences. Nevertheless, Can140 showed large energy fluctuations
during the simulations (Figure S9), suggesting a possible rearrangement of the binding pose
during the experiment. In contrast, Can125 and Can159 showed stable energetic profiles
(Figure S9). Per-residue energetic decomposition (Figure 5F and Figure S10) revealed that
Can125 binding to hCD44HAbd is supported by energetically favorable interactions with
residues essential for HA-binding (Arg41 and Arg78) or residues selected in the pharma-
cophore modeling (Arg150). Together, these observations suggest that Can125 is the most
promising compound for biological evaluation.

Table 1. Average free energy calculated from MD simulations (mean ± standard deviation).

Compound Van der Waals
Energy

Electrostatic
Energy

Polar Solvation
Energy SASA Energy Binding Energy

Can58 −33.871 ± 35.190 −18.447 ± 29.906 47.592 ± 66.887 −4.667 ± 4.853 −9.393 ± 41.581

Can125 −116.512 ± 15.988 −52.356 ± 23.296 123.555 ± 27.579 −13.962 ± 1.252 −59.274 ± 17.744

Can140 −96.931 ± 36.947 −128.983 ± 66.843 106.522 ± 90.455 −12.078 ± 4.022 −131.470 ± 41.310

Can159 −99.395 ± 18.056 −34.928 ± 25.315 112.733 ± 40.928 −11.318 ± 1.938 −32.908 ± 17.750

3. Discussion

Due to the essential physiological and pathological roles of CD44, several crystal struc-
tures of its HAbd have been solved, either in the unligated form (apo) or in complex with
HA. Our structural analysis of the crystals available at PDB corroborated the previously
identified shifts in residues participating in HA-binding, including Arg41, Tyr42, Arg78,
and Tyr79 in hCD44HAbd, and Arg45, Tyr46, Arg82, and Tyr83 in mCD44HAbd [22–24,34].
We found the shifts in Arg41 and Arg78 as particularly important for drug design because
(i) the shift in Arg41 has been identified as a trigger for the conversion of high (active) to
low (inactive) affinity conformations of CD44HAbd [22] and (ii) both residues are close to a
pocket that binds to small molecules with the THQ motif and suffer conformation changes
induced by ligand binding.

The THQ-binding pocket has been employed for the development of molecules that
display a similar affinity for human or mouse CD44HAbd (ranging from 0.4 µM to 6.9 µM
for hCD44HAbd, and 0.5 µM to 11.2 µM mCD44HAbd) [24]. Thus, we used 21 murine
crystals containing THQ-based molecules for developing a pharmacophore that contained
the key interactions mediating the binding of those compounds to mCD44HAbd and
hypothesized that the model could be used in the identification of new antagonists for the
human version of the receptor.

By using MCR-based CCC, we also generated libraries of easily synthesizable com-
pounds that contain the THQ substructure. MCR are one-pot reactions in which two or
more starting materials are used simultaneously; thus, most of the atoms from the initial
building blocks are incorporated into the final product of the reaction [35,36]. The Ugi
four-component tetrazole synthesis [28,29] and Ugi three-component reaction [30] are well
described, easy to perform, and have been suggested as synthesis methods for diverse
drug-like molecules [36]. Additionally, we selected building blocks that are commercially
available at low-cost, which will allow compound synthesis and activity evaluation in
further studies. Chemoinformatic characterization of the generated databases showed
that the compounds are highly diverse but contain similar structural and physicochemical
characteristics to those of marketable molecules. The DrugBank Database drugs frequently
adopt rod- and disc-shapes [37] and comply with Lipinski’s Ro5 [33,38]. The compounds
within our CCC-generated libraries predominantly displayed these shapes, due to the high
predominance of non-cyclic molecules [37,39], and have drug-like physicochemical char-
acteristics. Molecules with the THQ substructure have been identified as nicotinic [40] or
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muscarinic [41] receptor antagonists, in addition to inhibitors of the angiotensin-converting
enzyme [42]. Thus, the databases reported here may be useful starting points for identifying
new compounds with those activities.

