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Abstract

Background

We conducted a literature review on the studies that investigated the relationship of preterm

birth, including spontaneous preterm birth (sPTB), with vitamin D status. Overall, these stud-

ies demonstrated that the incidence of sPTB was associated with maternal vitamin D insuffi-

ciency in early pregnancy. However, the potential mechanisms and biological pathways are

unknown.

Objectives

To investigate early pregnancy gene expression signatures associated with both vitamin D

insufficiency and sPTB. We further constructed a network of these gene signatures and

identified the common biological pathways involved.

Study design

We conducted peripheral blood transcriptome profiling at 10–18 weeks of gestation in a

nested case-control cohort of 24 pregnant women who participated in the Vitamin D Antena-

tal Asthma Reduction Trial (VDAART). In this cohort, 8 women had spontaneous preterm

delivery (21–32 weeks of gestation) and 17 women had vitamin D insufficiency (25-hydroxy-

vitamin D < 30 ng/mL). We separately identified vitamin D-associated and sPTB gene signa-

tures at 10 to 18 weeks and replicated the overlapping signatures in the mid-pregnancy

peripheral blood of an independent cohort with sPTB cases.

Result

At 10–18 weeks of gestation, 146 differentially expressed genes (25 upregulated) were

associated with both vitamin D insufficiency and sPTB in the discovery cohort (FDR < 0.05).
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Of these genes, 43 (25 upregulated) were replicated in the independent cohort of sPTB

cases and controls with normal pregnancies (P < 0.05). Functional enrichment and network

analyses of the replicated gene signatures suggested several highly connected nodes

related to inflammatory and immune responses.

Conclusions

Our gene expression study and network analyses suggest that the dysregulation of immune

response pathways due to early pregnancy vitamin D insufficiency may contribute to the

pathobiology of sPTB.

Introduction

Preterm birth (PTB), defined as delivery occurring before 37 weeks of gestation, affects up to

10% of all pregnancies, of which, 45–50% are idiopathic or spontaneous [1, 2]. Spontaneous

PTB (sPTB) is defined as commencement of labor with intact or prelabor rupture of mem-

brane and birth before 37 weeks of gestation. While the risk factors and etiology of sPTB are

still being investigated, several studies have investigated the association of vitamin D status

with the incidence of sPTB. Several of these investigations provided evidence on the protective

role of vitamin D during pregnancy in the prevention of both spontaneous and medically indi-

cated PTB, however, a few found no association between vitamin D insufficiency and PTB [3–

7]. These studies differ in methodology in that some investigated the impact of vitamin D sup-

plementation, and some looked only at the association between vitamin D level (25-hydroxyvi-

tamin D [25OHD]) during pregnancy and PTB. These studies also used varied definitions of

vitamin D deficiency and sufficiency. More importantly, much of the available research on

vitamin D and PTB considered vitamin D level at mid- or late pregnancy, while recent obser-

vations highlight the importance of the early vitamin D sufficiency in pregnancy and early vita-

min D supplementation to rectify the insufficiency [8, 9].

As such, we conducted a literature review of studies investigated the relationship between

vitamin D and PTB including sPTB [9–18]. In this work and considering the results from sys-

tematic review studies and meta-analysis of these prior investigations [11–14], we investigate

the potential biological pathways related to early pregnancy vitamin D sufficiency status that

might be related to sPTB specifically.

Gene expression profiling can be useful for identifying pathway genes that provide insight

into understanding the molecular mechanisms responsible for sPTB at early pregnancy. Previ-

ous research has looked at early pregnancy peripheral blood gene expression in patients who

had preterm deliveries, each finding a set of genes that can be explored further for their roles

in PTB [19, 20]. Therefore, gene expression profiling could be employed as a helpful tool for

exploring the biological pathways related to early pregnancy vitamin D status that may con-

tribute to sPTB. We performed a nested case-control study in the Vitamin D Antenatal

Asthma Reduction Trial (VDAART) to identify differentially expressed gene signatures associ-

ated with both vitamin D status and sPTB in early pregnancy. Systems biology approaches

have revealed that disease-related genes distribute non-randomly in the protein-protein inter-

action network (interactome), thereby constructing a disease module [21, 22]. Accordingly, we

examined the connectivity and modularity of the differentially expressed genes related to early

pregnancy vitamin D status and sPTB to identify potential key drivers of sPTB module.
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Materials and methods

