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Slow-burning inflammation at the lesion rim is connected to the expansion of

chronic multiple sclerosis (MS) lesions. However, the underlying processes

causing expansion are not clearly realized. In this context, the current study

used a bioinformatics approach to identify the expression profiles and related

lncRNA-associated ceRNA regulatory axes in the periplaque region in MS

patients. Expression data (GSE52139) from periplaque regions in the

secondary progressive MS spinal cord and controls were downloaded from

theGene ExpressionOmnibus database (GEO), which has details onmRNAs and

lncRNAs. Using the R software’s limma package, the differentially expressed

lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) were found. The RNA

interactions were also found using the DIANA-LncBase, miRTarBase, and

HMDD databases. The Pearson correlation coefficient was used to

determine whether there were any positive correlations between DEmRNAs

and DElncRNAs in the ceRNA network. Finally, lncRNA-associated ceRNA axes

were created based on co-expression and connections between DElncRNA,

miRNA, andDEmRNA.We used the Enrichr tool to enrich the biological process,

molecular function, and pathways for DEmRNAs and DElncRNAs. A network of

DEmRNAs’ protein-protein interactions was developed, and the top five hub

genes were found using Cytoscape and STRING. The current study indicates

that 15 DEmRNAs, including FOS, GJA1, NTRK2, CTNND1, and SP3, are

connected to the MS ceRNA network. Additionally, four DElncRNAs (such as

TUG1, ASB16-AS1, and LINC01094) that regulated the aforementioned mRNAs
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by sponging 14 MS-related miRNAs (e.g., hsa-miR-145-5p, hsa-miR-200a-3p,

hsa-miR-20a-5p, hsa-miR-22-3p, hsa-miR-23a-3p, hsa-miR-27a-3p, hsa-

miR-29b-3p, hsa-miR-29c-3p, hsa-miR-34a-5p) were found. In addition,

the analysis of pathway enrichment revealed that DEmRNAs were enriched

in the pathways for the “MAPK signaling pathway”, “Kaposi sarcoma-associated

herpesvirus infection”, “Human immunodeficiency virus one infection”, “Lipid

and atherosclerosis”, and “Amphetamine addiction”. Even though the function

of these ceRNA axes needs to be investigated further, this study provides

research targets for studying ceRNA-mediated molecular mechanisms

related to periplaque demyelination in MS.

KEYWORDS

bioinformatic analysis, competing endogenous RNA, long non-coding RNA,
microarray analysis, multiple sclerosis, periplaque

Introduction

Multiple sclerosis (MS) is a neurodegenerative, inflammatory

disease affecting the central nervous system (CNS). In MS, it is

now understood that axonal loss is the primary cause of

permanent neurological impairment. Axonal dissection

followed by axonal degeneration are thought to be primarily

caused by acute inflammatory demyelination, which generally

appears as new white matter lesions. Recent research suggests

that slow-burning inflammatory demyelination at the edge of

some chronic lesions is a key contributor to disease progression,

including progressive axonal loss as well as worsening

impairment (Prineas et al., 2001; Frischer et al., 2015; Dal-

Bianco et al., 2017; Klistorner et al., 2021). These lesions,

commonly referred to as smoldering or chronically active

lesions (van der Valk and De Groot, 2000), are distinguished

by a fully demyelinated, inactive hypocellular center and low-

grade active demyelination in periplaque white matter, which has

activated microglia/macrophages with myelin breakdown

products (Lieury et al., 2014; Frischer et al., 2015). Despite the

fact that the pathogenesis of chronic smoldering lesions is widely

understood (Prineas et al., 2001), the periplaque region has

received little attention up to this point. Although it is

generally acknowledged that a combination of genetic and

environmental factors may influence a person’s predisposition

for MS, the underlying pathophysiological mechanisms and the

sequence of events that contribute to lesion expansion remain

poorly understood. The major histocompatibility complex

(MHC) predominately determines disease occurrence in the

genetically susceptible population, whereas modifiable

environmental factors like smoking, Epstein-Barr virus (EBV)

infection, increased body mass index (BMI) during adolescence,

and low vitamin D levels may influence whether a person

develops MS (Amato et al., 2018). The human leukocyte

antigen (HLA) locus, which is known to encode molecules

involved in essential immune functions, is the first genetic

risk factor that was found decades ago (Wang et al., 2022).

New research suggests that non-coding RNAs (ncRNAs),

particularly long non-coding RNAs (lncRNAs) and

microRNAs (miRNAs), have the potential to regulate gene

expression and offer novel insights into the development of

MS (Sheng et al., 2015; Yang et al., 2018; Ghafouri-Fard and

Taheri, 2020).

