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Abstract: For most cancers, chemotherapeutic options are rapidly expanding, providing the
oncologist with substantial choices. Therefore, there is a growing need to select the best systemic
therapy, for any individual, that effectively halts tumor progression with minimal toxicity. Having the
capability to predict benefit and to anticipate toxicity would be ideal, but remains elusive at this
time. An alternative approach is an adaptive approach that involves close observation for treatment
response and emergence of resistance. Currently, response to systemic therapy is estimated using
radiographic tests. Unfortunately, radiographic estimates of response are imperfect and radiographic
signs of response can be delayed. This is particularly problematic for targeted agents, as tumor
shrinkage is often not apparent with these drugs. As a result, patients are exposed to prolonged
courses of toxic drugs that may ultimately be found to be ineffective. A biomarker-based adaptive
strategy that involves the serial analysis of the metabolome is attractive. The metabolome changes
rapidly with changes in physiology. Changes in the circulating metabolome associated with various
antineoplastic agents have been described, but further work will be required to understand what
changes signify clinical benefit. We present an investigative approach for the discovery and validation
of metabolomic response biomarkers, which consists of serial analysis of the metabolome and linkage
of changes in the metabolome to measurable therapeutic benefit. Potential pitfalls in the development
of metabolomic biomarkers of response and loss of response are reviewed.
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1. Introduction

The field of oncology is currently undergoing a revolution. New antineoplastic drugs, mostly targeted
drugs, are being introduced at an ever-increasing rate. As of June 2017, 361 antineoplastic drugs were in
clinical trials in the United States [1]. Most of these new drugs are expected to benefit only a small
fraction of patients with tumors expressing the targeted molecular features. While some of these drugs
will be developed with a companion biomarker that indicates the presence of the therapeutic target,
it is likely that the appearance of validated predictive biomarkers will lag. Therefore, oncologists are
challenged with making a choice between a number of cytotoxic agents and an increasing number
of newer agents. For any patient, that choice is mostly based on an educated guess and sound
clinical judgement.

The quintessential means to personalize chemotherapy is with a predictive biomarker.
Currently, there are few predictive biomarkers commonly used to make decisions, such as estrogen
receptor and KRAS mutation status. There are several barriers to the development of new predictive
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biomarkers. First, even though the molecular target is known, its presence is not sufficient to
comprise a predictive biomarker. Second, validation of any single predictive biomarker requires years,
and different biomarkers are required for each drug. Third, even if a biomarker is valid, the assay for
the biomarker must also perform well. This problem is illustrated by the attempts to validate ERCC1
as a predictive biomarker for chemotherapy for non-small cell lung cancer, which failed because the
commercial antibody used for ERCC1 did not perform as expected [2,3]. Fourth, as different predictive
biomarkers using a variety of assay techniques are introduced to practice, it is becoming difficult for
any single lab to remain competent in each assay. Finally, and most importantly, predictive biomarkers
identify subgroups that will not benefit from any given therapy; they do not guarantee benefit.

As a result of the inability to accurately predict who will benefit from any treatment, oncologists
take an adaptive approach. A drug (or combination of drugs) is selected based on best evidence,
and drug doses are selected, often based on maximum tolerated dose. Dose intensity is modified as
toxicities appear. Such adverse effects can be life-threatening or debilitating; they may significantly
impact quality of life; and they tend to be cumulative. Only 2–3 months after beginning a chemotherapy
treatment does the oncologist evaluate treatment efficacy, and this is done with serial radiographic
tests. Meanwhile, significant toxicities may have appeared and significant treatment-related costs may
have incurred in the absence of any knowledge of whether the patient is benefiting.

In this review, we discuss the need for a more immediate signal of drug efficacy, and how
this would enhance this adaptive approach in the treatment of solid tumors. The advantages of a
biomarker-based adaptive approach are described, and the potential value of a metabolomic platform
are explored. Finally, we describe some of the challenges in developing this approach, as well as ways
that we can overcome those hurdles.

2. Serial Scans: The Standard Approach to Response Estimation

Currently, response to chemotherapy is assessed through radiographic imaging, typically
computed tomography (CT) scans and magnetic resonance imaging (MRI) scans. Effective cytotoxic
drugs are accompanied by a reduction in tumor size; RECIST criteria enable categorization of responses
to complete response, partial response, stable disease or progressive disease [4]. In some circumstances,
tumor dimensions are difficult to measure, and RECIST criteria are not conclusive. Examples include
peritoneal and pleural disease, extrahepatic biliary tumors, and tumors that extend along the length
of an organ such as linitus plastica. RECIST criteria are also not conclusive in patients who are
treated with molecularly targeted agents such as angiogenesis inhibitors and tyrosine kinase inhibitors.
Molecularly targeted agents are typically cytostatic and clinical benefit does not always accompany
a reduction in tumor size. Rather, what is typically seen is a reduction in tumor density, seen on CT
scan as decreased tumor attenuation. This has led to the use of Choi criteria as a means to categorize
treatment response [5,6].