VDAART design, participants, interventions, and oversight

VDAART (www.vdaart.com) is a randomized, double-blind, placebo-controlled clinical trial

looking at the effect of vitamin D supplementation (4,000 IU vitamin D plus a multivitamin

with 400 IU vitamin D daily) in comparison with a placebo (placebo pill plus a multivitamin

containing 400 IU vitamin D) for pregnant women with a history of asthma or atopy. The trial

aimed to determine whether vitamin D supplementation was associated with reduced incidence

of asthma and recurrent wheeze in the participants’ children and to determine whether vitamin

D supplementation reduced the incidence of adverse pregnancy outcomes such as preeclampsia.

The details of the trial and inclusion criteria are published [23]. In brief, VDAART participants

were pregnant women who were non-smoker and between 18 and 40 years old who were

recruited at 10 and 18 weeks of gestation from 3 study centers in the United States: Boston Uni-

versity Medical Center in Boston, Massachusetts; Washington University in St. Louis, and Kai-

ser Permanente Southern California Region in San Diego, California [23]. VDAART was

approved by the IRBs of the participating institutions (Washington University in St. Louis, Bos-

ton Medical Center, Kaiser Health Care San Diego) and Brigham and Women’s Hospital, and

written consent was obtained from all participating pregnant women at their first enrollment

visit. VDAART has been registered on ClinicalTrials.gov NCT00920621. This study is an ancil-

lary and a nested-case control gene expression study in the VDAART cohort. Baseline maternal

characteristics of the study subjects, those with sPTB and healthy controls, summarized in

Table 1. The difference in proportions of study groups was compared using a Chi-Square test

and two-tail P-values were reported. Student’s t-test was applied as appropriate.

Study subjects in discovery cohort (VDAART)

We selected PTB cases prior to 32 weeks of gestation who had spontaneous preterm labor

(sPTB) and control subjects for gene expression analysis from the participants of VDAART,

excluding pregnancy-induced hypertensive cases of preterm birth or preterm birth due to

chorioamnionitis. In this study, we looked specifically at non-hypertensive and un-induced

cases of PTB diagnosed with sPTB given that our previous research found an association

between early-pregnancy vitamin D insufficiency and preeclampsia [24].

15 participants who had PTB with available and suitable RNA were considered for our gene

expression study. Of these 15 participants, 7 samples were excluded if they had PTB due to

hypertension during pregnancy, an induced delivery or a positive lab test for chorioamnionitis,

preterm rupture of membrane, or delivery between 32–37 weeks of gestation or abruption.

Our nested case-control group (N = 24) was comprised of 8 women who had sPTBs (21–32

weeks of gestation), and 2 matched controls per woman, for a total of 16 controls (Table 1).

Control subjects were women with normal pregnancy and suitable RNA who were matched

with sPTB cases on maternal age (within 5 years), race, and study site. In a post-matching com-

parison of controls, we found no significant difference in maternal age, race, or pregnancy ges-

tational age among the 8 subjects with sPTB and the 16 controls. Overall, in the discovery

(VDAART) cases and controls, 17 subjects (71%) had insufficient vitamin D status (<30 ng/

mL, 5 with sPTB), and 7 (29%) had sufficient vitamin D status (�30ng/mL, 3 with sPTB,

Table 1).

Measurement of Vitamin D (25OHD) in VDAART

Quantitative determination of 25-hydroxyvitamin D in the subjects’ plasma was assessed using

the FDA approved, direct, competitive chemiluminescence immunoassay (CLIA) by the
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DiaSorin LIAISON 25-OH Vitamin D Total assay at the Channing Division of Network Medi-

cine. This assay is co-specific for 25-hydroxyvitamin D3 and 25-hydroxyvitamin D2. The assay

utilizes a specific antibody to 25-hydroxyvitamin D for coating magnetic particles (solid

phase) and a vitamin D analogue, 22-carboxy-23,24,25,26,27-pentanorvitamin D3, linked to

an isoluminol derivative. During the incubation, 25-hydroxyvitamin D is dissociated from its

binding protein and competes with the isoluminol labeled analogue for binding sites on the

antibody. After the incubation, the unbound material is removed with a wash cycle. Subse-

quently, the starter reagents are added, and a flash chemiluminescent reaction is initiated. The

light signal is measured by a photomultiplier as relative light units (RLU) and is inversely pro-

portional to the concentration of 25-hydroxyvitamin D present in calibrators, controls, or

samples. The inter-and intra-assay Coefficients of Variability for this assay are 11.2% and