The competing endogenous RNA (ceRNA) hypothesis

states that ncRNAs, which serve as miRNA “sponges,”

compete with target mRNAs for binding to miRNAs as a

novel regulatory mechanism (Salmena et al., 2011). This

theory proposes that cross-talk between RNAs, including

coding RNAs and ncRNAs, through miRNA

complementary sequences known as miRNA response

elements (MREs) generates a large-scale regulatory network

throughout the transcriptome. If two RNA transcripts control

each other via a ceRNA-mediated mechanism, then, according

to the ceRNA hypothesis, the expression levels of these two

RNA transcripts would be negatively correlated with the levels

of target miRNAs and positively correlated with each other

(Salmena et al., 2011). A few studies have suggested that MS

may be caused by altered ceRNA-mediated gene regulation

(Bian et al., 2020; Ding et al., 2021; Hao et al., 2022; Karimi

et al., 2022; Wang et al., 2022). For instance, it has been

demonstrated that the lncRNA Gm15575 is aberrantly

expressed in MS patients and affects the functionality of

Th17 in MS via ceRNA patterns (Bian et al., 2020). In a

separate research, it was found that HOTAIR functions as a

sponge for miR-136-5p, increasing AKT2-mediated NF-kB

activation and hence favoring the microglial shift towards a

proinflammatory M1-like phenotype (Duan et al., 2018),

which is harmful in MS. Furthermore, lncRNA GAS5 has

been postulated as a ceRNA for miR-137 involved in

demyelination (Senousy et al., 2020). It is important to do

more research on the associated expression patterns and

processes in MS due to the fact that the so-called study on

the ceRNA axes implicated in MS, particularly in the

periplaque region, has received little attention to date.

RNAs have greater “druggability” than proteins because

their targeting primarily depends on sequence
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complementarity. Due to their unique properties, these

molecules can be easily and inexpensively manufactured

into novel targets for RNA-related drugs (Yu et al., 2020).

CeRNA interaction networks involve a variety of factors,

making it possible to study complex conditions like MS

focusing on only one of the potential treatment targets

(i.e., an instant variation in the levels of multiple disease-

related RNAs) (Moreno-García et al., 2020).

This study aimed to identify the expression profiles and

associated lncRNA-associated ceRNA regulatory axes in the

periplaque region of MS patients using a bioinformatics

approach.

Methods

In the current study, we used a system biology method for

mining expression data related to periplaque regions in the spinal

cord of MS with the accession number GSE52139. Our purposes

were recognition of the differentially expressed lncRNAs

(DElncRNAs) and mRNAs (DEmRNAs) and to develop

lncRNA-associated ceRNA regulatory axes by using previous

bioinformatics approaches (Sabaie et al., 2021a; Sabaie et al.,

2021b).

Data preparation of the gene expression
profile

The gene expression profiles were downloaded from the

NCBI Gene Expression Omnibus dataset (GEO, https://www.

ncbi.nlm.nih.gov/geo/). The platform of GPL570 (HG-U133_

Plus_2) Affymetrix Human Genome U133 and 2.0 Array (chip-

based) was used for the mentioned database, in which both

information of lncRNA and mRNA were included in the

GPL570. The GSE52139 includes sixteen spinal cord samples.

Eight periplaque samples were compared to normal-appearing

white matter from identical patients (Lieury et al., 2014).

Data preprocessing and identifying
DEmRNAs and DElncRNAs

Background correction and quantile normalization were

done through the Robust Multichip Average (RMA) for the

total files of data (Irizarry et al., 2003). The AgiMicroRna

Bioconductor package version 2.46.0 was used for quality

control (Romero and AgiMicroRna, 2020). The differential

expression gene analysis (DEGA) was done by the limma

package of R (version 3.52.2) (Ritchie et al., 2015) in

Bioconductor (https://www.bioconductor.org/) (Huber et al.,

2015). The linear model was accomplished via limma’s lmFit

() function doing on the main factor “group” (i.e., periplaque

against normal-appearing white matter). Subsequently, limma’s

eBayes () function was applied to calculate differentially

expressed genes from the linear fit model. Next, the whole list

of lncRNAs’ genes was obtained (https://www.genen ames. org/)

through approved HUGO Gene Nomenclature Committee

(HGNC) symbols (Braschi et al., 2019). The dataset’s gene

symbols were compared with the list of lncRNA genes, and

the overlapped genes were chosen. According to this approach,

we captured 1,070 lncRNAs. The paired student’s t-test was used

to identify statistically significant mRNAs and lncRNAs. The

following cut-offs were established for aberrantly expressed

genes: (Prineas et al., 2001): |log2 fold change (log2FC) ≥ 1,

and q < 0.01 (q is the False Discovery Rate (FDR) corrected

p-value) for DEmRNAs and (Dal-Bianco et al., 2017) (log2FC) ≥
0.585, and q < 0.01 for DElncRNAs. The implementation of less

stringent selection criteria was prompted by the lower expression

level of lncRNAs relative to mRNAs. Finally, using the Pheatmap

(version 1.0.12) and the Enhanced Volcano (version1.14.0) R

packages, the heat map and the volcano plot of DEGs were

depicted.