While CT scans and MRI scans represent the standard for following treatment response,
in addition to the limitations described above, there is often a delay in the appearance of a response.
As a result, it is frequent for oncologists to wait 2–3 months after starting a drug before assessing for
response. By that time, a number of doses of expensive drug have been administered and significant
toxicities have emerged, resulting in opportunity costs to the patient who is on ineffective therapy.

Positron emission tomography (PET) scans have been developed as an improved way of using
imaging to follow response. [18F]-Fluorodeoxyglucose (FDG)–PET has been used effectively for
monitoring response to cytotoxic therapies as well as in targeted therapies, and response can
be categorized as soon as four weeks after treatment [7]. 3′-Deoxy-3′-[18F]-fluorothymidine–PET
(FLT–PET) is an emerging technique. FLT is taken up by proliferating cells, and changes in FLT avidity
have been reported as early as a week after chemotherapy [8,9]. [18F]-Fluorocholine–PET (FCH–PET)
is based on increased choline uptake by rapidly dividing cancer cells, and may also provide an earlier
signal of treatment efficacy [10,11]. While these approaches will represent improvements over CT and
MRI, PET scans are not widely available. Moreover, in general, serial radiological tests are expensive;
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they are dependent on available infrastructure and clinical expertise; and they are inconvenient to
the patient.

3. “Response” as a Reflection of Therapeutic Benefit

If response is to be used as an endpoint for an adaptive treatment approach, then it is essential to
understand the implications of a response or a lack of response to the patient’s wellbeing. In other
words, if there is a measurable response, is it likely that the patient will live longer (and with a better
quality of life)? Conversely, if there is no response, does that imply that the drug is not beneficial?

Whether a response to drug confers a survival advantage is not clear, and is probably
context-specific. Some studies have shown that objective response is associated with a survival
benefit [12–15]. Moreover, recently, studies have demonstrated that a more immediate and more
pronounced response is prognostic [16–19]. Progression-free survival (PFS) is considered a good
surrogate endpoint for overall survival (OS) for some cancers [20–24], but not all situations [25,26].
The uncoupling of PFS and OS could be due to a number of factors, including treatment cross-over in
clinical trials. It may also occur in heavily pretreated patients whose condition is already compromised.
In all, the association of treatment response and survival is inconsistent.

What is consistent is the relationship between poor survival outcomes and an absence of response
(or, worse, progression on treatment). This is where a test that provides the most immediate signal that
a drug is ineffective would play an important role, as such a test would identify patients who are not
benefiting from a drug or drug regimen, before major costs and toxicities accrue.

4. Biomarker-Based Methods of Response

Response biomarkers (based on blood or urine tests) represent a cheaper and more convenient
alternative to radiographic methods of assessing response. (In Canada, CT costs about $1100 and MRI
costs $1600 per body region; PET scan costs $3400.) If they are also more reliable, then their application
to oncology practice will supplant serial scans. Moreover, if a response biomarker is an early indicator
of benefit (or resistance), then the oncologist can decide relatively soon whether to persist with any
drug or drug combination, before toxicities appear, before clinical deterioration occurs, and before
significant monetary cost has been realized.

Protein and carbohydrate tumor markers (e.g., CEA, CA19-9, CA125, alphafetoprotein,
chromogranin A) have been used to monitor the effects of systemic therapy for specific tumor
types [27–31]. The problem with protein biomarkers is that their abundance does not necessarily
reflect alterations in cellular physiology. Moreover, while they may increase quickly in response to a
dramatic change in physiology, their disappearance may take much longer, limiting their usefulness as
a response biomarker. Therefore, because of the difficulty in interpreting changes in protein biomarkers
(including tumor markers), they have not found general use in oncology [28]. One exception is PSA,
which is useful for monitoring treatment effects for prostate cancer, although it has limited effectiveness
in bone disease and when cytostatic agents are administered [32].