8.1%, respectively. For this study, Vitamin D insufficiency was defined at a 25(OH)D threshold

of<30 ng/mL based on the Endocrine Society’s recommendations for health benefits2 and

Table 1. The VDAART subjects’ characteristics in the gene expression study.

sPTB Normal Pregnancy P-Value

N 8 16

Gestational age at enrollment (mean [SD]) 14.80 (2.94) 14.63 (2.83) 0.892

Gestational age at delivery (mean [SD]) 26.44 (3.57) 39.21 (0.93) <0.001

Maternal Age (mean [SD]) 28.73 (4.62) 28.22 (4.56) 0.800

Previous Pregnancies (%) 0.292

1st Pregnancy 5 (62.5) 5 (31.2)

2nd Pregnancy 1 (12.5) 6 (37.5)

3rd or more Pregnancies 2 (25.0) 5 (31.2)

BMI at first appointment (mean [SD]) 30.56 (4.82) 27.15 (7.02) 0.261

Study Site (%) 1

Boston 4 (50.0) 8 (50.0)

San Diego 1 (12.5) 2 (12.5)

St. Louis 3 (37.5) 6 (37.5)

Maternal Race (%) 0.928

Asian 2 (25.0) 3 (18.8)

Black or African American 3 (37.5) 7 (43.8)

White 3 (37.5) 6 (37.5)

Educational Level Completed (%) 0.337

College graduate 5 (62.5) 5 (31.2)

Did not graduate from high school 0 (0.0) 4 (25.0)

High school, technical school 1 (12.5) 3 (18.8)

Junior college/some college 2 (25.0) 4 (25.0)

Married (%) 4 (50.0) 7 (43.8) 1

Income (%) 0.472

Do not know/prefer not to answer 1 (12.5) 3 (18.8)

Less than $50,000 3 (37.5) 9 (56.2)

Over $50,000 4 (50.0) 4 (25.0)

Maternal Asthma = Yes (%) 3 (37.5) 7 (43.8) 1

Maternal Eczema = Yes (%) 4 (50.0) 4 (25.0) 0.444

Maternal Allergic Rhinitis = Yes (%) 5 (62.5) 9 (56.2) 1

Vitamin D Insufficiency at 10–18 Weeks (%) 5 (62.5) 12 (75.0) 0.874

Treatment Arm 3 (37.5) 10 (62.5) 0.469

https://doi.org/10.1371/journal.pone.0227193.t001
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prior observation in the relationship of pregnancy vitamin D status and risk of adverse preg-

nancy outcomes [25] [26] [27].

RNA isolation and microarray processing

Total RNA was isolated from whole blood using the QIAGEN PAXgene Blood RNA Kit accord-

ing to the manufacturer’s protocol. The Ambion Globin Clear kit (Ambion1) is used to remove

alpha and beta-globin mRNA from the sample. This procedure is done for whole blood samples

to increase the sensitivity of gene expression assays, by improving the detection rate of

expressed genes. The RNA was quantified using Nanodrop 8000 and checked for high integrity

before the preparation of cDNA (first-strand synthesis). RNA concentration and purity of the

sample were assessed using the Agilent 2100 Bioanalyzer, which estimates an RNA Integrity

Number (RIN). Samples with RIN� 8 were deemed acceptable and included in this analysis.

Gene expression was assessed using the Affymetrix Human Gene 1.0 ST Array. Biotinylated

cRNA was prepared according to the manufacturer’s protocol, and hybridization was pro-

cessed according to the protocol for the GeneChip Hybridization Control Kit at the Channing

Division of Network Medicine, data coordinating center of the VDAART. As such using the

isolated and processed RNA samples collected at 10 to 18 weeks of gestation, we created an

expression set of 33,297 gene probes from 24 samples. The data discussed in this publication

have been deposited in NCBI’s Gene Expression Omnibus and are accessible through GEO

Series accession number GSE142974 available at https://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc=GSE142974.

