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Abstract: Angiogenesis, the growth of new blood vessels, is a natural defense mechanism helping 
to restore oxygen and nutrient supply to the affected brain tissue following an ischemic stroke. By 
stimulating vessel growth, angiogenesis may stabilize brain perfusion, thereby promoting neuronal 
survival, brain plasticity, and neurologic recovery. However, therapeutic angiogenesis after stroke 
faces challenges: new angiogenesis-induced vessels have a higher than normal permeability, and 
treatment to promote angiogenesis may exacerbate outcomes in stroke patients. The development of 
therapies requires elucidation of the precise cellular and molecular basis of the disease. Microenvi-
ronment homeostasis of the central nervous system is essential for its normal function and is main-
tained by the blood-brain barrier (BBB). Tight junction proteins (TJP) form the tight junction (TJ) 
between vascular endothelial cells (ECs) and play a key role in regulating the BBB permeability. 
We demonstrated that after stroke, new angiogenesis-induced vessels in peri-infarct areas have 
abnormally high BBB permeability due to a lack of major TJPs in ECs. Therefore, promoting TJ 
formation and BBB integrity in the new vessels coupled with speedy angiogenesis will provide a 
promising and safer treatment strategy for improving recovery from stroke. Pericyte is a central 
neurovascular unite component in vascular barriergenesis and are vital to BBB integrity. We found 
that pericytes also play a key role in stroke-induced angiogenesis and TJ formation in the newly 
formed vessels. Based on these findings, in this article, we focus on regulation aspects of the BBB 
functions and describe cellular and molecular special features of TJ formation with an emphasis on 
role of pericytes in BBB integrity during angiogenesis after stroke. 

Keywords: Cerebral stroke, vascular remodeling, angiogenesis, tight junction proteins, blood-brain barrier permeability,  
barriergenesis. 

1. INTRODUCTION 

 Treatment options for ischemic stroke are very limited 
since ischemia-induced brain injury is a complex and multi-
stage process. New approaches to the treatment and medical 
care of stroke are urgently needed [1]. Currently, early 
treatments of patients with acute ischemic stroke aimed to 
achieve reperfusion include intravenous (IV) and intra-
arterial therapies, based on the 2019 AHA/ASA guideline 
[2]. However, intravenous recombinant tissue plasminogen 
activator (rtPA) must be given within 4.5 hours after stroke 
onset, while patients presenting within 0-6 hours of symptom 
onset (6-24 hours from last known normal for carefully se-
lected patients) have access to mechanical thrombectomy. 
This limits their use to around 5% of stroke victims; thus, 
research has focused on novel neurorestorative approaches 
that could be given beyond the hyperacute phase of stroke, 
since the time window for therapies aimed at improving  
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stroke recovery is far longer. In addition, treatments to im-
prove the stroke recovery is extremely important to maxi-
mize patient’s functional independence and quality of life. 
Neurorestorative events include neurogenesis and angio-
genesis. Emerging evidence shows that angiogenesis is a key 
feature of ischemic stroke recovery and neuronal post-stroke 
re-organization [3-6]. Angiogenesis induction and new ves-
sel generation contribute to neurorepair processes, including 
neurogenesis and synaptogenesis [3, 4, 6-8]. 

 Angiogenesis is the physiological process through which 
new blood vessels form from pre-existing vessels, which is 
an important process that occurs during both health and dis-
ease. During the development of brain vasculature, blood 
vessels form via two distinct processes: vasculogenesis and 
angiogenesis [9]. Vasculogenesis involves the proliferation 
and differentiation of mesoderm-derived angioblasts into 
endothelial cells (ECs). After the primary vascular plexus is 
formed by vasculogenesis, a more complex vascular network 
is established via angiogenesis. Like other vascular net-
works, brain vessels undergo formation, stabilization, 
branching, pruning and specialization. The vasculatures 
formed by vasculogenesis and angiogenesis are stabilized via 
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the recruitment of mural cells and generation of the extracel-
lular matrix. They are then fine-tuned in response to envi-
ronmental cues from neighboring cells before finally acquire 
featuring suitable for the brain function [9, 10]. 

 After the stroke, ischemic penumbra tissue releases angi-
ogenic factors that induce proliferation of ECs and migration 
of endothelial progenitor cells for the formation of new 
blood vessels. Factors released by ECs in vitro trigger neural 
stem cell proliferation [11]. The leading process of the mi-
grating neural progenitor cells (NPCs) is closely associated 
with blood vessels, suggesting that this interaction provides 
directional guidance to the NPCs. These findings suggest 
that blood vessels play an important role as a scaffold for 
NPCs migration toward the damaged brain region. In addi-
tion, evidence showed that between 30 and 90 days of reper-
fusion, the density of new vessels in the peri-infarct regions 
regressed significantly [12]. Therapeutic angiogenesis may 
remain insufficient if it does not prevent the regression of 
established vessels in the peri-infarct regions [13]; therefore, 
angiogenesis could be a key therapeutic target for stroke 
recovery [3]. 