Recently, considerable effort has been made to develop response biomarkers based on the
disappearance of circulating tumor cells [33,34] and reductions in circulating nucleic acids [35,36].
These represent attractive strategies for monitoring for response, but there are some limitations. Both
of these strategies rely on the presence of high pre-treatment levels of circulating tumor cells and
nucleic acids, as measurable reductions from treatment are difficult to detect when baseline levels are
low. Circulating tumor cells and nucleic acids are also tumor-specific. Finally, it is unclear how these
approaches would perform in patients treated with cytostatic targeted therapies. A better response
biomarker would respond quickly after treatment initiation, would not require a high pre-treatment
baseline level, and would be more generalizable to different tumor types and different drugs.
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5. Serial Monitoring of the Metabolome

Reprogrammed metabolism is a known hallmark of cancer [37]. In general, this metabolic
reprogramming supports the high metabolic requirements of cell growth and proliferation
characteristic of cancer, which require high amounts of adenosine triphosphate (ATP) and substrates
for anabolic metabolism. Perhaps the best-known feature consists of enhanced glycolysis;
pyruvate derived from accelerated glycolysis undergoes lactate fermentation rather than oxidative
phosphorylation, even in aerobic conditions. Glutamine is a preferential fuel for tumor cells, which has
a number of metabolic consequences, including an increase in the glutamate-to-glutamine ratio [38].
Fatty acid synthesis and nucleic acid synthesis are accelerated to support cell proliferation [39].
It is conceivable that effective chemotherapy would inhibit or even reverse some of these
metabolic perturbations.

Taking this idea further, monitoring changes in the metabolome following initiation of
chemotherapy may represent a strategy to detect changes indicative of effective treatment.
Indeed, a response to chemotherapy is known to have metabolic consequences. For example, systemic
therapy can result in diminished FDG uptake in tumors, reflecting a reduction in glycolysis [5,27,40–43].
Lactate dehydrogenase (which catalyzes the interconversion of lactate and pyruvate) is released from
dying cells, which forms the basis of a common cytotoxicity assay used in the lab [44]. Since the
metabolome changes rapidly with pathophysiological perturbations, serial analysis of the metabolome
represents an attractive strategy for following treatment response.

There are additional characteristics that make a metabolomic biomarker appealing. A metabolomic
biomarker is not just a string of changes in individual metabolites. Rather, it is comprised of groups
of co-related metabolites that change in concert; it is a meta-biomarker. For example, changes in
circulating metabolites associated with CRC might reflect alterations in metabolism that are contained
within the tumor as well as alterations in the general health of the host, producing an overall
“tumor signal” that reflects the extent of disease as well as its biology. In a person receiving
chemotherapy, several discreet processes can be followed at once, including appearance of cell death,
reduction in cell proliferation, and reduction in “tumor signal”. Importantly, because a metabolomic
biomarker is a meta-biomarker, a random change in a single metabolite will not provide a false
signal. A metabolomic biomarker therefore represents a powerful means of monitoring changes in an
individual’s condition over time.

5.1. Putative Causes of Treatment-Related Changes in the Metabolome

One of the challenges of monitoring serial changes in the metabolome will be to understand the
underlying cause(s) of any fluctuations. Once an antineoplastic drug is administered, a number
of processes could contribute to changes in the metabolome. If blood or urine are used as the
biological matrix, then it will be important to appreciate that any treatment-related alterations could
originate from the tumor, the host, as well as from toxicities and idiosyncratic drug reactions (Figure 1).
The challenge in developing a biomarker that signals whether the drug is beneficial is mostly related
to identifying changes that do not reflect benefit, and excluding those changes that do not reflect
therapeutic response.

Perhaps the most obvious causes for any change in the metabolome are the pharmacological
effects. These would largely be a function of the mechanism of action, but could also be affected by
dose, pharmacogenetic factors, comorbidities and concomitant drug use. If the pharmacologic effects
of a drug on the metabolome are known, then the appearance of those changes would signify that
the drug is being administered at a dose that effectively causes the targeted drug effects. Importantly,
however, the appearance of those changes in the metabolome do not indicate that the drug is providing
benefit. For that, changes associated with functional changes in tumor cells (antineoplastic effects)
must be delineated.

Antineoplastic effects could comprise cell death (necrosis or apoptosis) or slowed tumor cell
proliferation. Molecularly targeted agents would be expected to induce less cell death than older
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cytotoxic chemotherapies. Therefore, the relative degree of cell death and antiproliferative effects is
dependent on the class of drugs. It follows then that, in monitoring the metabolome, the patterns of
change that accompany cell death and reduced proliferation will co-exist to variable degrees.