RNA interaction pairs prediction

In this study, the DIANA-LncBase v3 (Karagkouni et al.,

2020) was utilized to predict the interaction of the lncRNAs and

miRNAs, which were experimentally confirmed. The criteria

utilized in the DIANA-LncBase query were High “miRNA

Confidence Levels” and Homo Sapiens “Species”. Additionally,

the MS-related miRNAs were collected from the Human

microRNA Disease Database (HMDD) version 3.2 (Huang

et al., 2019). Also, interactions between the target mRNAs and

collected miRNAs (used the MS-related miRNAs) were attained

from miRTarBase (including persistent experimental shreds of

evidence) (Huang et al., 2020). Then, these newly attained

mRNAs were compared to previous mRNAs attained, and

consequently, the duplicate mRNAs were used to construct

the lncRNA-miRNA-mRNA ceRNA axes.

Analysis of correlation between DEmRNAs
and DElncRNAs, and lncRNA-associated
ceRNA axes construction

The Pearson correlation analysis was done to study the

positive correlations in the regulatory axes of ceRNA among

DEmRNAs and DElncRNAs. In the reverse expression pattern

among DElncRNAs and the targeted DEmRNAs, interacted

miRNAs targeted DEmRNAs, and DElncRNAs were removed

from the network of ceRNA. For correlations’ visualization and

calculation, both packages of Hmisc (version 4.7-1) and corrplot

(version 0.92) were used. The Pearson correlation coefficients

above 0.5 and p < 0.05 were considered inclusion criteria. Finally,
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for the construction of ceRNA regulatory axes, we applied the

Cytoscape software (version 3.8.0) (Shannon et al., 2003).

DEmRNAs and DElncRNAs enrichment
analysis

Biological process (BP), molecular function (MF) and the

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analysis of the DEmRNAs in the ceRNA network

were obtained via the Enrichr tool (Chen et al., 2013; Kuleshov

et al., 2016). In addition, BP and MF analyses were performed

utilizing FuncPred (https://www.funcpred.com) (Perron et al.,

2017) to get deeper insight into the DElncRNAs in ceRNA

network.

Construction of protein-protein
interaction network and hub genes
identification

A PPI network was made by the online STRING database

(https://string-db.org/) (Szklarczyk et al., 2019) to predict the

interactive relevance of DEmRNAs encoding proteins. The

Cytoscape software was used to visualize the PPI network and

the hub genes analysis. Moreover, non-interacting genes were

removed from the PPI network to simplify it. Subsequently, the

top five genes of the PPI network were evaluated by Maximal

Clique Centrality (MCC) method by use of CytoHubba (version

0.1) in Cytoscape (Chin et al., 2014). Compared to the other

network scoring methods, MCC performed better (Chin et al.,

2014).

FIGURE 1
Differentially expressed mRNAs (DEmRNAs) volcano plot. A |(log2FC)| ≥ 1 and an p < 0.01 were utilized for screening DEmRNAs.
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Restoration of the subceRNA network

The DElncRNAs and miRNAs relevant to the primary

structure of ceRNA were extracted and utilized for the

network restoration of the ceRNA network hub genes.

Results

DEmRNAs and DElncRNAs identification

At first, background adjustment, normalization, and batch

adjustment were performed. Following the normalization, box

plots were illustrated to analyze the data distribution in the gene

expression data (Appendix I). The correct adjustment was

approved by the outcomes from distinct box plot arrays that

show similar medians for expression levels.

Regarding to the chosen criteria (|log2FC | ≥ 1, and q <
0.01 for DEmRNAs and |log2FC | ≥ 0.585, and q < 0.01 for

DElncRNAs), we detected 193 DEmRNAs and seven

DElncRNAs between periplaque and normal-appearing white

matter samples. The DEmRNAs volcano plot and DElncRNAs

heat map are shown in Figures 1, 2, respectively. Furthermore,

details of DEGs are summarized in Appendix II and III.