 Nevertheless, current pharmacological and other ap-
proaches to enhance angiogenesis may have dual natures 
since some growth factors involved in post-ischemic angio-
genesis are faced with challenges that may have detrimental 
adverse effects and worsen stroke outcome [1, 14-16]. 
Ischemia-induced cerebral angiogenesis can be boosted by a 
huge variety of agents, stem cells, as well as other manipula-
tions in experimental models of rodent stroke. The literature 
reviewed by Beck et al and Font et al provides promising 
evidence supporting stimulating post-ischemic angiogenesis 
to improve neurological function [1, 14]. They also pre-
sented information demonstrating that almost all treatment 
strategies are not angiogenesis-specific, rather, strategies 
influence other post-ischemic events too, such as vascular 
permeability and inflammation, and enhancing angiogenesis, 
and may have detrimental effects in the brain by increasing 
blood-brain barrier (BBB) permeability [5, 17]. Increased 
angiogenic growth factors like vascular endothelial growth 
factor (VEGF) and its receptors were seen in human tissue 
after ischemic stroke [18]. Treatment of stroke with VEGF is 
a double-edged sword due to VEGF-induced new vessels are 
immature and leaking [19], which might exacerbate edema, 
for example, a major and often life-threatening complication 
of various brain injuries [1, 14-16]. 

 The central nervous system (CNS) requires precise con-
trol of their bathing microenvironment for optimal function, 
and an important element in this control is the BBB [20]. 
The BBB is formed by the endothelial cells lining the brain 
microvessels, under the inductive influence of neighboring 
cell types within the neurovascular unit (NVU), the milieu of 
neurons, astrocytes (AC), pericytes (PC), microglia and other 
components of the brain parenchyma that communicate with 
ECs (Fig. 1 [21]). The endothelium forms the major interface 
between the blood and the CNS; by a combination of low 
passive permeability and presence of specific transport sys-
tems, enzymes and receptors regulate molecular and cellular 
traffic across the barrier layer. ECs are interconnected by 
tight junctions (TJ) that reveal a unique morphology and 
biochemical composition of brain vasculature. Tight junction 

proteins (TJP) are integral transmembrane proteins that form 
the TJ strands between ECs. TJPs play an important role in 
establishing fully-functional BBB barrier function that is 
critical in the regulation of permeability of brain microves-
sels. This highlights the significance of translational angio-
genesis therapy: facilitation of functional BBB and determi-
nation of appropriate points of intervention for functional 
vascular remodeling during stroke recovery. 

2. BBB MATURATION AND MAINTENANCE DURING 
EMBRYONIC DEVELOPMENT AND ADULTHOOD 

2.1. Cellular Barrier-Neurovascular Unit (NVU) 

 The structural and functional integrity of the brain de-
pends on the delicate balance between substrate delivery 
through blood flow and energy demands imposed by neural 
activity. BBB plays a major role in controlling the neuronal 
microenvironment. Cerebral vessels have extremely special-
ized characteristics that allow them to form the BBB. ECs, 
inter-endothelial tight junctions, the basal lamina, perivascu-
lar ACs and PCs, and microglia are jointly referred to as the 
BBB or, more recently, as the NVU (Fig. 1) [9, 20, 22-25]. 
CNS ECs have specific transporter and receptor proteins to 
control entry and exit of metabolites across cells (transcellu-
lar transport) and high electrical resistance TJs to limit 
movement between adjacent cells (paracellular transport); 
and low levels of transcytotic vesicles compared to periph-
eral endothelia and an absence of fenestrae (small pores that 
allow rapid passage of molecules in peripheral endothelial 
cells) [26]. Around the cerebral ECs is a basal lamina com-
posed primarily of laminin, fibronectin, and heparan sulfate. 
The basal lamina provides a structural barrier to the ex-
travasation of cellular blood elements and anchors ECs and 
ACs [27]. Anatomically, most ACs have stellate shapes con-
taining multiple processes. These ACs expand toward neu-
rons and vessels. The processed ends of the ACs, so-called 
endfeet, contact the vessel wall and form large compartments 
that enclose most blood vessels of the brain and play a deci-
sive role in the maintenance of the barrier properties of the 
brain microcapillary ECs. PCs share a basement membrane 
with ECs and form direct synaptic-like peg-socket focal con-
tacts with endothelium through N-cadherin and connexins 
(such as connexin 43, CX43), allowing exchanges of ions, 
metabolites, second messengers, and ribonucleic acids be-
tween the two cell types. PCs play important roles in main-
taining BBB integrity, aiding in angiogenesis and microvas-
cular stability [28-33]. Low rate of vesicular transport (tran-
scytosis) has been identified as one of the two unique proper-
ties of CNS ECs that maintain the restrictive quality of the 
BBB [34]. Loss of PCs increased transcytosis and enhanced 
BBB permeability in mouse model of intracerebral hemor-
rhage [35] and in pericytic-laminin conditional knockout 
mouse [36]. Microglia, the brain resident immune cells, are 
activated in response to injury and orchestrate the brain’s 
inflammatory response [37]. 