Another potential antineoplastic effect is a loss of “tumor signal”. It is well established that
patients with cancer have different metabolomes than disease-free controls. This metabolomic pattern
(which we refer to as the “tumor signal”) is the product of tumor metabolism and the host response to
tumor, as well as perhaps any metabolomic manifestations of factors that predispose the host to cancer.
It is conceivable that effective treatment will cause a loss or a reduction in the metabolomic effects
of the tumor, due to diminution of the tumor burden or perhaps due to inhibition of the metabolic
perturbations that characterize cancer.

Tumor

Metabolic	Effects
On	Host

”Tumor	Signal”

Metabolic	Perturbations	
Characterizing	
Tumor	Cells

Drug	in	Circulation

Pharmacologic	Effects	on	
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Figure 1. Causes of treatment-related changes in the circulating metabolome in individuals who
have received antineoplastic agents. Pharmacologic effects are independent of therapeutic benefit.
Antineoplastic effects are associated with benefit. Such antineoplastic effects include changes in the
metabolome that are secondary to cell death, reduced cell proliferation, or a loss of “tumor signal”
(which is a product of the effects on the metabolome by the tumor and by the host response to the tumor).
The experimental design for discovery of a response biomarker (which signifies therapeutic benefit)
will require effective linkage of metabolomic changes with objective effects on tumor progression.
If treatment-related changes in the metabolome (from pre-treatment baseline) are linked to objective
measures of response, then the non-specific pharmacologic effects of the drug will be effectively
excluded, yielding a response biomarker.
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In developing a response biomarker (a biomarker that signifies benefit from chemotherapy),
it will be essential to discriminate pharmacologic effects from antineoplastic effects. This can be
addressed with proper experimental designs. Essential to the experimental design is the linkage of
changes in the metabolome with the desired therapeutic effect, which in this case is objective evidence
of tumor shrinkage or a reduction in the rate of tumor progression. Early studies should focus on
relatively homogeneous patient cohorts with a single tumor type treated on a clinical trial protocol.
Analytical batches must be designed to have balanced representation of samples from patients with
different response categories, as well as other comparators.

It is likely that response-related changes in the metabolome are specific to tumor type and drug.
It is also possible that there are several patterns of metabolomic change that appear simultaneously
(depending on the existence of effects as described above). In addition, with iterative testing of
samples from a large variety of conditions, it may be possible to identify some common changes in the
metabolome that signal effective chemotherapy.

5.2. In-Vitro Studies

In-vitro studies are perhaps the easiest way to initially screen for drug-induced changes in the
metabolome, as they are an ideal means to investigate the effects of a large variety of controlled
conditions such as time, cell line, drug, dose, and drug mechanism of action. Integral to any cell line
experiment is the functional endpoint to which drug-induced metabolomic changes are correlated.
Functional endpoints relevant to a response biomarker would include cell death or a reduction in
cell proliferation. Unfortunately, most in-vitro studies on drug-induced changes in the metabolome
primarily involve a description of changes in the metabolome that result from the drug itself, or it is
unclear whether the changes are pharmacologic or due to impairment of tumor cell expansion [45–52].

There are data on the metabolomic consequences of effective chemotherapy from a variety of
cell lines treated with diverse drugs and analyzed using different analytical platforms. Using LC–MS,
a fall in intracellular ATP levels and a depletion of NAD+ was observed in association with cell
death from melittin and cisplatin in ovarian cancer cells [51]. Lodi et al., using 1H-NMR spectroscopy,
characterized the metabolic fingerprints of two prostate cancer cell lines and a breast cancer cell line
secondary to the pharmacological changes from a PI3K inhibitor and an HSP90 inhibitor, then identified
changes that occurred due to loss of cell viability [53]. They described drug-specific changes, but there
were also some changes that appeared in cells treated by both drugs, including decreased alanine,
lactate and fumarate, as well as accumulation of phosphocholine and branched-chain amino acids.
In human embryonic kidney cells and HepG2 hepatocellular carcinoma cells, a targeted analysis of
42 metabolites, using a direct-injection tandem mass spectrometry-based neonatal screening assay,
revealed that cell death secondary to staurosporine, 5-fluorouracil and etoposide caused an array of
changes [54]. Increases in alanine and glutamate appeared after treatment of all three drugs.

