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Introduction

Building models of a biological system

that are consistent with the myriad data

available is one of the key challenges in

biology. Modeling the structure and dy-

namics of macromolecular assemblies, for

example, can give insights into how

biological systems work, evolved, might

be controlled, and even designed. Model-

ing can also suggest future experiments.

Unfortunately, current publishing norms

make it hard to build on published models,

because such models are often not avail-

able in usable form and because it is hard

to publish refinements of others’ models.

Here, we present steps towards a future in

which a scientist can read a paper,

download a script, add new data, and see

how the new data improve the published

model. Integrative structure modeling

casts the building of structural models as

a computational optimization problem, for

which information about the assembly is

encoded into a scoring function that

evaluates candidate models. We describe

our software suite, Integrated Modeling

Platform, and invite members of the

scientific community to use it, improve

on it, and apply it to their own scientific

problems of interest.

Numerous structures have to date been

solved by using an integrative structural

modeling approach. The structure of the

26S proteasome was determined from an

electron microscopy (EM) map of the

whole assembly, proteomics data about

its subunit composition, and comparative

protein structure models of the component

proteins [1]. The structure of the bacterial

type II pilus was assembled from sparse

nuclear magnetic resonance (NMR) data

and X-ray crystallographic structures of

constituent proteins [2]. The structure of

chromatin around the alpha-globin gene

was assembled from so-called 5C data

(chromosome conformation capture car-

bon copy) [3]. The value of integrative

modeling is illustrated by its application to

the yeast nuclear pore complex (NPC)

[4,5]. The sheer size and flexibility of the

NPC makes it all but impossible to solve its

molecular architecture by conventional

atomic resolution techniques, such as X-

ray crystallography. However, integrating

information from multiple sources, includ-

ing stoichiometry from protein quantifica-

tion, protein proximities from subcomplex

purification, protein positions from im-

muno-EM, sedimentation analysis that

sheds light on protein and subcomplex

shapes, and the overall NPC shape from

EM, resulted in an ensemble of medium-

resolution models. The models were

summarized by a 3-D probability map,

resembling an EM map and localizing the

456 constituent proteins with an average

precision of approximately 5 nm. This

map has revealed fundamental new in-

sights into the function of the NPC as a

gatekeeper controlling the entry into and

exit from the nucleus of macromolecules,

and also shed light on its evolution

[4,6–8].

Integrative modeling entails a compu-

tational encoding of the standard scientific

cycle of gathering data, proposing hypoth-

eses, and then gathering more data to test

and refine those hypotheses. It proceeds

through repeated iterations of the stages of

gathering information, choosing how to

represent and evaluate models, finding

models that score well, and analyzing the

models and information (Figure 1; Box 1).

The cycle terminates when a convergent

ensemble of models is found fitting the

current information and the models have

been judged to be satisfactory [9]. When

new information is gathered, whether by

other scientists or other techniques, the

cycle is resumed.

The integrative approach has a number

of advantages over informal or partial

consideration of available information

(Box 2). Fully realizing these advantages

requires encoding modeling efforts into

integrative modeling applications that

consist of the scripts and the associated

information. Adoption of integrative mod-

eling can occur through a tight collabora-

tion between a computational lab and an
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experimental lab, through direct adoption

by an experimental lab, or by experimen-

talists modifying existing integrative mod-

eling applications. To facilitate widespread

adoption, we have developed the Integra-

tive Modeling Platform (IMP) software

package.

A Platform for Integrative
Modeling

The IMP software package facilitates

the writing of integrative modeling appli-

cations; the development of new model

representations, scoring functions, sam-

pling schemes, and analysis methods; and

the distribution of integrative modeling

applications.