2.2 Molecular Barrier-endothelium Tight Junction  
Proteins 

 The BBB proper is made up of ECs interconnected by 
TJs that reveal a unique morphology and biochemical com-
position of brain vasculature. Cerebrovascular endothelial 
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Fig. (1). Differentiation of the blood-brain barrier (BBB). Angiogenesis phase: Vascular sprouts radially invade the embryonic neuroecto-
derm towards a concentration gradient of VEGF-A, which is produced by neuroectodermal cells located in the ventricular layer. VEGF-A 
binds to its endothelial receptor, the receptor tyrosine kinase flk-1/KDR/VEGFR2. The EC specific receptor tyrosine kinase Tie-2 and its 
ligand Ang-1 are involved in angiogenic sprouting early during embryogenesis. The cerebral ECs show Glut-1 evenly distributed and the 
MECA-32 antigen is highly expressed, contributing to poor barrier characteristics and high paracellular permeability (PP). Differentiation 
phase: The phenotype of cerebral ECs changes such that they downregulate the expression of the MECA-32 antigen. Glut-1 is now enriched 
on the abluminal surface of the endothelium. The TJs become complex and thus tight for small polar molecules. Phenotypic changes of ECs 
are accompanied by their close contact with PCs and astroglial cells. Recruitment of PCs along the differentiating BBB vessels is ensured by 
several mechanisms. PDGF-BB produced by ECs binds to its receptor PDGFR-β on PCs; N-cadherin enriched at sites of PC-EC contact; 
Ang-1 expressed by PCs binds to the endothelial receptor tyrosine kinase Tie-2. ECs produce leukemia inhibitory factor (LIF), inducing the 
maturation of ACs via the LIF-Rb. Furthermore, increased oxygen level and EC-derived PDGF-BB lead to an upregulation of SSeCKS in 
ACs that in turn upregulates Ang-1. Note: During vascular remodeling after stroke, the newly formed vessels in peri-infarct regions demon-
strate cellular features as angiogenesis phase and differential phase as shown above. In the differential phase, the only TJP that formed the TJ 
strands between ECs is claudin-5, while occludin and ZO-1 are expressed by ACs and PCs. The vascular PCs also express NG2, MMP-3, and 
other angiogenic factors. The molecular mechanisms involved in crosstalk between ECs, ACs and PCs required for TJ formation and matura-
tion in the newly formed vessels remain under studied. Maturation phase: Despite the fact that the cerebral ECs form the barrier proper, close 
contact with PCs, ACs and maybe neuronal cells is required for the maintenance of the BBB. The molecular mechanisms involved in this 
crosstalk required for BBB maintenance in the mature CNS remain unknown to date. Modified from Stefan Liebner et al., Int. J. Dev. Biol. 
2011, 55, 467-476. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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TJs join ECs together to form the first barrier that restricts 
molecules from moving between the blood and the brain [38-
40]. The TJPs, critical for the maintenance of the barrier 
function [41, 42], assemble in the clefts of the cerebral blood 
vessels to restrict transport across the BBB. Several TJPs 
have been isolated and cloned. Transmembrane TJPs consist 
of three integral proteins: claudins, occludin, and junctional 
adhesion molecules (JAM). Occludin is a ~ 65 kDa phos-
phoprotein that regulates paracellular permeability [38, 43-
46]. Claudins are ~ 22 kDa phosphoproteins that are thought 
to help maintain high transendothelial electrical resistance. 
The extracellular loops of occludin, claudins, and JAM 
originating from neighboring cells form the paracellular bar-
rier of the TJ, which selectively prevents most blood-borne 
substances from entering the brain. In rodents and adult hu-
man brains, claudin-1/3, claudin-5, and occludin have been 
found to be present in brain endothelial tight junctions form-
ing the BBB. In the brain, claudin-5 is the only EC-specific 
component of TJ strands [47], appearing to be the most im-
portant structural components of BBB TJs [48]. Studies 
showed controversial roles of claudin-1 in BBB TJ complex 
organization, helping to form secondary astrocyte/glial barri-
ers to protect the brain from endothelial breakdown [48, 49], 
or unessential for BBB TJ complex function under physio-
logical conditions [50, 51]. Recent study suggested that 
claudin-1 results in limited brain endothelial barrier post-
stroke recovery, partially due to restricted claudin-5 expres-
sion [52]. At the level of the ECs, which are directly in con-
tact with the systemic circulation, the TJPs form a seal that 
blocks the entry of large proteins and charged molecules 
[27]. TJs are dynamic structures and TJPs are subject to 
changes in expression, subcellular location, post-
translational modification, and protein-protein interactions 
under both physiological and pathological conditions [24, 
46, 53-60]. Claudins and occludin are close to the blood and 
junctional adhesion molecules (JAM) and are deeper inside 
the endothelial cell clefts [38-40, 61, 62]. Zona occludens 
(ZO)-1 and -3 are cytoplasmic tight junctional accessory 
proteins, which connect TJs to the actin cytoskeleton [44, 63, 
64]. Occludin, claudin-5 and ZO-1, which are the main struc-
tural barrier proteins, are considered sensitive indicators of 
normal and disturbed functional states of the BBB [41]. Dis-
ruption of BBB TJ by disease or drugs can lead to impaired 
BBB function and thus compromise the CNS. Regulation of 
the three TJPs are essential for the maintenance of the BBB 
permeability. 

2.3. Maturation and Regulation of the BBB Following 
Angiogenesis 

 Following angiogenesis of the primary vascular network, 
brain vessels experience a maturation process, known as 
barriergenesis, via the recruitment of mural cells and the 
generation of the extracellular matrix, in which the BBB is 
formed [9, 32, 65, 66]. Several excellent reviews have de-
tailed the cellular and molecular basis of brain angiogenesis 
and barriergenesis in BBB differentiation and maturation [9, 
14, 21, 26, 28, 67]. Fig. 1 modified from the review by 
Liebner et al., summarized the three phases of BBB conduc-
tion and differentiation during development [21] and stroke-
induced angiogenesis [68]. 