Quantiles of raw expression and principal components (PCs) across arrays were examined

before and after background adjustment normalization and log2 transformation using

iCheck package [28] and the results were compared by running the “QCReport” function

in the R library’s “affyQCReport” [29]. We background adjusted, log2 transformed, and quan-

tile normalized the arrays by applying the robust multiarray analysis (“rma”) function in R

BioConductor’s “affy” library [30]. Probes were annotated using the annotation package

“hugene10sttranscriptcluster.db” available on Bioconductor [31]. We limited the expression

set to the annotated probes for autosomal chromosomes. Then, we applied the interquartile

range (IQR) filter from R Bioconductor “genefilter” package [32] to remove the expressions

with variance less than 20% within arrays and accounted for sources of expression heterogene-

ity and confounders (i.e., batch effect) using Surrogate Variable Analysis (SVA) using the “sva

package” from the Bioconductor [33]. With the finalized expression set of 15,222 probes and

24 samples (8 with sPTB), we implemented the rank prod method for identifying differentially

expressed genes by using R Bioconductor package “RankProd”[34]. All statistical analyses

were performed using R version 3.6.0 [35].

Replication cohort

To replicate the differentially expressed genes identified in the discovery cohort, we used a

Gene Expression Omnibus (GEO) dataset that contained peripheral blood gene expression

profiles from a cohort of pregnant women with and without sPTB at early and late pregnancy

(17–23 and 27–33 weeks of gestation, respectively). The cohort included 51 cases with

sPTB<37 weeks (10 cases had sPTB<32 weeks) matched with 114 controls who had normal

pregnancies in the All Our Babies cohort in Calgary, Canada (N = 1878) [20]. The peripheral

blood transcriptomes in this cohort were profiled using Affymetrix Human Gene 2.1 ST

Array. We used the gene expressions from 17–23 weeks of gestation for the replication of our

gene signatures and accessed the raw intensity files (.CEL) on GEO (https://www.ncbi.nlm.

nih.gov/geo/query/acc.cgi?acc=GSE59491). The pre-processing of the CEL files, included

Transcriptome analysis of early pregnancy vitamin D status and spontaneous preterm birth
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background adjustment normalization and log2 transformation, were carried out using the

RMA algorithm in the R Bioconductor “affy” library. Similar to the discovery dataset and after

the quality control, we limited the replication expression set to the annotated probes for auto-

somal chromosomes with values of IQR including 80% of the probe expressions and accounted

for sources of expression heterogeneity and confounders using SVA. The resulting expression

set used for replication consisted of 53617 probes and 165 subjects (51 with sPTB).

Gene expression analysis

R Bioconductor package “RankProd 2.0” [34] was used to perform differential expression anal-

ysis following quality control and adjustment for expression heterogeneity. “RankProd” is a

non-parametric method that implements the Rank Product (RP) method for identifying genes

that are consistently upregulated (or downregulated) in a number of replicated experiments.

The advantage of the RP method is the non-parametric statistic which allows for increased per-

formance in the case small-sample size and heterogeneity of samples [34, 36]. After running

the RP differential expression method on the expression dataset from our discovery cohort, we

obtained two set of differentially expression gene lists (FDR < 0.05) at 10–18 weeks of gesta-

tions: one consisting of genes associated with sPTB, and the other consisting of genes associ-

ated with vitamin D insufficiency (< 30 ng/mL). The overlapping genes of the two lists were

determined and analyzed for differential expression in the replication cohort. We matched the

probes in the discovery (VDDART) and replication (sPTB GEO) expression datasets by con-

verting the platform-specific probe-ID to Entrez Gene ID [37]. The replicated gene signatures

(P-value< 0.05) were considered for literature curation and database annotation in associa-

tion with sPTB using MetaCore from Clarivate Analytics, GeneCards [38], and dbPTB [39]

biological pathway enrichment, and network analyses. Fig 1 depicts an overview of our

approach and a summary of the results at each step.

Biological pathways of differentially expressed genes and their interaction

in the interactome

We conducted functional enrichment of the replicated differentially expressed genes using

gProfiler [40], which identifies a list of enriched functional terms from the Gene Ontology

(GO) and other biological databases, ranked in order of statistical significance (FDR< 0.05).