In IMP, models are encoded as collec-

tions of particles, each representing a piece

of the system. Depending on the data

available, particles can be used to create

Figure 1. Integrative structure modeling of the human RNA Polymerase II [10]. The first round of modeling was performed using only the
2nm EM density map of the assembly from EMDB [51] and subunit comparative models from ModBase [47], on the basis of the crystallographic structures
of the yeast RNAPII proteins. The data were found to be insufficient to uniquely resolve the structure. To overcome this challenge, protein interaction
networks extracted from BioGrid [48] were added. The addition of these data resulted in a single structure. The scripts are available as part of IMP.
doi:10.1371/journal.pbio.1001244.g001
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atomic, coarse-grained, or hierarchical

representations. It is straightforward to

represent a protein at any resolution, from

fully flexible atomic models (one particle

per atom), to rigid bodies, to coarse-

grained models consisting of only one or

a few particles for the whole protein (see

Figure 1 for a worked-through example,

structural modeling of the human RNA

polymerase II [10]). Different parts of the

model can be represented differently, as

dictated by the available information.

Each particle has associated attributes,

such as coordinates, radius, atom type,

rigid body composition, residue informa-

tion, and mass. If the attributes already in

IMP are not sufficient, new attributes can

be created and used similarly to the

predefined ones. For example, for coarse-

grained small angle X-ray scattering

(SAXS) scoring, a scattering factor attri-

bute could be associated with the particles

representing amino acid residues.

Candidate models are evaluated by a

scoring function composed of terms

called restraints, each of which measures

how well a model agrees with the

information from which the restraint

was derived. The restraints encode both

what is known about structures in general

and what is known about this particular

structure. Thus, a candidate model that

scores well is consistent with all used

information. The precision and accuracy

of the resulting model increases with the

amount and quality of information that is

encoded in the restraints. IMP’s ever-

growing set of scoring function types

includes ones for SAXS profiles [11],

proteomics data [9], EM images and

density maps [10,12], NMR spectroscopy

[2], the CHARMM force-field [13],

alignment with related structures [14],

and a variety of statistical potentials [15].

IMP has been designed to make it easy

for others to develop, use, and distribute

new restraints. Other research groups

are currently implementing restraints

for various mass spectrometry measure-

ments, SAXS, 5C data [3], and atomic

structure prediction.

For experimental data, the scoring is

generally implemented using a ‘‘forward

model’’ [16], which simulates the mea-

surements on the basis of the candidate

model and then compares the simulated

measurements to the actual measure-

ments. For example, to evaluate the fit to

an EM density map, a restraint uses the

coordinates, radii, and masses of a set of

particles representing the assembly to

simulate its density map and then evalu-

ates the cross-correlation with the exper-

imental map.

Box 1. The Four Stages of the Integrative Modeling Cycle.

Stage 1: Gathering Information. Information is collected in the form of data
from wet lab experiments, as well as statistical tendencies such as atomic
statistical potentials, physical laws such as molecular mechanics force fields, and
any other feature that can be converted into a score for use to assess features of a
structural model.

Stage 2: Choosing How To Represent And Evaluate Models. The
resolution of the representation depends on the quantity and resolution of the
available information and should be commensurate with the resolution of the
final models: different parts of a model may be represented at different
resolutions, and one part of the model may be represented at several different
resolutions simultaneously. The scoring function evaluates whether or not a given
model is consistent with the input information, taking into account the
uncertainty in the information.

Stage 3: Finding Models That Score Well. The search for models that score
well is performed using any of a variety of sampling and optimization schemes
(such as the Monte Carlo method). There may be many models that score well if
the data are incomplete or none if the data are inconsistent due to errors or
unconsidered states of the assembly.

Stage 4: Analyzing Resulting Models and Information. The ensemble of
good-scoring models needs to be clustered and analyzed to ascertain their
precision and accuracy, and to check for inconsistent information. Analysis can
also suggest what are likely to be the most informative experiments to perform in
the next iteration.

Integrative modeling iterates through these stages until a satisfactory model is
built. Many iterations of the cycle may be required, given the need to gather more
data as well as to resolve errors and inconsistent data.

Box 2. Advantages of the Integrative Structure Modeling
Approach.

Using New Information. Integrative modeling makes it easy to take advantage
of new information and new types of information, resulting in a low barrier for
using incremental information that is generally not applied to structure
characterization. Even when a single data type is relatively uninformative,
multiple types can give a surprisingly complete picture of an assembly [9,10].