 ACs have been well documented to induce barrier prop-
erties in brain ECs both in vitro and in vivo [65, 69-71]. ACs 
are generally thought to be an essential for both the TJ for-
mation and the maintenance of the TJPs in the paracellular 
spaces between vascular ECs in CNS [22, 72-74]. The period 
of AC differentiation coincides with that of BBB formation. 
Differentiating ACs may extend their processes to the vessel 
wall, thereby sending signals to acquire BBB properties [9, 
21]. It is also clear that if brain ECs are cultured in vitro, 
they lose certain BBB characteristics, such as high TEER, 
the membrane localization of TJPs, and transporter expres-
sion; while most BBB characteristics can be regained via co-
culture with ACs or treatment with AC conditioned medium 
[9]. Astrocytic laminin polarizes astrocytic endfeet, inhibits 
PC differentiation, and induces and maintains TJP expres-
sion in ECs [75]. However, the role of ACs in BBB devel-
opment in the immature brain still controversial, for example, 
the study found that ACs are not present in the developing 
brain during the time of initial vascularization lends support 
to a role for ACs in TJ maintenance and not formation [76]. 

 On the other hand, evidence has accumulated to show 
that PCs have a key role in the development of cerebral vas-
culature and control key neurovascular functions and neu-
ronal phenotype in brain [9, 32, 70, 77-80]. PCs also play a 
key role in the cell crosstalk processes during the develop-
ment of cerebral vasculature and regulation of BBB function 
in brain diseases [9, 32, 42, 65, 78, 81-83]. PC recruitment is 
crucial to establishing BBB characteristics. Loss of PCs in 
platelet-derived growth factor receptor-β (Pdgfrβ) knockout 
mice exhibit age-dependent BBB dysfunction resulting from 
reduced TJ protein expression, whereas young adult mice 
with hypomorphic alleles of Pdgf b display defects in BBB 
integrity as a result of increased rates of endothelial transcy-
tosis [26, 30, 32]. During development, when ECs invade the 
central nervous system, PCs are also recruited to the devel-
oping vessels. This occurs more than a week before AC gen-
eration, suggesting that PCs are critical for BBB integrity 
[76]. Intriguingly, PCs not only regulate mature BBB integ-
rity, but also function to guide astrocytic foot processes to 
cerebral vessel walls and mediate the polarization of astro-
cytic end-feet [26]. In addition, PCs have been shown to de-
crease with age. A primary loss of PCs may lead to two par-
allel pathways of neurodegeneration, BBB breakdown and 
hypoperfusion, which lead to secondary neurodegenerative 
changes, paralleling an increase in BBB permeability [32]. 

 Studies show that PCs function at the BBB formation and 
maintenance in several ways: (1) control BBB integrity by 
regulating the orientation and abundance of endothelial TJPs 
and AJPs; (2) regulate the stability and architecture of newly 
formed cerebral microvessels; (3) contribute to secretion and 
regulate the levels of extracellular matrix proteins forming 
the basement membrane; (4) regulate capillary diameter and 
blood flow; and (5) provide clearance and phagocytotic func-
tions in the brain [29, 30, 32, 33, 84, 85].  

3. ANGIOGENESIS AFTER STROKE 

3.1. Angiogenesis Processes after Stroke 

 Three processes are implicated in neurorepair: angio-
genesis, neurogenesis, and synaptic plasticity. We and others 
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have demonstrated that some vessels remain in the lesion 
areas up to 7 days after reperfusion, which provides the cel-
lular basis to trigger angiogenesis [68]. At 3 weeks of reper-
fusion, we observed that proliferating PCs closely sur-
rounded the increased number of regrowing ECs seen in the 
peri-infarct areas in a rat model of middle cerebral artery 
occlusion. These vascular-associated PCs are neural/glial 
antigen 2 (NG2) and Ki67 positive, suggesting that they are 
in angiogenic status and contribute to new vessel formation 
[86-92]. After the stroke, increased vascular remodeling in 
rat brain is found in the areas of newly-born neuroblasts 
which migrate from the subventricular zone to the peri-
infarcted cortex [93]. ECs are primary effector cells of the 
angiogenic response after ischemic injury, followed by the 
PCs and smooth muscle cells. Angiogenesis involves the 
proliferation of ECs and sprouting of the vessels that eventu-
ally increase vascular density [68]. The proliferation of ECs 
after cerebral ischemia has been extensively demonstrated 
[6, 8, 88, 94-96]. Studies have shown that stroke-induced 
active angiogenesis takes place at 3-4 days following the 
ischemic insult and continues more than 21 days [1, 12, 14, 
97, 98]. ECs surrounding the infarcted brain area start to 
proliferate as early as 12–24 hours following vessel [14, 28, 
99-101]. This in turn already leads to an increase of vessels 
in the peri-infarcted region 3 days following the ischemic 
injury. A study on temporal angiogenesis and related gene 
expression in mouse brain demonstrated that vessel prolif-
eration continued more than 21 days following experimental 
cerebral ischemia [100]. Using human brain samples, studies 
demonstrated that active angiogenesis takes place at 3–4 
days following the ischemic insult [98]. Patients who sur-
vived from several days to weeks after cerebral stroke 
showed a positive correlation between microvessel density 
and survival [98]. 