Predicting RNA interaction pairs

Six of the seven DElncRNAs might be targeted via the

candidate miRNAs. Then, the interplay between candidate

FIGURE 2
Differentially expressed long non-coding RNAs (DElncRNAs) Heatmap. Lowly expressed DElncRNAs are displayed in blue, while those that are
highly expressed are displayed in red.
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miRNAs (obtained from HMDD) and mRNAs was uncovered

by miRTarBase. Eventually, 19 overlapping genes were

obtained after comparing the candidate mRNAs and

DEmRNAs.

Analysis of relationship between
DElncRNAs and DEmRNAs, and lncRNA-
associated ceRNA axes construction

At this level, to prove the assumption of ceRNA axes,

i.e., lncRNA positively regulates (via miRNA interaction)

mRNA’s expression; hence, we applied the Pearson

correlation analysis among DEmRNAs and DElncRNAs

(Figure 3). According to the interactions between

DElncRNA-miRNA-DEmRNA and co-expression

associations, we constructed the ceRNA regulatory axes to

declare the related ceRNA axes with lncRNAs in periplaque

regions in MS (Figure 4). Table 1 elucidates the ceRNA axes

characteristics, including four DElncRNAs, 14 miRNAs, and

15 DEmRNAs, in total.

DEmRNAs and DElncRNAs enrichment
analysis

Functional annotation obtained on whole DEmRNAs in the

ceRNA network. Figures 5A,B indicated that target mRNAs were

associated with “skeletal muscle tissue regeneration”, “cardiac

conduction system development”, “positive regulation of nucleic

acid-templated transcription”, “cardiac muscle tissue

development”, “cellular response to reactive oxygen species”,

“gap junction channel activity involved in cardiac conduction

electrical coupling”, “calmodulin-dependent protein

phosphatase activity”, “glutathione transmembrane transporter

activity”, “tripeptide transmembrane transporter activity”, and

“gap junction channel activity involved in cell communication by

electrical coupling”. Moreover, the top enriched KEGG pathways

were as follows: “MAPK signaling pathway”, “Kaposi sarcoma-

associated herpes virus infection”, “Human immunodeficiency

virus one infection”, “Lipid and atherosclerosis”, and

“Amphetamine addiction” (Figure 5). The complete list of the

enrichment analysis of DElncRNAs is included in Supplementary

Files S1–S4.

FIGURE 3
Pearson correlation analysis. Blue is used to represent positive correlations, while red is used to represent negative correlations. p greater than
0.05 are regarded as being insignificant (blank), and the intensity is related to correlation coefficients.
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Construction of PPI network and
identification of hub genes

The PPI network was demonstrated in Figure 6A. The MCC

method was applied to assess the top five genes in the PPI

network (Figure 6B). The Hub genes with the strongest

association are shown with nodes in red color. Besides, orange

and yellow nodes illustrate the hub genes with moderate and

poor connections, respectively. Fos Proto-Oncogene (FOS) and

Gap Junction Protein Alpha 1 (GJA1) had the strongest

correlation. The Neurotrophic Receptor Tyrosine Kinase 2

(NTRK2) and Catenin Delta 1 (CTNND1) had moderate

relevance. In contrast, Sp3 Transcription Factor (SP3)

demonstrated poor connection.

Reconstruction of the subceRNA network

The DElncRNA-DEmiRNA-hub genes sub-network was

reconstructed by use of the hub genes. There were three

DElncRNAs (TUG1: Taurine upregulated 1, ASB16-AS1:

ASB16 Antisense RNA 1, and LINC01094: Long Intergenic

Non-Protein Coding RNA 1094), nine miRNAs (hsa-miR-145-

5p, hsa-miR-200a-3p, hsa-miR-20a-5p, hsa-miR-22-3p, hsa-miR-

23a-3p, hsa-miR-27a-3p, hsa-miR-29b-3p, hsa-miR-29c-3p, hsa-

miR-34a-5p) and five hub genes (FOS, GJA1, NTRK2, CTNND1,

SP3) overall (Figure 7).

Discussion

Several studies have found that ceRNA regulatory axes and

connected networks play an active role in a variety of

developmental and pathological processes, including tumor

development and a variety of brain-related illnesses (Ala,

2020; Moreno-García et al., 2020). On the basis of tissue-

specific, cellular, and subcellular circumstances, the ceRNA

expresses itself differently. In addition to mRNAs, a network

may contain a variety of ceRNAs, such as lncRNAs, circRNAs,

and pseudogenes. One of the primary RNA types, lncRNAs, is

found in the ceRNA machinery and exerts a major impact on

biological pathways in both healthy and diseased states (Cai and

Wan, 2018). Currently, there is complete consensus that lncRNA

expression varies depending on the tissue, cellular type, and

developmental stage. In addition to subcellular dispersions, such

a distinct tissue dependence is a clear sign that the expression of

lncRNAs is tightly regulated (Gloss and Dinger, 2016). The

theoretic ideas indicate that the ceRNA regulatory axes linked

to lncRNAs can significantly contribute to MS pathogenicity.

