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Abstract

It is known from previous literature that type II Spinal Muscular Atrophy (SMA) patients gen-

erally, after the age of 5 years, presents a steep deterioration until puberty followed by a rel-

ative stability, as most abilities have been lost. Although it is possible to identify points of

slope indicating early improvement, steep decline and relative stabilizations, there is still a

lot of variability within each age group and it’s not always possible to predict individual trajec-

tories of progression from age only. The aim of the study was to develop a predictive model

based on machine learning using an XGBoost algorithm for regression and report, explore

and quantify, in a single centre longitudinal natural history study, the influence of clinical vari-

ables on the 6/12-months Hammersmith Motor Functional Scale Expanded score prediction

(HFMSE). This study represents the first approach to artificial intelligence and trained mod-

els for the prediction of individualized trajectories of HFMSE disease progression using indi-

vidual characteristics of the patient. The application of this method to larger cohorts may

allow to identify different classes of progression, a crucial information at the time of the new

commercially available therapies.

Introduction

Spinal muscular atrophy (SMA) is an autosomal recessive disorder characterized by loss of

motor neurons with subsequent progressive muscle weakness and wasting [1]. Classically,

SMA is described into subtypes (0-IV) based on age of onset and maximum function achieved,

with type II patients achieving the ability to sit but not to walk independently [2, 3]. Several

studies have reported natural history longitudinal data in type II SMA, mostly using disease
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specific outcome measures such as the Hammersmith Functional Motor Scale (HFMSE) or

Revised Upper Limb Module (RULM) [4–9].

Type II patients generally present onset of clinical signs between 6 and 18 months of age,

after they have achieved the ability to sit independently [2, 10]. In the first years after diagnosis,

there may be some improvement in motor function that however is not constantly observed.

Conversely, after the age of 5 years there is often a steep deterioration until puberty, with loss

of several functional abilities, followed by a relative stability [5, 8, 9].

Both cross sectional and longitudinal studies have identified points of slope indicating early

improvement, steep decline and relative stabilizations occurring at different ages in type II

patients, there is still a lot of variability within each age group and it’s not always possible to

predict individual trajectories of progression from age only [5, 8, 11]. In the last few years

there has been an effort to identify predictors of progression in several diseases, including

some neuromuscular disorder such as Duchenne muscular dystrophy [12–14]. These studies

have suggested that the possibility to predict progression increases by combining different var-

iables in a composite model. To our knowledge, the possibility to predict progression in SMA

using a number of clinical variables, such as weight, scoliosis, ventilation or nutritional status

has not been systematically explored.

The aim of the study was to develop a predictive model and report, explore and quantify, in

a single center longitudinal natural history study, the influence of clinical variables on the 6/

12-months HMFSE prediction.

Material and methods

Cohort selection and dataset definition

All patients included had a genetic diagnosis of SMA and a phenotype compatible with type II,

i.e. onset between 6 and 18 months and independent standing and walking never achieved. All

the patients older than 2.5 years with at least three assessments were included. Assessments

performed at the time the patients were treated with investigational or approved disease modi-

fying therapies such as nusinersen or risdiplam were not included. The final dataset was cre-

ated by taking the complete cases record (i.e. no missing values), retrieved form medical

records, of all the available variables: gender, SMN2 copies, age at visit, age at symptom onset,

anthropometric measures, Cobb values, vitamin D treatment, SMA specific surgeries (spinal

or tendon surgeries), salbutamol treatment, acute hospitalizations, ventilatory and nutritional

status. HFMSE total score and functional status (non sitters/sitters) were considered and

included as an indicator of motor function. Height, weight and Cobb values were imputed for

missing values via linear interpolation between visits with non-missing values.

XGBoost algorithm

XGBoost is a popular and efficient open-source implementation of the gradient boosted trees

algorithm. Gradient boosting is a supervised learning algorithm, which attempts to accurately

predict a target variable by combining the estimates of a set of simpler, weaker models. When

using gradient boosting for regression, the weak learners are regression trees, and each regres-

sion tree maps an input data point to one of its leafs that contains a continuous score. XGBoost

minimizes a regularized (L1 and L2) objective function that combines a convex loss function

(based on the difference between the predicted and target outputs) and a penalty term for

model complexity (in other words, the regression tree functions). The training proceeds itera-

tively, adding new trees that predict the residuals or errors of prior trees that are then com-

bined with previous trees to make the final prediction. It’s called gradient boosting because it

uses a gradient descent algorithm to minimize the loss when adding new models. Advantages
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of using this algorithm include: the non-linearity it introduces in the association among pre-

dictor variables and outcome; the ensemble of weak learners approach helps to prevent overfit-

ting by an appropriate tuning of the model’s hyperparameters; it has built-in regularization

terms in the loss function which help reduce overfitting and improve generalization; finally, it

is designed to be computationally efficient and to support parallel and distributed computing,

which is useful to explore wider hyperparameters spaces, and eventually perform incremental

training in a multicentric setting without in principle sharing the actual datasets.