3.2 BBB Permeability of Angiogenic Vessels 

 Using a 90 min MCAO in spontaneously hypertensive 
rats (SHRs), we investigated angiogenesis from 24 hours to 3 
weeks after reperfusion [68]. An increase of newly formed 
vessels was observed in the peri-infarct region 3 weeks fol-
lowing the ischemic injury, which is consistent with other 
reports [14, 99, 100]. We used both MRI and histological 
techniques to determine functional neurovascular remodeling 
and BBB integrity (Fig. 2). MRI T2 and ADC maps showed 
increased hyperintensity in the infarct area (inf) compared to 
the peri-infarct regions (Fig. 2A). The permeability coeffi-
cient maps reconstructed from data acquired by dynamic 
contrast-enhanced MRI (DCEMRI) showed increased BBB 
transfer rate (Ki) and plasma volume (Vp) in the peri-infarct 
areas, which was absent in the infarct core [102, 103]. Arte-
rial spin labeling (ASL), used to measure cerebral blood flow 
(CBF) [104], showed perfusion in the ischemic hemisphere 
with very low signal in the core infarct area, while the peri-
infarct region showed hyperperfusion compared with the 
contralateral normal hemisphere. RECA1 (a marker of ECs) 
immunostaining showed increased density of new vessels in 
the peri-infarct area, corresponding to the elevated BBB 
transfer rate, plasma volume, and arterial blood perfusion. 
These data indicated that blood flow returned to the newly 

formed vessels, suggesting functional vascular remodeling 
with higher BBB permeability at 3 weeks after stroke. 

3.3. Tight Junction Formation in Angiogenic Vessels 

 At 3 weeks after stroke, we observed that TJPs, occludin, 
claudin-5, and ZO-1, were observed in NVU cells in the 
peri-infarct regions (Fig. 2B, C, and D) [68]. Only claudin-5, 
which disappeared in BBB from 24 hours to 7 days after 
stroke, reappeared in the newly formed vascular ECs. The 
other major TJPs, occludin and ZO-1, were absent from ECs 
and prominent in the GFAP-positive reactive ACs, which 
extended processes to closely encapsulate nearby ECs. A 
striking collection of NG2-positive PCs entirely surrounded 
vascular ECs and produced ZO-1. The TJPs normally seen 
within ECs where they form the first barrier to blood-borne 
substances were expressed by PCs and ACs, which failed to 
provide a barrier to Evans blue or Gadolinium, which consis-
tent with the MRI data of high BBB permeability. These 
findings suggest that the TJPs in perivascular cells do not 
form a functional barrier and that strongly indicates that 
these new vessels lack barrier properties. Since PCs and ECs 
have direct synaptic-like peg-socket focal contacts and gap 
junctions formed with CX43, which allow the exchange of 
molecules between PCs and ECs [33, 74, 105-107], whether 
the TJPs move into the ECs or are made de novo will need 
further study. 

 Brain PCs and ACs play a key role in the development of 
cerebral vasculature and regulation of BBB function in brain 
diseases [9, 30, 32, 42, 65, 78, 81, 82, 108], yet, the roles of 
these NVU cells in neurovascular remodeling during recovery 
stage after stroke remains obscure. We found that PCs and 
ACs act spatiotemporally contributing to extraendothelial 
TJP formation in BBB restoration during recovery at 3 
weeks after stroke [68]. The contributions of ACs and PCs to 
BBB restoration in stroke-induced angiogenesis during re-
covery are still under studied [107, 109]. 