Most of the above cited studies evaluated changes in intracellular metabolites. Tiziani and
coworkers described an NMR-based method to screen drugs for efficacy by evaluating cellular
response to treatment [55]. Both intracellular and extracellular metabolites were analyzed together,
which comprised a novel metabolomic response screen for kinase inhibitors. However, if a response
biomarker applicable to the evaluation of clinical samples is to be derived, then it is necessary to
understand effects on the extracellular compartment, for those are the metabolites most likely to be
shed into the circulation. One report of metabolomic changes that accompany adriamycin treatment
using GC–MS demonstrated that, in sensitive breast cancer cells, there was a distinct decline in the
lactic acid levels in culture media that did not occur in resistant cells [56]. Otherwise, there is a relative
paucity of in-vitro data on the metabolomic changes in the extracellular compartment that accompany
effective chemotherapy.
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5.3. In-Vivo Studies

While in-vitro studies represent a good start to understanding the metabolomic changes associated
with effective chemotherapy, ultimately, in-vivo studies are essential. In-vivo studies may not
recapitulate in-vitro observations for a number of reasons. There are differences in the matrices
(culture media vs body fluid). Timing of analysis may have an effect. Typically, cell culture studies
involve drug exposures lasting 24 h–72 h. Clinical samples may be collected at different times.
In-vitro experiments occur in defined spaces, where it is possible to see changes in metabolite
concentrations in the extracellular space due to fluxes with the intracellular compartment, alterations
in cellular metabolism, or due to a massive release from cell lysis. In vivo, the metabolome could
be affected by a variety of tumor and host factors, which is why we and others have observed that
not all cancer-associated features in the circulating metabolome can be attributed to the metabolic
perturbations characteristic of a cancer cell [52,57,58]. Indeed, it is well known that in-vivo observations
do not recapitulate what is observed in cell line experiments [59].

A number of investigators have reported on in-vivo metabolomic changes within two weeks
of starting antineoplastic drugs, but for most studies, the link between these changes and treatment
effectiveness was not clearly established [60–62]. Metabolomic changes related to treatment
effectiveness have been reported in mice and humans, using several analytical platforms [63–66].

1H-NMR spectroscopy was used to test murine B16 melanomas and 3LL lung cancers treated
with chloroethylnitrosourea [63]. After 2–3 weeks, tumors were removed during the growth-inhibition
phase and compared to untreated tumors. During growth inhibition, there was an accumulation
of glucose, glutamine and aspartate (which reflects reduced cellular consumption and perhaps
also the downregulation of nucleoside synthesis). Growth inhibition was also accompanied by
increases in alanine, decreases in succinate and accumulation of serine-derived metabolites (glycine,
phosphethanolamine, formate). This may reflect changes in the capability of the cell to catabolize
alanine and serine, ordinarily used by the cancer cell to support synthesis of lipids, proteins and
nucleic acids [67]. In another murine model of lung cancer reported by Weaver et al., an integrative
analysis of changes in the metabolome and transcriptome was reported, including drug-specific and
response-specific changes [64]. Finally, in patients with locally advanced breast cancer, tumor biopsies
were evaluated by high-resolution magic-angle spinning magnetic resonance spectroscopy before and
during treatment, to categorize intratumoral metabolic response [65]. Metabolic responses were related
to outcome. In patients surviving ≥5 years, there was an increase in glucose, and a decrease in glycine
as well as choline-containing compounds, whereas patients with poor survivals had increased tumor
levels of lactate. High glucose in long-term survivors may reflect a reduction in glycolysis, and high
lactate in patients with a poor prognosis may reflect continued growth and proliferation of malignant
cells despite treatment.

In two instances, the metabolomic changes associated with effective chemotherapy reflected a
diminished “tumor signal”. In the animal study by Weaver et al., tumor-associated changes in the
lung and blood were reversed with treatment [64]. In another study involving patients with prostate
cancer, LC–MS was used to identify metabolomic changes in blood that accompanied response to
endocrine therapy [66]. They reported on seven metabolites that distinguished patients with prostate
cancer from healthy controls (deoxycholic acid, glycogebideixycholate, tryptophan, docosapentaenoic
acid, arachidonic acid, deoxycytidine triphosphate and pyridinoline). These metabolites belong to
the cholesterol pathway (and are precursors for steroid hormones including androgens), as well as
inflammation pathways. These same metabolites that characterized prostate cancer normalized during
endocrine therapy in good responders (defined as individuals who did not develop castration-resistant
prostate cancer within two years).

One analytical technique that is potentially quite interesting is matrix-assisted laser
desorption/ionization (MALDI)–imaging mass spectrometry (IMS). MALDI–IMS allows the
simultaneous label-free detection of multiple molecules while maintaining spatial distribution in
tissues. This has a number of intriguing applications in translational research. For example, using this
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approach it is possible to delineate drug distribution throughout the tumor [68]. This would be
particularly useful if regional patterns of cell death or growth inhibition could be mapped out using
such an approach.