No preliminary feature selection was performed, and all the available variables in the dataset

were given as input to the training algorithm. The algorithm itself therefore assigns a higher or

lower importance score to each variable so that, at the end of the training phase, the different

variables are ideally ranked by their importance in an optimal way. The study was approved by

the institutional review board (ethics committee) of the Fondazione Policlinico Agostino

Gemelli (project code:GEN-SMA01, prot n˚0019648/21). Written informed consent was

obtained from all participants (or guardians of participants) in the study.

Visit-by-visit analysis

The model was trained to predict the HFMSE value after 6 or 12 months from a given visit,

based on the actual visit variables. For each time-point, the visit data were linked to the

HFMSE value closest to 6 or 12 months from the visit date, which becomes the outcome of the

predictive model. Data were extracted from the Gemelli datamart for Spinal Muscular Atro-

phy, were filtered by the inclusion/exclusion criteria and were then included in the model.

After the construction of the datamart, the data were split into a training set and testing set at a

75%/25% proportion. An XGBoost algorithm for regression was run in 5-fold cross-validation

on the training set for hyperparameters optimization, for a total of 5400 different models. The

best model was chosen according to lowest cross-validation Root Mean Squared Error

(RMSE). The model was then applied on the testing set to measure the RMSE and the Mean

Absolute Error (MAE). The complete workflow is depicted in Fig 1.

Results

6-months prediction

Considering the 6-month interval and applying the filtering criteria, a total of 30 patients and

324 visits were included. Average number of visits per patient was 10.8, with a minimum of

Fig 1. Workflow of the machine learning analysis for the model.

https://doi.org/10.1371/journal.pone.0267930.g001
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3.0, a maximum of 23.0 and interquartile range 7.2–13.7. According to the machine learning

model described above, 22 patients were assigned to the training set (239 visits), and 8 patients

(85 visits) were assigned to the testing set. Of the patients included in the analysis, 2 patients

(training set) were able to stand with support at truck. Table 1 shows the dataset characteristics

summary subdivided by training and testing set.

The best XGBoost model showed a testing MAE of 1.86 HFMSE points. The five most

important variable for the model according to the Shapley Additive Explanations (SHAP)

framework are (Fig 2A): HFMSE value at given visit, age at current visit, first recorded

HFMSE value, value of Cobb angle at current visit, age at symptoms onset. The prediction for

6-month value of HFMSE are influenced towards higher values by: a higher HFMSE value at

current visit, a lower age at visit, a higher value of first recorded HFMSE and a lower Cobb

Table 1. 6-months HMFSE dataset summary. Numerical values are reported as median and interquartile range.

total training set testing set p-value

patients 30 22 8 -

visits 324 239 85 -

visits per patient 11.0 (7.25–13.75) 11.0 (6.50–13.75) 11.0 (7.75–13.25) 0.90

gender male gender female 17 13 4 0.65

13 9 4

age at first visit (years) 3.31 (2.85–5.72) 3.70 (2.94–5.92) 2.93 (2.81–3.14) 0.03

HMFSE at first dataset visit 16.00 (9.50–21.75) 15.50 (8.75–22.0) 17.00 (11.25–19.50) 0.80

age symptoms onset 0.88 (0.59–1.00) 0.91 (0.58–1.00) 0.69 (0.59–1.00) 0.40

https://doi.org/10.1371/journal.pone.0267930.t001

Fig 2. Top 20 features importance for 6 months model according to mean SHAP value (A) and SHAP value (B).

https://doi.org/10.1371/journal.pone.0267930.g002
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angle (Fig 2B). Fig 3 shows four examples of visit-by-visit trajectory as predicted by the model

compared to the actual values.

12-months prediction

Considering the 12-month interval and after applying the new filtering criterion, patients eligi-

ble for the analysis were 29, for a total of 316 visits. Average number of visits per patient was

10.9, with a minimum of 3.0, a maximum of 24.0 and interquartile range 7.0–14.0. Of these, 21

patients were assigned to the training set (233 visits), and 8 patients (83 visits) were assigned to

the testing set.

Table 2 reports the dataset summary characteristics applying to the 12-months interval.

The best XGBoost model showed a testing set MAE of 1.97 HFMSE points. The five most

important variable for the model according to the SHAP framework are: HFMSE value at cur-

rent visit, age at current visit, Cobb angle, first recorded HFMSE value, Non-invasive ventila-

tion at current visit (Fig 4A and 4B).

A prediction for a sample testing patient and corresponding prediction-by-prediction

SHAP values is reported in Fig 5 and the explanation in Fig 5.

Fig 3. Trajectory predictions on the testing set for 4 patients. Key to figure: Blu line = actual HFMSE progression, Red line = model-predicted HFMSE

progression.

https://doi.org/10.1371/journal.pone.0267930.g003
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Discussion

Several international efforts have reported that in SMA type 2 patients motor function progres-

sion is not linear and that different slopes of progression can be identified using appropriate

functional measures such as the HFMSE [5, 8, 9, 15–17] or other measures [7, 18–20]. In some

of those studies, using multivariate/descriptive analysis per cohort or subgroup of patients, age

appears to be an important predictor. Children younger than 5 years appear to have the highest

chances of showing an improvement in HFMSE scores while those between 5 and 13 years are

in contrast most susceptible to negative changes. Even when using age subgroups based on

these cutoff points, there was still a high variability that could not be explained by multivariate

analysis including other variables such as gender or SMN2 copies.