3.4. Microglia Activation and Angiogenesis 

 Microglia are the resident macrophages that control the 
immune response in the brain. One striking feature of micro-
glial cells is their rapid activation in response to minor 
pathological alterations/infections in the CNS [110, 111], 
which orchestrates the brain’s inflammatory response [37]. 
Microglia can assume different activated phenotypes de-
pending on the activating stimulus [112, 113]. Microglia 
rapidly develop a pro-inflammatory phenotype in response to 
acute brain injury; meanwhile, activation of microglia also 
present reparative and anti-inflammatory roles through a 
regulatory/homeostatic phenotype, which facilitates recovery 
of injury [114-117]. The pro-inflammatory response includes 
that microglia become activated, obtain an amoeboid mor-
phology, and release inflammatory cytokines. In the regula-
tory/homeostatic phase, microglia have an enhanced capacity 
for phagocytosis and produce anti-inflammatory mediators, 
which help to terminate the inflammatory response and pro-
mote tissue repair and remodeling. During the recovery of 
stroke, microglia in anti-inflammatory phenotypes play a key 
role in the promotion of neurovascular remodeling through 
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Fig. (2). Blood flow, BBB permeability, and expression of TJPs in the new vessels within peri-infarct regions 3 weeks of reperfusion in spon-
taneously hypertensive rat subjected to transient middle cerebral artery occlusion. (A) Hyperintensive areas in the anatomical T2 image and 
ADC map show the lesion extent and tissue ischemia. ven: Ventricle; inf : Core infarct area. Color-coded permeability coefficient maps re-
constructed from DCEMRI data demonstrate the regions of high (red) and low (blue) permeability. The parametric image Ki map represents 
BBB transfer rate. The parametric image Vp map represents plasma volume. Elevated values of Ki and Vp are located in the vicinity of core 
infarct area (arrows). There are no signals of Ki and Vp in the core infarct area. The color scales used for the permeability and plasma volume 
signal intensity. ASL map shows higher CBF in peri-infarct areas (arrows). RECA1 immunostaining shows the increased density of new ves-
sels in the peri-infarct area (arrows), corresponding to the elevated BBB transfer rate, plasma volume and blood perfusion (arrows). H&E 
staining shows red blood cells located inside of the new microvessels (arrows). (B) Left panel: double-immunostaining of occludin (red) with 
astrocytes (GFAP, green) shows that occludin was co-localized with reactive astrocytes adjacent to or within the peri-infarct region. Middle 
and right panels: triple-immunostaining of occludin (red) with ACs (blue) and ECs (green). The 3D confocal images demonstrate that ACs 
expressing occludin (shown in purple when co-localized) with end-feet closely surrounding vessels. (C) Double immunostaining of ZO-1 
with astrocytes, endothelial cells, and PCs (PDGFR), respectively. ZO-1 co-localized with reactive astrocytes (GFAP) but not with ECs 
(RECA1). Z-stack confocal image shows PCs (green) surrounding vessels express ZO-1 (arrows). Arrowheads indicate DAPI-stained endo-
thelium. (D) Double immunostaining shows no co-localization (left panel) between ACs (green) and claudin-5 (red). The 3D confocal image 
(middle panel) demonstrates that claudin-5 was co-localized with ECs (CD31, green) of microvessels within the peri-infarct region. Confocal 
image (right panel) of triple-immunostaining shows that ACs (blue) surround a vessel with claudin-5 in endothelial cells (green). Scale 
bars=20 or 50 µm. Cited from Yi Yang et al., Journal of Cerebral Blood Flow & Metabolism (2013), 1104-1114. (A higher resolution / colour 
version of this figure is available in the electronic copy of the article). 
 

the release of growth-related proteins and cytokines from 
peripheral and resident immune cells [37, 112, 113, 117, 
118]. We also found that in the peri-infarct areas a new 
population of active regulatory-phenotype microglia express-
ing TGF-β and IL-10 is involved in the promotion of TJP 
expression and BBB integrity at 4 weeks after stroke [119]. 

4. POTENTIAL MOLECULAR AND CELLULAR 
TARGETS TO FACILITATE BBB MATURATION 
AFTER STROKE. 

 Cerebral ischemia-induced angiogenesis is a complex 
and dynamic process involving the different vascular com-
ponents such as ECs, vascular ACs and PCs, fibroblasts, 
smooth muscle cells, and the extracellular matrix [120-122]. 
Understanding the cellular and molecular mechanisms regu-
lating TJ formation and BBB integrity during angiogenesis 
after stroke will be key to the understanding of angiogenesis 
and is crucial for our knowledge of effective treatment of 
stroke. A detailed analysis of the contribution of the different 
vascular components in the angiogenesis, especially in BBB 
restoration, will therefore be valuable for therapeutic angio-
genesis in stroke. 

4.1. The BBB Functions Depend on the Crosstalk be-
tween PCs and ECs 

 The cell-cell signaling in the NVU is known to have key 
roles in how the brain responds to ischemic injury after 
stroke. Brain PCs and ACs play a key role in the develop-
ment of cerebral vasculature and regulation of BBB function 
in brain diseases [9, 30, 32, 42, 65, 78, 81, 82]. The roles of 
these NVU cells in neurovascular remodeling during the 
recovery stage after stroke remains obscure. We found that 
the proliferating vascular PCs participate in the neovascu-
larization in the peri-infarct areas after stroke by expressing 
TJPs, VEGF, and matrix metalloprotease (MMP)-3. There is 
an overexpression of NG2 in vascular-associated PCs at 3 
weeks after stroke in rat, which is spatiotemporally ex-
pressed with MMPs, VEGF, and TJPs [68]. Along with its 
ability to reveal the activated/angiogenic state of microves-
sels, the PC-derived NG2 is an important factor in promoting 
EC migration and morphogenesis during the early stages of 
neo-vascularization [123]. Pathologic angiogenesis can be 
reduced by targeting PCs via the NG2 proteoglycan. In NG2 
knock-out mice, proliferation of both PCs and ECs in retina 
in response to hypoxia is significantly reduced [92]. There  
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are several possible mechanisms by which NG2 regulates 
angiogenesis: NG2 has been shown to bind directly to basic 
fibroblast growth factor and platelet-derived growth factor 
AA (PDGF-AA), and may enhance interaction of these 
growth factors with cell surface receptors [123]. 

4.2 NG2-Dependent Crosstalk between PCs and ECs 

 NG2 is a prominent component of activated PCs, not 
ECs, in both normal and pathological microvessels [124]. 
The NG2 proteoglycan is expressed by microvascular PCs in 
newly formed blood vessels. Studies on cancer angiogenesis 
have demonstrated that NG2 plays important roles in PC 
recruitment and interaction with ECs during microvessel 
development [92, 123, 125-128]. Altered interactions be-
tween these key microvessel components lead to deficits in 
both PC and EC maturation [129] and these changes at the 
cellular and structural levels result in decreased tumor vessel 
patency and increased tumor vessel leakiness. Recently, us-
ing Cre/lox technology created NG2fl/fl:pdgfrβ-Cre mice and 
NG2 siRNA in human microvascular PCs [124] to specifi-
cally ablate NG2 in PCs demonstrated a deficit of tumor 
blood vessel structure and function and reduction of endothe-
lial junctions, which increased endothelial permeability in 
vivo and in vitro. These findings suggest that NG2-positive 
PCs may play a critical role during the formation of TJ in 
ECs during vascular remodeling [68, 86, 91]. Treatments 
targeting on the NG2-PCs pathway may provide angiogenic 
therapeutic strategies to promote BBB maturation in the new 
vessels and improve stroke outcome. 