Maximizing Accuracy, Precision and Completeness. Integrative models fit
multiple types of information, and can thus be more accurate, precise, and
complete than models based on the individual sources.

Understanding and Assessing the Models. By exhaustively sampling the
space of models fitting the information, integrative modeling can find all models
fitting the information, not only one. A full sampling of the models of a structure
can improve the understanding of its function [49]. Because the data are encoded
in scoring functions and the full set of models can be found, integrative modeling
facilitates assessing the input information and output models in terms of
precision and accuracy.

Planning Experiments. Integrative modeling provides feedback to guide
future experiments, by computationally testing the impact of hypothetical
datasets. As a result, experiments can be chosen to best improve our knowledge
of the assembly.

Understanding and Assessing Experimental Accuracy. Data errors present
a challenge for all methods of model building. Integrative modeling can detect
inconsistent data as no models will exist that fit all the data. In addition,
integrative modeling facilitates the application of more sophisticated methods for
error estimation, such as Inferential Structure Determination [16].
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As with most computational structure

efforts, the main demand for computa-

tional time in integrative modeling comes

from sampling models that satisfy the

restraints (good-scoring models). IMP pro-

vides a wide variety of tools for building

these sampling protocols, including opti-

mization algorithms such as Monte Carlo

[17] and conjugate gradients [18], the

simplex optimizer from Gnu Scientific

Library (GSL) [19], simulation schemes

such as molecular dynamics and Brownian

dynamics [20], and the Bullet rigid body

dynamics engine (http://www.bulletphysics.

com), as well as full sampling schemes such

as the Gibbs sampler [16], replica exchange

[21], and a divide-and-conquer sampler

called DOMINO [22].

Finally, IMP provides a variety of tools

for comparing, clustering, and analyzing

models. These tools can be used to check

for quality-of-fit, the existence of multiple

states of the system [3], and inconsistent

information. Models can be clustered on

the basis of root-mean-square deviation

(RMSD), placement score [11], and var-

ious other metrics. Supported clustering

algorithms include k-means, centrality

betweenness clustering [23], and simple

binning. The resulting clusters and the

constituent models as well as restraints can

be exported to Chimera [24] and Pymol

[25] for visual inspection and further

analysis.

IMP has been used to produce a

number of models; for example, a eukary-

otic ribosome [26], a mammalian ribo-

some [27], a ryanodine receptor channel

[28], the 26S proteasome [1], the Hsp90

chaperonin [29], the TRiC/CCT chaper-

onin [30], the actin-scruin complex [31],

chromatin [3], and the NPC [4]. More

information about IMP can be found at

http://integrativemodeling.org/. The web-

site provides a technical introduction, a

tutorial, as well as a variety of examples to

help users get started. In addition, it con-

tains nightly tests, user and developer email

lists, a wiki, and a bug tracker.

Towards Open Structure
Modeling

Publication of macromolecular struc-

tures has evolved from printed words and

pictures to include deposition of coordi-

nates in the Protein Data Bank [32], and

more recently deposition of raw input

data such as X-ray scattering factors [32],

NMR restraints [33], and EM particle

images [34]. However, the conversion

of the raw data to the final structures is

often only briefly described and all too

rarely available in a directly usable form

[35–37], making reproduction and use of

the published results laborious or even

impossible.

If published papers included integra-

tive modeling applications, a wide variety

of researchers would benefit. In particu-

lar, experimental labs, which are unlikely

otherwise to go through the effort of

modeling systems themselves, would be

able to use the state-of-the-art model to

plan experiments by simulating potential

benefits gained from new data. It would

also be easy to see how much each new

measurement contributes to and fits with

the current model. Other computational

groups could more easily experiment

with new scoring, sampling, and analysis

methods, without having to reimplement

the existing methods from scratch. The

common abstraction would make it

easier to mix and match parts of other

modeling packages [13,14,16,38–46] to

improve the applications of integrative

modeling. Finally, the authors themselves

would maximize the impact of their

work, increasing the odds that their

results are incorporated into future

modeling.
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