A robust exploration of the conformational space allowed the selection of 163 unique
candidates that matched with the pharmacophoric model. To overcome the lack of
structural information regarding the binding mode of THQ-containing molecules to
hCD44HAbd, we investigated the binding mode of the candidates in hCD44HAbd and
mCD44HAbd by a docking protocol that was able to reproduce the crystallographic bind-
ing mode of most co-crystallized molecules with an all-atoms RMSD threshold < 3Å. We
identified nine candidates that reproduced the THQ crystallographic pose with an RMSD
< 2Å and high frequency. A similar strategy, using a THQ-based pharmacophore for
screening identified potential anticonvulsant compounds [43].

MD in explicit solvent further characterized the binding capability of the best nine
candidates from virtual screening. We applied this method considering that the effects of
solvation play a key role in forming molecular interactions in ligand–protein complexes.
Thus, simulations employing explicit solvent allow the study of the most realistic and
detailed level of physical chemistry of solvation [44]. We found that only three candidates
(Can125, Can140, and Can159) remained bound to the THQ binding site during the entire
MD simulation. In contrast, the Can142 left the THQ binding site at an early stage of the
MD simulations; this observation might correlate with the fact that this candidate also
showed higher docking scores for other pockets in CD44HAbd than the THQ-binding
pocket (Figure S5).

Moreover, the candidates that remained bound during all simulations induced drastic
decreases in the RMSD values of the hCD44HAbd backbone compared with those of the
apo structure. The ligand-induced transition to a less flexible conformation of the protein
can modulate its activation and improve both the compound’s affinity and residence
time [45,46]. Hence, a reduction in the target’s conformational dynamics is a desirable
characteristic of a drug-like molecule.

Although Can125, Can140, and Can159 displayed molecular interactions with residues
involved in the HA-binding, including some reported as essential, only Can125 and Can159
reproduced the interactions predicted by the pharmacophore. Per-residue energetic de-
composition corroborated that residues at the THQ-binding pocket support the binding
of these two candidates to hCD44HAbd. However, only Can125 originated an RMSF
profile that diverged from the unligated hCD44HAbd; specifically, it induced fluctuations
in residues Arg41 and 120–126. The ligand-induced shift on Arg41 was different from
the one identified on the crystal structures containing HA, which is considered essential
for the transition from inactive to the active state in CD44 [22]. The changes in residues
120–126, which comprise a loop adjacent to the THQ-binding pocket, may participate in
target constraint since they do not contribute to the ligand-binding energy. We hypothesize
that the conformational changes induced by Can125, especially on Arg41, may impede the
binding of the HA to hCD44HAbd.

On the other hand, Glu37 contributed negatively to the binding energy of Can125,
which may be caused by the method employed for energy calculations. Calculations
performed in implicit solvent offer a fast approach for binding energy assessment but are
not yet well parameterized for complex problems that consider the presence of all solvent
molecules [44]. Thus, our calculations may be underestimating the energetic contribution
of water bridges and hydrogen bonds formed between the side chain of Glu37 and the
methyl alcohol of Can125. Moreover, it is also possible that the proximity between opposite
hydrogen bond acceptors (the carboxylate of Glu37 and the oxygen in the acetamide
group of Can125) represents an unfavorable energetic contribution. This finding represents
an opportunity to improve the chemical features of potential antagonists of CD44 to be
proposed in future studies.

We did not assess the possible effect of the best candidates in the binding of other
CD44 ligands, as aggrecan, osteopontin, collagen, or CD74 [3,47,48], given the lack of
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corresponding structural data. However, we found that the THQ-binding site was able
to allocate the best-ranked poses of Can125 and Can159 among all CD44HAbd pockets,
suggesting a better affinity for this site over other regions of CD44HAbd. Thus, we
speculate that these compounds may elicit competitive inhibition only for ligands with
binding sites overlapping with that of HA, such as aggrecan [49]. On the other hand, we do
not have evidence to propose that binding sites outside the CD44HAbd could be affected
by the candidates, although the compounds restricted the conformational dynamics of
CD44HAbd.

4. Materials and Methods
4.1. Sequence and Structural Alignments

Human and murine CD44 binding-domain (hCD44HAbd and mCD44HAbd, respec-
tively) crystal structures were retrieved from the Protein Data Bank (PDB). All structures
were aligned using UCSF Chimera 1.14 [50] and the A chain of the entry 1UUH as reference.
RMSD was calculated for alpha-carbons, backbone, and all atoms. Sequence alignments
were performed using the pairwise2 module of Biopython 1.78 [51]. For small-molecule
atom-based alignment and comparison, a python tailored-made script was created em-
ploying the Cheminformatics Toolbox RDKIT (http://www.rdkit.org, accessed date 25
February 2021) and the Pymol 2.4 API (PyMOL Molecular Graphics System, Schrödinger,
LLC). The script is available at https://github.com/AngelRuizMoreno/CD44_antagonist
(accessed date 25 February 2021).