Based on these ceRNA axes and connections between DElncRNA

and DEmRNA, we found the DElncRNA-miRNA-DEmRNA

network in the current study. This network contained three

important DElncRNAs (TUG1, ASB16-AS1, and LINC01094),

nine important miRNAs (hsa-miR-145-5p, hsa-miR-200a-3p,

hsa-miR-20a-5p, hsa-miR-22-3p, hsa-miR-23a-3p, hsa-miR-

27a-3p, hsa-miR-29b-3p, hsa-miR-29c-3p, hsa-miR-34a-5p) and

five hub genes (FOS, GJA1, NTRK2, CTNND1, SP3).

TUG1 is a 7.1-kb lncRNA whose function is connected to the

normal development of the retina and nervous system. It was first

found to be upregulated in response to taurine treatment of

developing retinal cells (Young et al., 2005). In experimental

autoimmune encephalomyelitis (EAE) mice and

lipopolysaccharide-induced BV2 cells, Yue and colleagues

discovered that down-regulation of TUG1 attenuates MS

through the inhibition of inflammation by sponging miR-9-5p

via targeting NF-κB1/p50 (Yue et al., 2019). Multiple lines of

research have shown that patients with secondary progressive

(Santoro et al., 2020) and relapsing-remitting (Santoro et al.,

2016; Dastmalchi et al., 2018) MS exhibit increased TUG1

expression. For instance, reverse transcription quantitative

PCR (RT-qPCR) analysis showed that TUG1 expression was

significantly higher in peripheral serum (Santoro et al., 2016;

Santoro et al., 2020) and whole blood (Dastmalchi et al., 2018) in

patients with MS compared with controls. These results support

our findings that TUG1 plays a role in the pathophysiology of

MS. TUG1 was, however, downregulated in peripheral blood

mononuclear cells (PBMCs) from relapsing-remitting MS

patients, according to another expression study (Fenoglio

et al., 2018). According to the authors, this contradictory

outcome may be due to the various biological sources used for

the analysis or a potentially active role for TUG1 in intercellular

communication. Its increased levels in the bloodstream could

FIGURE 4
Long non-coding RNA (lncRNA)-associated competing
endogenous RNA axes. Red represents upregulation of ceRNAs.
LncRNAs, miRNAs, andmRNAs are represented by hexagon, round
rectangle, and ellipse, respectively.
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result from exosomes, an enriched source of ncRNA, releasing it

into the cellular environment (Fenoglio et al., 2018). ASB16-AS1

is localized to 17q21 and is approximately 2,275 bp (Li et al.,

2021). The lncRNA ASB16-AS1 regulates cell proliferation,

migration, invasion, and apoptosis through a ceRNA manner

in a number of cancers, including glioma (Zhang et al., 2019) and

cervical cancer, according to earlier research (Liu et al., 2020). A

new long intergenic nonprotein coding RNA called LINC01094 is

found on chromosome four and functions as a ceRNA in a

variety of conditions, such as calcified aortic valve disease (Huang

et al., 2022), clear cell renal cell carcinoma (Jiang et al., 2020),

schizophrenia (Sabaie et al., 2021c), and glioma (Liu et al., 2022).

Since our study is the first to identify a link between ASB16-AS1,

LINC01094, and MS, the findings should be confirmed through

further research. In agreement with our findings, glioma (Zhang

et al., 2019) and schizophrenia (Sabaie et al., 2021c), two

additional nervous system diseases, exhibit significantly higher

expression levels of ASB16-AS1 and LINC01094, respectively.

We predicted that the sponging of nine key miRNAs (hsa-

miR-145-5p, hsa-miR-200a-3p, hsa-miR-20a-5p, hsa-miR-22-3p,

hsa-miR-23a-3p, hsa-miR-27a-3p, hsa-miR-29b-3p, hsa-miR-29c-

3p, hsa-miR-34a-5p) by key lncRNAs might influence target

genes. MiRNAs regulate target gene expression by binding to

the non-transcript site of the targeted gene, thereby influencing

signal transduction and biological pathways within a cell, which

may have an impact on the beginning and progression of MS

(Caputo et al., 2015). Based on the HMDD database, the majority

of the mentioned miRNAs fall under the circulation biomarker

class of literature evidence. However, their precise roles in MS are

still unknown. Although our findings are supported by the

dysregulation of these miRNAs in MS, the predicted ceRNA

axes still need to be verified using molecular methods.