Further, we explored the connectivity and physical interaction of the replicated gene signatures

by mapping them onto the human protein-protein interaction (PPI) network (interactome)

using R Bioconductor package “STRINGdb” [41], which is the R interface for the STRING PPI

database. We used molecular interactions with confidence score of> 0.4 demonstrating at

least 50% confidence in the proposed interactions [41].The mapped gene set made up our

sPTB module associated with vitamin D if demonstrated local enrichment in the PPI. To link

the connected and disconnected components of the sPTB module, we looked at neighboring

genes of the two submodules in the interactome and whether VDR gene is connected to the

sPTB module through the direct interacting genes in its neighborhood, specifically IL-10, IL-8

and IL-6, which have immunologic roles in PTB [42].

Results

Early pregnancy vitamin D status modulates the expression of sPTB

transcriptome signatures

In the discovery cohort, 314 genes (153 upregulated) had differential expression in the periph-

eral blood of women with vitamin D insufficiency (25OHD levels < 30 ng/mL) relative to

Transcriptome analysis of early pregnancy vitamin D status and spontaneous preterm birth

PLOS ONE | https://doi.org/10.1371/journal.pone.0227193 January 29, 2020 6 / 17

https://doi.org/10.1371/journal.pone.0227193


those with sufficiency (25OHD levels� 30 ng/mL) (FDR<0.05) at 10–18 weeks of gestation.

Pregnant women who developed sPTB had 335 genes (197 upregulated) that were differentially

Fig 1. Gene expression study flowchart. Summary of analysis approach and findings on gene expression analysis through the discovery and replication stages.

https://doi.org/10.1371/journal.pone.0227193.g001
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expressed relative to those of controls at 10–18 weeks of gestation (FDR< 0.05, Fig 1, Table A

in S1 File). The intersection of the vitamin D gene signatures and the sPTB gene signatures

returned 118 overlapping genes with the same direction in expressions under each signature

set. Of these overlapping gene signatures, 43 genes were differentially expressed (25 upregu-

lated) in the peripheral blood of women with sPTB relative to those with normal pregnancy in

the replication cohort (P<0.05; Table A in S1 File; Fig 1). Among these replicated genes, 31

genes (31/43[72.1%]) were previously reported in association with sPTB; 8 were found in a

database search and 13 by manual curation through literature review (Table A in S1 File). Of

these genes that have previously been reported in association with sPTB, we identified MMP8,

HLA-DQB1, IFI44L, and several others in our curated list of 43 genes. Of those genes that have

not been previously reported in association with sPTB (31/43[72.1%]), we identified

CLEC12A, CLEC12B, IFIT1B, KIAA1324 among others. The full gene list with annotations is

reported in S1 File, Table A.

Biological pathways of differentially expressed genes and their interaction

in the interactome

In the Gene Ontology (GO) enrichment analysis 36 out 43 replicated gene signatures (83.72%)

were enriched in several GO terms of immunologic functions including immune system pro-

cess (N = 28) and response(N = 22), innate immune response (N = 12), ITGA2B-ITGB3 com-

plex (N = 2), and leukocyte mediated immunity (N = 16, all corrected P< 0.05; Table B in S1

File).

Of 43 replicated differentially expressed genes, 36 (83.72%) were mapped onto the PPI with

local enrichment (P< 0.001) and constructed the sPTB module (Fig 2). 20 genes in the sPTB

module had direct interactions in the PPI and constructed the largest connected component

(LCC) of the sPTB module. Functional enrichment of the LCC in the sPTB module can be

found in S1 File, Table C. A submodule in the sPTB module consisting of 6 genes constructed

the small connected component (SCC, Fig 2). Among the 26 genes in these two submodules

(LCC and SCC) CEACAM8, OLFM4, IF44L, RSAD2, GYPA, ITGB3, MMP8, and OAS3 showed

high degree of connectivity in their corresponding submodule and all were previously reported

to be associated with sPTB (Fig 2, Table B in S1 File). VDR gene was connected to sPTB mod-

ule through neighboring genes of IL-10, IL8 (CXCL8), and IL-6. The addition of these 4 genes

to the sPTB module, the size of LCC was increased from 20 to 32 genes (Fig 3). Several genes

exhibited a high degree of betweenness, defined as the extent to which a gene lies on the short-

est path between two other genes. Genes with a high betweenness centrality and connectivity

degree can be leverage points in a network system due to their control over the passage of

information between network components [42]. IL10, IL8 (CXCL8), IL6, CEACAM8, HP,

MMP8 and ARG1 were among the module of sPTB-associated genes that exhibited the highest

betweenness centrality and connectivity degree (Fig 3).