6. Early Detection of Chemoresistance

For most solid tumors, it is unusual, even after complete disappearance of the tumor,
for chemotherapy to effect a cure. The more common outcome is for tumors to eventually progress
as resistant cells emerge. There are many mechanisms responsible for this, but ultimately resistance
emerges because of survival and growth of a clone expressing the resistance mechanism. The universal
outcome is slowed rate of tumor death and outgrowth of newly vital cells. Clinically, this does not
become apparent until measurable tumor expansion appears on cross-sectional imaging. At that point,
the patient’s medical condition may have significantly deteriorated, which greatly affects his/her
capability to receive other lines of chemotherapy. A biomarker that signals the emergence of resistance
before gross tumor growth appears would therefore be advantageous.

In the context of a response biomarker, it would seem intuitive that response-related changes in
the metabolome disappear and maybe even reverse as chemotherapy resistance ensues. In our own
unpublished experiments, we have observed that some of the changes in metabolites associated with
therapeutic benefit are extinguished or reversed when tumor growth resumes. Other mechanisms
may also be responsible for resistance-related changes in the metabolome. In breast cancer
cells treated with adriamycin, there were two related observations that were interesting [56].
First, when adriamycin-sensitive cells were exposed to the drug, their metabolomic profile began
to take on a profile more similar to resistant cells. This suggested that emergence of resistance
was accompanied by some sort of metabolic reprogramming. Second, intracellular citric acid levels
decreased in response to adriamycin in sensitive cells, but increased in resistant cells. The authors
postulated that treatment-related increases in citric acid levels represented a biomarker of resistance.
In murine models of melanoma and lung cancer, following chemotherapy, there was a resumption
of glutamine utilization in comparison to glucose utilization during the growth-recovery phase [63].
Intratumoral glucose-to-glutamine ratio (which reflects the balance of glucose and glutamine
utilization) was therefore particularly instructive on the state of the tumor.

The loss of response-related metabolomic changes, or the appearance of progression-related
changes, may precede gross disease progression. A biomarker based on such metabolomic events
may spur the oncologist to change drugs before the patient’s health deteriorates. This has three
benefits: (a) inappropriate dose escalations can be avoided, and so could the attendant toxicities;
(b) inappropriately prolonged treatments can be avoided, avoiding cumulative toxicities; and (c) it will
be possible to rotate to a new (potentially effective) drug regimen before gross disease progression and
the associated clinical deterioration occur.

7. Response Biomarkers as a Disruptive Influence on Oncologic Practice

For a number of reasons, a response biomarker that determines whether a drug is benefiting an
individual would be truly disruptive to the field. This would be particularly the case if that same
biomarker could be used for early detection of chemoresistance. The potential impacts of a response
biomarker are detailed in Table 1.

The benefits to patients and to medical oncologists can be encapsulated by minimizing exposure
to ineffective drugs. Unnecessary toxicities will be avoided, performance status will be preserved,
and the patient’s condition will be preserved as additional lines of chemotherapy are trialled. This is
quite different than current practice, where drugs are given for a long period (even in the absence of
measurable response), and cumulative toxicities slowly take their toll on performance status. As a
result of this progressive deterioration, successive lines of chemotherapy are more difficult to tolerate.
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Table 1. Potential benefits of a response biomarker for antineoplastic agents.

Beneficiary Benefits

Benefits to the
Patient

1. Minimize exposure to ineffective and potentially harmful chemotherapy drugs.
2. Avoidance of unnecessary toxicities, improving quality of life and possibly survival.
3. A response biomarker that reflects chemosensitivity may expand therapeutic options

available by identifying subpopulations that will directly benefit from such drugs,
expanding antineoplastic formulary for individuals.

4. Preservation of performance status will facilitate administration of later lines of therapy.

Effects on
Clinical Practice

1. Therapy will be individualized using a biomarker that reflects response, resistance and
sensitivity to therapeutic administration.

2. Will enable dose titration. The lowest effective dose for an individual could be
administered, thus reducing treatment-related toxicities.

3. Early detection of chemoresistance will have the following benefits:

(a) inappropriate dose escalations can be avoided, and so could the
attendant toxicities;

(b) inappropriately prolonged treatments can be avoided, avoiding
cumulative toxicities;

(c) it will be possible to rotate to a new (potentially effective) drug regimen before
gross disease progression and the associated clinical deterioration occur.

4. Will enable improved monitoring of treatment effect in patients with malignant
conditions that are difficult to gauge radiologically (e.g., peritoneal disease,
malignant effusions).

Socioeconomic
Benefits

1. Payers (including insurance companies, governments and patients) will pay much less
for ineffective drugs.

2. Patients whose quality of life is preserved and whose disease is controlled with less
toxicity will be more likely to be able to resume normal activities, including work.