The enrichment analysis results indicated that DEmRNAs’

functions were focused on different BP and MF, including

skeletal muscle characteristics, cardiac function, gap junction,

protein phosphatase activity, and transmembrane transporter

TABLE 1 Details of competing endogenous RNA axes.

DElncRNA(s) Shared miRNA DEmRNA(s) Expression of DElncRNA(s)
and DEmRNA(s)

TUG1 hsa-miR-122-5p SLC7A11 Upregulation

TUG1 hsa-miR-145-5p CTNND1 Upregulation

PPP3CA

SRGAP1

TSPAN6

TUG1 hsa-miR-155-5p KDM3A Upregulation

SMAD5

LINC01094 hsa-miR-16-5p UNG Upregulation

TUG1

TUG1 hsa-miR-196a-5p ANXA1 Upregulation

TUG1 hsa-miR-199a-5p UNG Upregulation

TUG1 hsa-miR-200a-3p GJA1 Upregulation

TUG1 hsa-miR-20a-5p GJA1 Upregulation

TUG1 hsa-miR-22-3p NTRK2 Upregulation

LINC01094 hsa-miR-23a-3p FAS Upregulation

TUG1 GJA1

SMAD5

TUG1 hsa-miR-27a-3p SLC7A11 Upregulation

ASB16-AS1 SMAD5

LINC01114

TUG1

AB16-AS1 hsa-miR-27a-3p SP3 Upregulation

ASB16-AS1 hsa-miR-29b-3p ELAVL1 Upregulation

LINC01094

LINC01094 hsa-miR-29b-3p FOS Upregulation

ASB16-AS1 hsa-miR-29c-3p CTNND1 Upregulation

TUG1

LINC01094 hsa-miR-34a-5p FOS Upregulation
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activity. Interestingly, the majority of the DEmRNAs in our

study were found to be involved in the “MAPK signaling

pathway”, “Kaposi sarcoma-associated herpesvirus infection”,

“Human immunodeficiency virus one infection”, “Lipid and

atherosclerosis”, and “Amphetamine addiction”, according to

the results of our KEGG enrichment analysis. According to the

data, the improper (over)activity of the mitogen-activated

protein kinase pathway ERK (MAPKERK) causes microglial

dysfunction. These findings concern both biochemistry and

epigenetics, and they all point to the involvement of this

pathway. Recent preclinical studies on neurodegeneration

have already suggested that MAPK pathways, in particular

MAPKERK, are involved in the process. This is crucial because

it has been discovered that microglia with overactive MAPK

disrupt local oligodendrocytes, which can result in

locoregional demyelination, a characteristic of MS. This

FIGURE 5
Biological process (BP), molecular function (MF) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The top
five enriched terms of (A) BP, (B) MF, and (C) KEGG are displayed along with the corresponding p-values in a bar graph. Those with significant
p-values (i.e., <0.05) are matched with the colored bars. A p-value (shown with *) shows the significant adjusted p-value (<0.05).

FIGURE 6
(A) The DEmRNAs interactions are shown as blue nodes in this PPI network. (B) The recognized hub genes in the PPI network. The yellow,
orange, and red nodes, respectively, represent hub genes with weak, moderate, and strong connections.
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represents a novel idea in the pathophysiology of MS in

contrast to the prevalent theory of autoimmunity. Smoking,

hypovitaminosis D, and EBV infection are all known risk

factors for MS that inhibit the MAPKERK negative feedback

phosphatases that normally control MAPKERK activity. Due to

inappropriate MAPKERK overactivity and subsequent

neurodegeneration, these factors may be involved. A

contributing factor in the pathophysiology of MS is

MAPKERK overactivity in microglia, which may also explain

why MS patients continue to experience neurodegeneration

despite receiving optimal immunosuppressive or

immunomodulatory therapy (ten Bosch et al., 2021). MS

and Kaposi’s sarcoma, for many years, have been suspected

to be of viral origin (Enbom, 2001; Tully et al., 2015; Walker

and Brew, 2016). New lymphotropic herpesviruses have

recently been linked to both of these diseases. Many

potential oncogenes found in the viral genome are thought

to have originated from the human genome during evolution.