4.2. The 3D Pharmacophore Modeling

The 3D pharmacophoric model was generated by using 21 mCD44HAbd crystal struc-
tures containing small molecules with a THQ motif (Table S1) and the Pharmit server [52].
The most relevant molecular features were chosen by visual inspection, and their 3D coor-
dinates in the mCD44HAbd pocket were set using the threshold of RMSD < 0.5 Å among
THQ atoms.

4.3. Combinatorial Computational Chemistry

The creation of compound libraries by the CCC approach was carried out using
Reactor 20.17 from ChemAxon (http://www.chemaxon.com, accessed date 25 February
2021). The Ugi Tetrazole and Ugi 3 component reactions were selected as synthesis routes to
generate compounds synthetically accessible by MCR. For the CCC experiments, libraries
of building blocks were made by searching highly diverse and low-cost commercially
available starting materials using the sci-finder platform (https://scifinder.cas.org). The
building blocks library consisted of 32 substituted 1,2,3,4-THQ, 4 aldehydes, and 657
isocyanides.

4.4. Cheminformatic Analysis

The resulting compounds from CCC were stored in two different libraries according
to their synthesis origin. For comparison, the DrugBank dataset was included in the
cheminformatic analysis. For each library, we computed tSNE, NPR, PCA, and Ro5. The
tSNE analysis was computed using the Tanimoto similarity among the MACCS keys
for each molecule using RDKIT; then, the tSNE calculation was conducted using Scikit
learn 0.23.1 [53], implementing two components and a perplexity value of 50. After tSNE
analysis, a silhouette-based k-means clustering was performed using Scikit learn 0.23.1 [53].
Similarly, the PCA was performed using Scikit learn and employing ten selected non-
redundant molecular descriptors of 30 different 2D and 3D molecular descriptors, which
were computed using RDKIT. The NPR analysis was carried out by calculating the NPR1
and NPR2 descriptors for the molecules. Finally, the Ro5 analysis was performed by
calculating the molecular weight, LogP, number of hydrogen bond donors and acceptors,
and TPSA.

http://www.rdkit.org
https://github.com/AngelRuizMoreno/CD44_antagonist
http://www.chemaxon.com
https://scifinder.cas.org
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4.5. The 3D Pharmacophoric Matching

We generated 20 energetically favorable conformers for each compound within our
working libraries by using the Mcnf module of Moloc [54]. All the conformers were aligned
against the THQ-atoms and pharmacophore using the Pharmit server [52]. The best
conformers were selected using an RMSD threshold of 0.5 Å against the pharmacophoric
model descriptors. Finally, a local optimization was performed using the mCD44HAbd
surface using Moloc [54,55], followed by visual inspection. The molecules that after local
optimization kept the 3D pharmacophoric matching (RMSD < 0.5 Å) were selected for
further studies.

4.6. Molecular Docking

According to the identity and RMSD values, we found a very high similarity between
all hCD44bd. Therefore, we choose the first hCD44bd crystal reported (1UUH). Regard-
ing the mCD44HAbd our data also indicated a very high similarity among all available
structures. Nonetheless, for docking experiments, we focused on the mCD44HAbd con-
taining THQ-molecules, and we choose the crystal 5BZM, which contains a THQ-molecule
displaying all molecular features according to our pharmacophoric model.

For the validation of the molecular docking protocol, the crystal structure of mCD44HAbd
(5BZM) was used as the receptor and 21 co-crystallized THQ-containing molecules as lig-
ands. For virtual screening, proteins hCD44HAbd (1UUH) and mCD44HAbd (5BZM)
were employed as receptors, and the 163 molecules selected by pharmacophore filter-
ing as ligands. Secondary dockings were carried out into additional pockets identified
Fpocket v3.0 [56] in ligand-free hCD44HAbd (1UUH), HA-bound mCD44HAbd (2JCR), or
THQ-containing molecule mCD44HAbd (5BZM).