 The 3-hydroxy-3- methylglutaryl coenzyme A reductase 
inhibitors (statins) are potent inhibitors of cholesterol bio-
synthesis used to treat hypercholesterolemia and prevent 
recurrent stroke. The five statins commonly used in clinical 
practice are atorvastatin, fluvastatin, lovastatin, rosuvastatin, 
and simvastatin [130, 131]. Beyond their lipid-lowering ef-
fects, increasing evidence indicates that statins, particularly 
atorvastatin, are neuroprotective in several brain injuries, 
including stroke [132-136]. Patients who took statins prior to 
the onset of stroke demonstrated significantly decreased 
mortality and improved outcome [83, 137]. Statins promote 
angiogenesis in ischemic stroke. The effect of statins on the 
induction of angiogenesis is dose dependent and biphasic, a 
pro-angiogenic effect at low doses and anti-angiogenic and 
pro-apoptotic effect at high doses [1, 17, 138, 139]. They are 
relatively safe, orally available agents that may acquire novel 
therapeutic indications through their angiogenic modulating 
effects [1, 17, 130, 140-142]. Recent preclinical and clinical 
trial studies show that atorvastatin blunts cerebral cavernous 
angioma (CA) lesion development, hemorrhage, and rebleed-
ing in stabilizing CAs after a symptomatic hemorrhage, 
through inhibiting RhoA kinase [143]. Statins at higher con-
centrations have been demonstrated to up-regulating endo-
thelial NO synthase (eNOS) gene expression and direct acti-
vation of eNOS in endothelial cells [133, 136]. The low 
dose-dependent proangiogenic effects of atorvastatin corre-
lated with the activation of the Pl3k–Akt pathway [144]. 
Statins increase brain EC expression of Gas6/Axl and 
thereby activate the PI3K–AKT pathway, which regulates 
endothelial cell survival, proliferation and migration, and 
increases angiogenesiss [145-148]. Statins also increase vas-

cular stabilization and decrease BBB permeability after 
stroke [149]. The signaling pathways that NG2 regulates the 
interaction between PC and EC are involved in α3β1 integrin 
mediated PI3K/AKT and Ras/ERK1/2 in EC survival and 
proliferation [123, 124, 128]. Very interesting, the dose-
dependent proangiogenic effects of atorvastatin correlated 
with the activation of the Pl3k–Akt pathway [144], suggest-
ing a role of the NG2 signaling pathway in promoting BBB 
maturation in the new vessels during stroke-induced angio-
genesis in brain. This suggested that a therapeutic potential 
of treatment with statins during stroke recovery could stabi-
lize the newly formed vessels and facilitate maturation of 
BBB in stroke recovery.  

4.3. Sphingosine 1 Phosphate (S1P) Signaling Regulates 
BBB Integrity 

 S1P is a bioactive sphingolipid that, acting through its 
five G-protein coupled S1P-receptors (S1PR1-5), modulates a 
large diversity of biological mechanisms (cell proliferation, 
survival, cytoskeletal reorganization, migration)[150, 151], 
including BBB integrity [152, 153]. Of the five S1P recep-
tors, S1PR1,2,3 are expressed in ECs, S1PR1 is expressed in 
ACs and S1PR3 in PCs [154, 155], the cell types that are the 
major cellular barrier components of the BBB. S1P induces 
changes in BBB function mediated through both S1PR1 and 
S1PR2 [156]. S1PR1 signaling plays important roles in modu-
lating vascular barrier function, vascular tone, and the regu-
lation of lymphocyte trafficking [157, 158]. S1PR1 signaling 
in brain vascular ECs is also needed for TJ complex assem-
bly and the normal function of the BBB [154, 159]. Activa-
tion of S1PR1 was found to increase endothelial barrier in-
tegrity by modulating EC cytoskeletal forces [154, 160] via 
the PI3K/Akt/Rac signaling pathway [161-164]. S1PR1 pro-
motes the expression of TJPs and AJPs in ECs and ACs, 
enhances BBB integrity [151], reduces vascular leakage, 
limits leukocyte infiltration, and inhibits astrogliosis [154, 
160, 165, 166]. S1PR3 cooperates with S1PR1 in stimulating 
migration of EC progenitors and EC proliferation, thereby 
contributing to vasculogenesis and angiogenesis [167]. S1PR2 
plays pivotal roles in CNS autoimmunity, cell differentia-
tion, and enhances BBB permeability and leukocyte entry 
[156, 168, 169] via Rho/ROCK pathways and the inhibition 
of S1PR1 [161, 163, 170]. S1PR2 activity impairs remyelina-
tion, and enhances BBB leakage and demyelination in ani-
mal models of multiple sclerosis [171]. S1PR3 cooperates 
with S1P1 in stimulating the migration of EC progenitors and 
EC proliferation, thereby contributing to vasculogenesis and 
angiogenesis [154, 172]. SEW2871 is a selective agonist for 
S1PR1 [173, 174], therapeutic manipulation of the S1P path-
way using SEW2871 has shown promise in preclinical mod-
els of Alzheimer’s disease, traumatic, and acute stroke brain 
injury[160, 175, 176]. Therapy for CNS diseases [175, 177-
180] now includes the use of FDA approved fingolimod to 
target the S1PR1,3-5 pathway for multiple sclerosis treatment 
[175, 181]. Pilot clinical trials examining the efficacy and 
safety of fingolimod in patients showed that fingolimod en-
hances the efficacy of alteplase administration in acute 
ischemic stroke without serious adverse events recorded 
[182, 183]. Targeting endothelial S1P-S1PR signaling path-
way during stroke recovery may promote vascular TJ forma-
tion and BBB integrity in angiogenic vessels. 
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4.4. Microglial Alternative Activation Involves in BBB 
Integrity in Stroke 