3. Novel drug development will be less expensive and more efficient, which may translate
to development of more, less-costly drugs.

Benefits to
Industry

1. Clinical trial designs would be revolutionized: the availability of a biomarker of
chemosensitivity will provide a new trial endpoint, enabling identification of appropriate
doses and patient populations with less harm to trial patients in phase I trials.

2. Opportunity for industry to reintroduce some drugs to clinical practice that have efficacy
in CRC but insufficient benefit to the aggregate.

3. Phase II trials can be performed more quickly, using the biomarker as a surrogate marker
for benefit. Such trials would also be less onerous on trial participants. This would result
in new drugs being screened and introduced more quickly and efficiently to the market,
translating to more, less-costly drugs.

4. There will be less need for predictive biomarkers, which take years to develop
and validate.

The socioeconomic benefits of an effective response biomarker are substantial. Foremost will be
the cost savings to the payer. Many drugs cost $5000–$10,000 per month, and the costs are rising quickly
to unsustainable levels. While this may initially appear unattractive to industry, there are substantial
benefits to industry as well. Phase II clinical trials could be much more cost effective if a response
biomarker was used as a clinical trial endpoint; endpoints would be reached sooner, less patients may
be required to complete the trial, and drugs with little activity can be quickly removed from the clinical
trial queue. By rapidly identifying individuals who are benefiting from a drug, subsequent phase III
trials can be better designed to include only individuals who are likely to benefit. Alternatively, if there
are no obvious distinguishing features of individuals who benefit from a drug (including predictive
biomarkers), then an adaptive clinical trial could be designed, using the response biomarker to select
the trial cohort. Another benefit to industry is that drugs that have failed in phase III trials (because of
insufficient benefit to the aggregate population) can be trialed in practice. That is, these drugs can be
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given on a trial basis to eligible individuals; moreover, there will be greater capability to try drugs in
individuals with rare tumors, where clinical trial evidence of benefit is lacking.

8. Challenges in the Development of a Response Biomarker

There are some challenges related to developing a response biomarker and an ancillary biomarker
that signifies chemoresistance. Serial monitoring of the metabolome must make up the experimental
framework for this development. Below are further considerations in the experimental design and in
risk mitigation.

8.1. Selecting the Best Analytical Platforms for Biomarker Discovery

A number of analytical platforms have been used for metabolomics work. Details of
the advantages and disadvantages of each platform is outside of the scope of this review.
However, in general, it is essential that the technology can be adapted to a clinical laboratory, if the
ultimate goal is to create a clinical test. Therefore, it must be easy to use, there must be high-throughput
capability, and the spatial footprint must not be excessive. While, at first glance, instrumentation that
has the resolution and sensitivity to detect more compounds is advantageous, measurement of more
compounds comes with the cost of increased signal-to-noise, resulting in more difficulty in constructing
a stable metabolomic model. In our own work, we have preferred to use gas chromatography–time
of flight–mass spectrometry (GC–TOF–MS), which has sufficiently high resolution to reproducibly
detect several hundred compounds and takes up the space of a desktop. Another essential feature of a
clinical assay is that it is quantifiable and reproducible, which requires the use of internal controls for
any of the mass spectrometry-based modalities. Finally, the cost of the final assay must be significantly
less than the cost of serial radiographic scans. Currently, the main obstacle that keeps costs high is
the requirement for sophisticated technical and statistical analyses related to metabolomic biomarker
work. Therefore, it will be imperative to devise a workflow that enhances the capability to analyze and
interpret many samples in a high-throughput fashion.

8.2. Distinguishing Changes in the Metabolome that Reflect Treatment Effectiveness from Changes that Are
Due to Pharmacological Effects

As discussed above, in the literature, there are numerous descriptions of changes in the metabolome
that accompany administration of various antineoplastic drugs. However, most experimental designs
do not enable one to distinguish treatment-related changes that specifically accompany effective
treatment. To do that, it will be imperative to link metabolomic changes to reductions in tumor size or
density (on CT or MRI), or to reduced avidity to radioisotopes on PET scans.

8.3. Accounting for Genetic Differences, Dietary Variations and Environmental Influences

Genetic traits of the individual probably affect the metabolome in health and disease, as would
diet and various environmental influences. Indeed, in most metabolomic biomarkers we have so far
developed, gender differences have been identified. The advantage of doing serial measurements is
that the intra-individual comparisons reduce the influence of genetics and environment. On the other
hand, it is conceivable that treatment with toxic drugs or disease progression can each cause clinical
deterioration, which may cause dietary changes or may cause the appearance of other confounding
changes in the metabolome.