Discussion

This transcriptome analysis is founded on the large body of research showing an association

between maternal vitamin D status and risk of PTB, including sPTB, concluded from meta-

analysis and systematic review of several observational studies [11, 12, 14, 44]. A summary of

the studies investigating the relationship between vitamin D and PTB can be found in Table 2.

The combined results from these studies led us to explore further the underlying mecha-

nism through which vitamin D deficiency is linked to the incidence of preterm birth. It is

important to note that there is a lack of consensus in the literature on what constitutes vitamin

D sufficiency and insufficiency, which may have contributed to the inconsistency of results.

Transcriptome analysis of early pregnancy vitamin D status and spontaneous preterm birth
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Furthermore, few randomized trials have examined the effect of vitamin D supplementation

on pregnancy outcomes such as PTB [14,49]. A systematic review of vitamin D supplementa-

tion and levels concerning birth outcomes indicated that such trials have small sample sizes

and low dosage amounts of vitamin D [49]. No other study, to our knowledge, has explored

the underlying biological mechanisms and gene signature of sPTB in relation to early preg-

nancy vitamin D status.

Our gene expression study returned a set of connected gene signatures related to both

maternal vitamin D and sPTB. This network illuminated the connectivity of our differentially

expressed genes to known vitamin D-signaling pathways and immunoinflammatory

responses, thereby indicating a potential functional role of vitamin D on genes associated with

sPTB. We further analyzed this network by measuring betweenness centrality for each node,

or the number of shortest paths passing through a node, as well as its connectivity degree. This

measurement depicted which genes in the network were the most responsible for monitoring

communication between other genes in the network [22, 43]. The replicated genes we identi-

fied through our differential expression analysis were enriched in biological pathways related

Fig 2. sPTB module constructed from 36 mapped replicated gene signatures with a large connected component

(LCC, N = 20), and a small connected component (SCC, N = 6) as determined by evidence on the direct

interaction in the interactome. The size of the nodes demonstrates the degree of connectivity and the darker blue

gradient represents a higher betweenness centrality. GO enriched pathways and functional annotation are provided in

S1 File, Table B.

https://doi.org/10.1371/journal.pone.0227193.g002
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to maternal systemic changes in immune (innate and adaptive) and inflammatory responses

(Fig 2). This result was particularly interesting due to the previously established ability of vita-

min D to modulate innate and adaptive immune response [50].

Three neighboring genes that exhibited high levels of betweenness centrality and connectiv-

ity were IL-6, IL-8 (CXCL8), and IL10 which all are pro-inflammatory cytokines that previous

research has identified as potential biomarkers for preterm birth (Fig 3). Previous research has

shown that concentrations of maternal serum IL-6 and IL-8 levels are significantly higher in

women who experienced preterm labor [51, 52]. Additionally, alterations in levels of anti-

inflammatory cytokine Interleukin 10 (IL-10), a regulator of immune responses, have been

linked pregnancy-related pathologic conditions such as preterm labor [53]. IL-10 reportedly

suppresses the production of pro-inflammatory cytokines, and previous studies present evi-

dence that IL-10 mRNA and protein are upregulated in gestational tissues in normal pregnan-

cies [53]. VDR was linked to the sPTB module and it’s LCC through the neighboring 3

interleukin (IL) genes (Fig 3). This finding is in agreement with a prior study reporting that

treatment of epithelial cells with 1,25(OH)2D3, a VDR agonist modulates IL-6 and IL-8 protein

secretion [54]. The modulation of anti-inflammatory and pro-inflammatory cytokines is

Fig 3. sPTB module with the inclusion of key neighboring genes associated with sPTB (IL10, IL8, IL6), showing a

larger large connected component of sPTB module (expanded LCC, N = 32) and in connectivity with vitamin D

receptor (VDR). The size of the nodes demonstrates the degree of connectivity and the darker purple gradient

represents a higher betweenness centrality.

https://doi.org/10.1371/journal.pone.0227193.g003

Transcriptome analysis of early pregnancy vitamin D status and spontaneous preterm birth

PLOS ONE | https://doi.org/10.1371/journal.pone.0227193 January 29, 2020 10 / 17

https://doi.org/10.1371/journal.pone.0227193.g003
https://doi.org/10.1371/journal.pone.0227193


Table 2. Literature curation of the association between vitamin D and preterm birth.