 Ischemic stroke induces a cascade of metabolic and in-
flammatory consequences that extend from the core of the 
infarct into the penumbra. Activated microglia have been the 
target of experimental and clinical studies focusing on neu-
roinflammation after focal cerebral ischemia [184, 185]. 
Neuroinflammation accompanies microglial immunopheno-
type changes over time from pro-inflammatory to regula-
tory/homeostatic (anti-inflammatory) after ischemic stroke, 
with one phenotype predominating over another in a time-
dependent manner [112, 117, 186]. The pro-inflammatory 
response of microglia/macrophage includes increased ex-
pression of the cytokines TNF-α and IL-1β, while in the 
regulatory/homeostatic phase, expression switches to the 
anti-inflammatory or reparative cytokines, such as IL-10 and 
TGF-β, and their co-stimulatory proteins [37, 114, 187]. The 
location of the microglia (core vs. penumbra) with respect to 
the infarct is the critical determinant of that phenotype [117]. 
After 90 minutes of transient ischemia, activated microglia 
increased in number from 3.5 to 7 days in the peri-infarct 
[188]. Studies indicated that the peri-infarct is dominated by 
proinflammatory, proliferating, and activated microglia that 
increase in number over the first week after ischemia [139, 
189-192]. Importantly, these spontaneous repair-related mo-
lecular and cellular changes in brain after stroke can be in-
fluenced by several factors including drug treatment [193, 
194]. Activated microglia can be seen in ischemic hemi-
spheres as early as 24 h reperfusion and reach a peak at 1 
week that extends to 4 weeks [119]. At 4 weeks after stroke, 
the active microglia surrounding and within the peri-infarct 
areas expressed both pro-inflammatory factors (TNF-α and 
IL-1β) and anti-inflammatory factors (TGF-β and IL-10) 
[119, 195]. TGF-β signaling pathway has been demonstrated 
to involve in the regulation of BBB functional integrity and 
TJP expression during inflammation, and may lower the 
BBB permeability [58, 196-198]. We found that treatment 
with minocycline at an early stage of stroke promotes in-
creased expression of TGF-β and IL-10, and facilitates the 
shifting of microglia functional activity from pro-
Inflammation to anti-inflammation during recovery [119]. 
Besides the active microglia, the proliferating microglia-like 
pericytes, closely surrounding angiogenic vessels in the peri-
infarct areas, also expressed TGF-β. Importantly, an en-
hanced restructuring of the BBB TJPs by minocycline pro-
vide functionality to the BBB despite an immature endothe-
lium during neurovascular remodeling during stroke recov-
ery [119]. This suggests a novel treatment potential for fa-
cilitating neurological recovery by influencing spontaneous 
repair-related alteration of microglia activation in the brain 
after stroke with medicine exposure. 

CONCLUSION AND FUTURE DIRECTIONS 

 In summary, clinical outcomes of ischemic cerebral 
stroke are poor, and treatment for recovery improvement is 
of utmost importance. Angiogenesis and re-vascularization 
are the main repair processes following stroke. Promising 
evidence suggests that stimulating post-ischemic angiogene-
sis can improve neurological function [1, 14]. Induction of 
functional angiogenesis in the brain after stroke poses a 

number of particular challenges, including (a) functional 
BBB barriergenesis; (b) correct timing of the use of thera-
peutic agents; and (c) localization of the pro-angiogenic sig-
nal to areas of injury. To take advantage of angiogenesis as a 
therapeutic concept for stroke treatment, the knowledge of 
the precise molecular and cellular mechanisms is vital. It is 
necessary to define and optimize restorative therapies by 
characterizing the cellular and molecular mechanisms 
through which angiogenesis occurs and the functional BBB 
forms in response to spontaneous and therapy-induced vas-
cular remodeling. TJPs play an important role in allowing 
these newly formed vessels to establish fully-functional BBB 
and promoting BBB restoration coupled with speedy angio-
genesis, which may improve functional outcome and recov-
ery following a stroke injury. Studies examining whether 
mature BBB is restored in stroke-induced re-vasculature and 
determining appropriate points of intervention for the facili-
tation of functional BBB restoration will provide critical 
preclinical information that addresses the major clinical chal-
lenge to accelerate cerebral angiogenesis without exacerbat-
ing brain edema and inflammation. 
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