8.4. Longitudinal Assessment of the Metabolome: Analytical Challenges

While serial monitoring for changes in the metabolome within an individual minimizes the effects
of genetics and diet on the metabolomic biomarker, better methods will need to be devised to monitor
the multiple (co-related) metabolites over time. The challenge lies in identifying the patterns of changes
that accompany therapeutic benefit and the loss of these same changes as the benefit is extinguished
with the emergence of chemoresistance.
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8.5. Response to Cytotoxic Agents vs. Cytostatic Agents

The most common chemotherapeutic agents used in clinical practice throughout the last few
decades have mainly consisted of cytotoxic chemotherapy agents. These agents were developed
and designed to destroy cancer cells, eradicating solid tumors. As such, tumor shrinkage has
been the mainstay common end-point of determining response to these agents. More recently,
there has been a rapid expansion of novel non-cytotoxic agents with various mechanisms of action
that specifically target an ever-expanding array of molecules. These molecularly targeted cytostatic
agents are characterized by their ability to target specific pathways that encourage tumor progression.
Administration of cytostatic agents results in the inhibition of tumor growth and proliferation, without
the common toxicities associated with cytotoxic agents. However, cytostatic drugs may not result
in the physical shrinkage of the tumor in size. Rather, there is a change in tumor density that often
accompanies effective treatment. Therefore, the measure of treatment effectiveness (response) must
take into consideration the likely effects of these drugs on tumors.

8.6. Assessment of Stable Disease

In patients treated with either cytotoxic agents or targeted agents, the “stable disease” condition
represents a potential challenge. That is, in the absence of tumor shrinkage or growth after treatment,
it is difficult to delineate whether this stability is due to indolent tumor biology or stabilization of
growth secondary to treatment. There is no simple way to distinguish these two possibilities. However,
an additional outcome variable could be monitored, such as progression-free survival, which is
generally longer in patients benefiting from treatment.

8.7. The Kinetics of Response

Another challenge will be to understand the kinetics of any treatment-related changes. It is
conceivable that the types of metabolites that significantly change with treatment vary with time after
drug is administered. There are many reasons for this. Different metabolic functions may be affected
by the drug at different time intervals. Drug metabolism, tumor burden and off-target toxicities could
affect the kinetics of these changes. Therefore, as metabolomic response biomarkers are developed,
it will be imperative to understand the kinetics of these changes. A clinically useful biomarker would
appear soon after the drug has been initiated, and would remain stable as long as the tumor does not
progress. Once the kinetics of any biomarker are understood, it will be important to standardize the
sample collection times after each drug dose.

8.8. Drug-Specific vs. Generalizable Features of Response

It is anticipated that each drug or drug combination will be associated with specific
response-associated metabolomic changes due to differences in mechanisms of action. However, it is
also possible that there may be some response-associated metabolomic changes that are generalizable,
which would be particularly useful. For example, for cytotoxic agents, a common feature might be the
metabolomic changes that are associated with cell death. For cytostatic agents, the metabolomic effects
of reduced cell proliferation may represent a common feature.

9. Conclusions

For many cancers, the chemotherapeutic options are rapidly expanding. It has become clear
that there is considerable inter-individual variability in chemosensitivity. Therefore, there is a
need to individualize drug therapy. Ideally, a predictive biomarker would aid in the selection of
agents. However, validated predictive biomarkers are not widely available. Therefore, an alternative
approach to individualizing therapy would be an adaptive approach, which involves modifying
chemotherapy according to the appearance of signs of benefit or loss of benefit. This approach is
already being employed, but currently involves the use of radiographic tests to inform the oncologist.
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A biomarker-based approach to this adaptive strategy may have some advantages, especially if
the biomarker appears early and reliably. The metabolome is very sensitive to changes in medical
condition and therefore has the potential to form the basis for such a biomarker. Serial monitoring of
the metabolome, looking for changes that correlate with clinical benefit, represents the most attractive
strategy for the development of biomarkers of response and emergence of chemoresistance.
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The following abbreviations are used in this manuscript:

CT Computed tomography
FCH Fluorocholine
FDG Fluorodeoxyglucose
FLT Fluorothymidine
GC Gas chromatography
LC Liquid chromatography
MALDI-IMS Matrix-assisted laser desorption/ionization imaging mass spectrometry
MS Mass spectrometry
NMR Nuclear magnetic resonance
OS Overall survival
PET Positron emission tomography
PFS Progression free survival
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