Journal, Authors, Year Population Design Vitamin D Metric Relevant Outcome

Measured

Key Findings and Effect Estimate (95% CI)

Obstetrics and

Gynecology; Bodnar et al.

2015[9]

N = 2327

(1126

Preterm)

Case-Cohort Three cutoffs for analysis:

<15.7 ng/mL, 15.7–23.6ng/

mL, and�23.6 ng/mL

sPTB <37 weeks -Mothers with 25(OH)D<15.7 ng/mL had a

significant risk of sPTB at OR = 1.8; 95% CI

(1.2–2.7) compared with those with 25(OH)

D�23.6 ng/mL

American Journal of

Obstetrics and

Gynecology; Dziadosz

et al. 2014 [15]

N = 750 (67

Preterm)

Retrospective Two cutoffs for analysis:<32

ng/ml and <20ng/ml

PTB<37 week -25(OH)D deficiency in mothers increased

risk of PTB at OR = 2.47; 95% CI (1.449–

4.219)

Journal of Steroid

Biochemistry and

Molecular Biology;

Wagner et al. 2016[45]

N = 509 (50

Preterm)

Post Hoc analysis

of two combined

RCTs

Three cutoffs for analysis:

�20 ng/ml, 20–40 ng/ml,�40

ng/ml

PTB <37 Weeks -Mothers with 25(OH)D� 40 ng/ml had

lower risk of PTB at OR = 0.41; 95% CI

(0.20,0.86) as compared to those with 25

(OH)D�20 ng/mL

The Journal of Nutrition;

Tabatabaei et al. 2017[10]

N = 480 (120

PTB, 98 sPTB)

Case-Control Three cutoffs for analysis:

<15.7 ng/mL, 15.7–23.6ng/

mL, and�23.6 ng/mL

PTB <37 weeks,

sPTB<37 weeks

-Ethnic minority participants with 25(OH)

D of 9.43 nm/L where at a higher risk of

PTB than those with a concentration of 23.6

nm/L at OR = 4.05; 95% CI (1.16, 14.12). ’

-There was no such association when

considering only sPTB.

PLOS ONE; McDonnell

et al 2017[17]

N = 1064 (139

PTB)

Case-Control Four cutoffs for analysis:<20

ng/mL, 20 to <30 ng/mL, 30

to <40 ng/mL and�40 ng/

mL

PTB <37 weeks -Mothers with 25(OH)D�40 ng/ml were at

a lower risk of PTB at OR = 0.42; 95% CI

(0.2–0.89) compared to those with 25(OH)D

<20 ng/ml

International Journal of

Clinical Pathology; Zhu

et al. 2015 [18]

N = 821 (180

PTB)

Prospective Three cutoffs for analysis:

<15.7 ng/mL, 15.7–23.6ng/

mL, and�23.6 ng/mL

Very preterm:�31

weeks; Mildly

Preterm: 32–37 weeks;

term: >37 weeks of

gestation

-25(OH)D deficiency occurred in 63.04% of

pregnant women in very preterm group,

compared to 36.61% in in-term group.

-There was significant difference between

the 25(OH)D level of the very preterm

group and the other two groups (very

preterm vs mildly preterm P<0.01, very

preterm vs in-term group P<0.001)

-No significant difference between the

mildly preterm and in-term group

(P = 0.47)

American Journal of

Perinatology; Baker et al.

2011[46]

N = 4225 (40

sPTB)

Nested Case-

Control

One cutoff for analysis:<15.7

ng/mL

sPTB�23 and�34

weeks’ gestation

-Maternal 25(OH)D <15.7 ng/mL was not

associated with sPTB in both adjusted and

unadjusted models. Adjusted or OR = 0.82;

95% CI (0.19 to 3.57).