The objective of this study was not to describe HFMSE disease progression by cohorts or

pre-defined subgroups (e.g. age, phenotype severity), but to train a model able to predict

Table 2. 12-months HMFSE dataset summary. Numerical values are reported as median and interquartile range.

total training set testing set p-value

patients 29 21 8 -

visits 316 233 83 -

visits per patient 11.0 (7.0–14.0) 12.0 (7.0–15.0) 9.0 (7.75–12.25) 0.73

gender male gender female 16 10 6 0.18

13 11 2

age at first dataset visit (years) 3.45 (2.84–4.93) 2.97 (2.84–4.93) 3.69 (3.40–4.72) 0.50

HMFSE at first dataset visit 16.0 (11.0–22.0) 16.0 (11.0–22.0) 16.0 (11.25–20.0) 0.74

age symptoms onset 0.85 (0.58–1.00) 0.91 (0.67–1.00) 0.63 (0.58–0.81) 0.14

https://doi.org/10.1371/journal.pone.0267930.t002

Fig 4. Top 20 features importance for 6 months model according to mean SHAP value (A) and SHAP value (B).

https://doi.org/10.1371/journal.pone.0267930.g004
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individualized trajectories of HFMSE disease progression on the basis of the individual charac-

teristics of the patient.

Following the suggestion that a composite and individualized model may improve the prog-

nostic accuracy of disease progression [12, 13], we applied a machine learning approach using

an XGBoost algorithm for regression. The advantage and peculiarity of this method compared

to multivariate analysis is that it provides an estimate of the possible individual trajectory

based on the baseline features, each of them assessed to establish their prognostic value. More-

over, unlike predictive models which rely on baseline features only, our approach is able to

update the trajectory prediction at each visit time-point, thus capturing the dynamics of each

exploratory variable over time.

The results of our analysis confirmed that age is an important prognostic factor but also

showed that other variables may contribute to influence the progression of the disease. The

analysis allowed to establish that HFMSE value at visit, i.e the first assessment of the two in a

given interval, also appears to have a relevant impact on the prediction. Other variables, such

as age at symptoms onset, as well as the HFMSE value recorded on the very first visit and BMI,

also partially contributed to the prediction. Cobb’s angle and non-invasive ventilation were

also very relevant, suggesting that increasing scoliosis and ventilatory status also contribute. In

contrast, other variables such as gender and SMN2 copies, did not appear to have a strong

influence, as suggested by previous studies using multivariate analysis [5, 9].

These results should be interpreted with caution as the study was meant to be a proof of

concept on a relatively small cohort and the results need to be validated in a larger cohort. The

principal limitations of this study are that natural history data were drawn from a single center

and that, even if there was a relatively large number of 6 month and 12 month follow-up inter-

vals (>300 visits), the number of patients was much smaller (n = 30). Furthermore, it is known

that the HFMSE is able to measure progression overtime but that can present floor/ceiling

effect depending on age and functional status [15, 16, 19, 21, 22]. To address these concerns,

additional work is in progress to establish external validity in separate datasets with a greater

sample size. To address the issue of floor/ceiling effect in the prediction of the results, the

choice of a predictive model whose underlying algorithm can introduce non-linear effects by

partitioning the variables’ space into different sets, helps the predictive accuracy, as the model

is not prone to extrapolation as it would be with linear or polynomial models.

Fig 5. Prediction (A) and corresponding prediction by-prediction (B) for a sample testing patient. Key to Fig = Panel A: comparison between the actual 12

months trajectory (blue) of a testing set patient and the corresponding trajectory predicted by the 12-months model (red). Panel B: a focus on the predicted

trajectory to show the variables contributing to the predictions along the trajectory, according to the SHAP framework. The red area represents positive

contribution to the prediction, while the blue area represent negative contribution (e.g.: the first prediction (HFMSE equal to 11.14) relies on the positive

contribution of age at current visit (5.3 years), and the negative contributions of age at symptoms onset (0.58 years), Cobb angle value (67.9), and previous

HFMSE value).

https://doi.org/10.1371/journal.pone.0267930.g005
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In conclusion, our results suggest a possible role of this method that uses different criteria

than those used in previous studies. Rather than providing a general rate of progression for a

cohort or identify factors contributing to the progression through a multivariate analysis, the

model can potentially provide more individualized trajectories. The application of this method

to larger cohorts may allow to identify different classes of progression. The need to define

more precise trajectories and predict patient outcome is crucial at the time when real world

data from the commercially available new therapies are becoming increasingly available and

there is the need to measure drug effect or potential treatment effect. This information may

also be potentially used for clinical trial design to reduce variability and manage inclusion and

criteria stratification.
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