In conclusion, the full range of human diseases caused by

these viruses is still not fully understood, and the fast-moving

field of molecular biology will continue to provide fresh

insights into how herpesviruses interact with their hosts

(Enbom, 2001). HIV infection and MS are common and

well-researched nosological entities. However, MS and HIV

co-morbidity have only occasionally been documented in the

medical literature. Recent epidemiological studies showed a

decreased risk of MS in HIV-positive patients, indicating a

negative association between MS and HIV. Increasing clinical

evidence also points to a potential lower MS relapse rate in

HIV patients. However, it is currently unknown whether this

inverse correlation was caused by HIV infection, HIV

treatment, or a combination of the two (Stefanou et al.,

2019). When compared to the general population, MS

patients were reported to have a higher mortality rate,

which was attributed to a number of things, including the

population’s higher prevalence of cardiovascular diseases

(Manouchehrinia et al., 2016). Strong evidence links MS to

an increased risk for stroke, myocardial infarction, and heart

failure (Christiansen et al., 2010). The primary causes of

vascular dysfunction in MS are not fully understood, but

the presence of chronic inflammation and autoimmunity,

oxidative stress, and the dysregulation of the cardiovascular

autonomic in MS patients have all been proposed as potential

causes. Atherosclerosis, arteriosclerosis, and endothelial

dysfunction are all significantly influenced by

inflammation. Additionally, it permits plaque rupture,

which raises the danger of acute coronary syndrome (Crea

and Libby, 2017). The amphetamines have central stimulant

action and sympathomimetic properties. Clinical signs of

toxicity include sudden death owing to psychosis,

rhabdomyolysis, cardiac arrhythmia, stroke, and seizures,

which are comparable to those of cocaine (Weis et al.,

2011). Abuse of amphetamines can lead to neuropathologic

changes such as cerebral infarcts and hemorrhages, which are

frequently brought on by emboli connected to cardiac

arrhythmias or myocardial infarction (Delaney and Estes,

1980). In addition, vasospasm or vasculitis resulting from

the pharmacological effect of amphetamines may be

contributing causes (Delaney and Estes, 1980; Weis et al.,

2011). Weis et al. (Weis et al., 2011) reported a patient with

amphetamine abuse-related acute demyelination that had not

been previously described. The first report of amphetamine in

the afflicted region of the brain strongly supports a link

between amphetamine usage and demyelination;

nevertheless, the pathogenetic processes of demyelination

are yet unknown. In this study, BP and MF enrichment

analyses were also performed on DElncRNAs in the ceRNA

network. The findings suggested that the majority of

DElncRNAs’ activities were focused on neuron recognition,

synaptic function, ion channel activity, and transcriptional

and post-transcriptional regulation.

We identified five hub genes in the ceRNA network,

including FOS, GJA1, NTRK2, CTNND1, and SP3. FOS is a

transcription factor linked to neuronal activity. Leucine zipper

proteins from the FOS gene family can dimerize with JUN

family proteins to form the transcription factor complex JUN

(Shang et al., 2020). FOS may have essential regulatory roles in

modulating gene expression in the pathophysiology of MS (Liu

et al., 2013; Kotelnikova et al., 2015), as well as in the

FIGURE 7
The lncRNA-miRNA-hub gene subceRNA axes. Red
represents upregulation of ceRNAs. LncRNAs, miRNAs, and
mRNAs are represented by hexagon, round rectangle, and ellipse,
respectively.
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mechanism of action of IFNbeta1a and fingolimod (Howe et al.,

2006; Kauffman et al., 2009; Yester et al., 2015; Anastasiadou

and Knöll, 2016; Groves et al., 2018; Tran et al., 2020). In

agreement with our findings, Yu et al. (1991) discovered a two-

fold increase in FOS RNA in MS white matter relative to control

tissue. The gap junctions (GJs), which form intercellular

communication channels between two apposing cells or

hemichannels with the extracellular environment, serve

essential roles in maintaining small molecule homeostasis

(Basu and Sarma, 2018). The GJs of the CNS are essential

for maintaining myelin sheath and neuronal function.