Proteins were prepared by removing co-crystallized waters, solvent molecules, and
adding charges and hydrogens using Chimera 1.14 [50]. Ligands were prepared by adding
explicit hydrogens and tautomeric states at pH 7.4. and generating 3D coordinates with
Standardized 19.20.0 (http://www.chemaxon.com, accessed date 25 February 2021). For
virtual screening, docking was performed into hCD44HAbd and mCD44HAbd within
a sphere with 8 Å of radius and center in the Thr27 or Thr31, respectively. Secondary
dockings were carried out using as reference the coordinates of each additional pocket
identified. For each ligand, 50 runs of the genetic algorithm were performed for the
conformational search. Each pose was evaluated employing the PLP Chemscore scoring
function established in the GOLD software from the Cambridge Crystallographic Data
Center (CCDC) [57]. For each compound, the best 25 poses were saved for analysis. Finally,
hierarchical clustering analysis of the poses was performed using Scipy 1.5.2 [58].

4.7. Molecular Dynamics

The MD simulations were carried out using Gromacs 5.0.4 [59]. Selected candidates
and hCD44HAbd (1UUH) were parameterized using the CGenFF and CHARMM36 force
field, respectively, through the CHARMM-GUI (http://www.charmm-gui.org/, accessed
date 25 February 2021) [60]. The systems were built by adding TIP3P water molecules to
the ligand-hCD44HAbd complexes, neutralizing ions, and establishing periodic boundary
conditions (PBC) by using the multicomponent assembler of the CHARMM-GUI. Before
production, the systems were minimized and then equilibrated under an NVT assembly.
During the production phase, an NPT assembly was performed at 310.15 K for 100 ns saving
velocities, energy, and positions every ten ps. Water molecules displacement was computed
by quantifying the number of water molecules within a 6 Å radius sphere covering the
THQ-binding pocket, every frame of the simulation. Analysis of ligand-target interactions
was carried out by a python tailored-made script (https://github.com/AngelRuizMoreno/
CD44_antagonist, accessed date 25 February 2021) implementing MDAnalysis [61] and
PLIP [62].

http://www.chemaxon.com
http://www.charmm-gui.org/
https://github.com/AngelRuizMoreno/CD44_antagonist
https://github.com/AngelRuizMoreno/CD44_antagonist
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4.8. Interactions Free Energy Calculations

Full-length candidate-hCD44HAbd trajectories were employed for free energy calcu-
lations using the molecular mechanics energies combined with the Poisson–Boltzmann
surface area continuum solvation (MM/PBSA) [63] by g_mmpbsa v1.6 package [64]. Com-
putation of the potential energy in vacuum, polar solvation energy, and non-polar solvation
energy were performed to calculate the average binding energy. Per-residue energetic
decomposing and maps were created to show the contribution of each residue to the
binding energy.

5. Conclusions

Our experiments demonstrate that the compounds Can125 [3-hydroxy-N-(3-hydroxy
benzyl)-2-(5-methyl-3,4-dihydroisoquinolin-2(1H)-yl)propenamide] and Can159 [2-(1-((1H-
indol-5-yl)methyl)-1H-tetrazol-5-yl)-2-(7-amino-3,4-dihydroisoquinolin-2(1H)-yl)ethan-1-ol]
bind with high theoretical affinity to the murine and human structures of CD44HAbd and
stabilize the conformational dynamics of the protein. Therefore, those compounds may
elicit a blocking effect on HA-binding.

Supplementary Materials: The following are available online: Table S1: mCD44HAbd crystal
structures employed for 3D pharmacophoric modeling, Figure S1: Sequence and structural analysis
of CD44HAbd crystals, Figure S2: Correlation matrix of the molecular descriptors from CCC-libraries,
Figure S3: Validation of the docking protocol, Figure S4: Ligand efficiency from docking scores for
the 163 unique candidates, Table S2: SMILES codes and formal names of the nine selected candidates,
Figure S5: Comparison of theoretical binding of the best nine candidates among multiple pockets
within CD44HAbd, Figure S6: Docking pose clustering for the best nine candidates, Figure S7:
Pairwise backbone RMSD matrix along 100 ns of MD simulation and alpha-carbon RMSF analysis,
Figure S8. Frequency analysis of molecular interactions, Figure S9: Energy calculations generated
from MD simulations, Figure S10: Per-residue energy decomposition for the MD-simulated binding
of candidates.
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