Connexin (Cx) proteins are the structural components of

GJs (Basu and Sarma, 2018). The expression of GJA1 (Cx43)

is essential for maintaining K+ buffering and nutritional

homeostasis in oligodendrocytes, CNS myelin, and

oligodendrocyte function, according to previous research

(Basu and Sarma, 2018; Une et al., 2021). Furthermore,

ablation of Cx43 in brain gray matter astroglia reduces the

severity of EAE, an animal model of MS, by promoting an anti-

inflammatory phenotype in astroglia and suppressing pro-

inflammatory activation of spinal microglia partly through

decreased cerebrospinal fluid pro-inflammatory cytokine/

chemokine levels (Une et al., 2021). Therefore, brain

astroglial Cx43 may be a potential MS therapeutic target

(Une et al., 2021). GJA1 expression was dramatically elevated

in the spinal cord periplaques of progressive MS patients and in

EAE mice, according to previous research. (Lieury et al., 2014;

Jin et al., 2017; Nataf et al., 2017). In addition, Nataf et al. (2017)

found an astrocytosis-related co-expression module with the

astrocyte gene GJA1 as its central hub. These findings are

consistent with our result, indicating that the GJA1 gene is

involved in the pathophysiology of MS. NTRK2 (also known as

TrkB) is a membrane-bound receptor that belongs to the

neurotrophic receptor kinase (NTRK) family. When

neurotrophic proteins bind, members of the NTRK family

and MAPK pathways are phosphorylated, resulting in cell

differentiation via NTRK2 (Li et al., 2022). The Brain-

Derived Neurotrophic Factor (BDNF) is one of the most

important players in the biological pathways of brain

plasticity. BDNF belongs to the neurotrophin family and

binds to the NTRK2. The binding causes the MAPK

pathway (Chao, 2003) to be activated, regulating synaptic

plasticity and repair. On the other hand, fibrinogen (Fg)-

containing plaques have been linked to memory loss in

inflammatory neurodegenerative diseases such as

Alzheimer’s, MS, stroke, and traumatic brain injury (Clark

et al., 2018). Data indicate that Fg interacts with astrocytes,

resulting in the upregulation of intercellular adhesion molecule

1 (ICAM-1) and TrkB and the phosphorylation of TrkB, and

hence the activation of astrocytes (Clark et al., 2018). Since it is

known that activated astrocytes express TrkB, which induces

neuronal degeneration (Colombo et al., 2012), the interaction of

Fg with astrocytes and the subsequent activation of TrkB may

be a process involved in memory loss (Clark et al., 2018).

Consistent with our findings, BDNF and its receptor

truncated trkB tyrosine kinase receptor were detected in

lesions of MS patients (Stadelmann et al., 2002) as well as

EAE (Stadelmann et al., 2002; De Santi et al., 2009; Colombo

et al., 2012). The CTNND1 gene encodes the cellular adhesion

protein p120-catenin (p120), which is essential for myelinating

Schwann cells, cell-cell contacts, and proper myelin sheath

development. (Perrin-Tricaud et al., 2007). By altering Rho

GTPase activity, CTNND1 is implicated in the regulation of

cadherin-mediated adhesion and dynamic regulation of the

actin cytoskeleton (Anastasiadis et al., 2000; Noren et al.,

2000; Grosheva et al., 2001). CTNND1 was found among

myelin basic protein (MBP) partners by Smirnova et al.

(2021). Intrinsically aberrant MBP is one of the most

important autoantigens in autoimmune neurodegeneration

and MS (Benjamins and Morell, 1978; Garbay et al., 1988).

These findings support our findings and show that the

CTNND1 gene contributes to the pathophysiology of MS.

Human transcription factor SP3, a member of the Sp1 family

that binds GC/T box elements, has the ability to activate or

suppress the expression of a number of immune system-related

genes (Grekova et al., 2002). Multiple lines of evidence indicate

a reduction in SP3 expression in PBMCs from patients with MS

(Grekova et al., 1996; Grekova et al., 2000; Grekova et al., 2002;

Lin et al., 2008). This discrepancy between these results and our

findings may be explained as follows. The profile of gene

expression in PBMCs does not reflect CNS components

(Comabella and Martin, 2007; Dutta and Trapp, 2012). In

addition, the gene expression profile derived from blood may

potentially indicate the influence of variables unrelated to the

illness process (Goertsches and Zettl, 2007).

It should be noted that a number of technical factors,

including various methodologies, patient characteristics, a

sample preparation, data analysis, and platforms, could have

an impact on gene expression profiles. Additionally, small

sample size may compromise statistical power. Of course,

additional experimental studies and comparisons to

reanalysis of modified microarray gene expression or other

robust methodologies (e.g., WGCNA and ARACNE) are

needed to confirm our findings.

Conclusion

Demyelination of the periplaque is likely to be the first stage

of the lesion expansion process, making it a potential target for

remyelinating therapies. Our research suggests potential ceRNA-

mediated molecular mechanisms for this expansion involving

ceRNA. Although the functions of the ceRNA axes need to be

studied, this investigation provides potential research targets for

examining molecular pathways that may be important for the

pathogenesis of MS.
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