PLOS ONE; Flood-

Nichols et al. 2015[47]

N = 235 (10

sPTB)

Retrospective One cutoff for analysis:�30

ng/ml

sPTB <37 weeks - No association between mothers with 25

(OH)D�30 ng/ml and incidence of

spontaneous preterm delivery with

OR = 0.78; 95% CI (0.17–3.55)

British Journal of

Obstetrics and

Gynaecology; Rodriguez

et al. 2014[6]

N = 2358 (108

PTB)

Prospective Three cutoffs for analysis:

<20 ng/mL, 20–29 ng/mL,

�30 ng/mL

PTB <37 weeks -There was no association between PTB and

25(OH)D levels at each cutoff. For 25(OH)

D�30 ng/ml, OR = 1.08; 95% CI (0.75,1.67)

American Journal of

Clinical Nutrition;

Schneuer et al. 2014[7]

N = 5109 (388

PTB, 217

sPTB

Case-Control Five cutoffs for analysis:

<7.86, <11.8, 11.63–15.7,

15.7–23.6, >23.6

sPTB<37 Weeks

All PTB<37 Weeks

-Mothers who had low 25(OH)D had a

predisposition towards increased risk of

sPTB than mothers who had normal levels

of 25(OH)D at borderline significance

(P = 0.09).

-sPTB: Mothers with 25(OH)D<7.86 ng/mL

had an adjusted OR = 1.47; 95% CI

(0.77,2.82) relative to those with 25(OH)D

from 15.7–23.6 ng/mL

-PTB: Mothers with 25(OH)D<7.86 ng/L

had an adjusted OR = 1.23; 95% CI

(0.75,2.00) relative to those with 25(OH)D

from 15.7–23.6 ng/mL

(Continued)
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highly influential in the preparation of the placenta and pregnancy outcome. The down-regu-

lation of IL-6 and IL-8 by 1,25(OH) 2D3, would slow down cervical ripening and allow for the

expression of anti-inflammatory cytokine IL-10 [51], one of the key nodes in our expanded

sPTB module. Another notable biological process depicted in our network was the up-regula-

tion of MMP8, metalloproteinase-8. A relevant scholarship has identified elevated levels of

MMP8 in amniotic fluid is predictive of preterm delivery, finding that as many as 42% of deliv-

eries before 32 weeks of gestation are associated with an elevated MMP-8 level [55]. The upre-

gulation of these immune-related proteins and their proximity to the VDR in the interactome

provide insight into the mechanisms of how vitamin D sufficient at early pregnancy might

reduce the risk of sPTB.

A limitation of our gene expression study was the small sample size. We were able to iden-

tify only 8 sPTB cases (<32 weeks of gestation) who provided samples and had suitable RNA

for transcriptome profiling and had the criteria for inclusion. This limitation and potential het-

erogeneity among the subjects might have affected the number of genes we were able to iden-

tify in our gene expression study at both discovery and replication stages which may have

affected the size of sPTB module and comprehensiveness of the gene-gene interactions. The

novel nature of our study made it difficult to find a replication cohort with both sPTB and

Table 2. (Continued)

Journal, Authors, Year Population Design Vitamin D Metric Relevant Outcome

Measured

Key Findings and Effect Estimate (95% CI)

American Journal of

Perinatology; Wetta et al.

2014[3]

N = 267 (90

sPTB)

Nested Case-

Control

Three cutoffs for analysis:

<15 ng/mL (deficient), < 30

ng/mL (insufficient), �30

(Normal)

sPTB<35 Weeks -sPTB was not associated with either 25

(OH)D insufficiency, with OR = 0.8; 95% CI

(0.4, 1.4), or deficiency, with OR = 1.3; 95%

CI (0.6, 3.0), at P-value = 0.62.

British Journal of

Obstetrics and

Gynaecology; Thorp et al.

2012[5]

N = 265 (131

PTB)

Nested Case-

Control

One cutoff for analysis:<15.7

ng/mL

PTB<35 Weeks -25(OH)D was not significantly correlated

with preterm birth, with 25(OH)D

concentrations�15.7 ng/mL generating

OR = 0.8; 95% CI (0.38, 1.69) relative to

those with less than 15.7 ng/mL.

Medical Science Monitor

Yang et al. 2016[4]

N = 138 (46

PTB)

Prospective Four cutoffs for analysis:<10

ng/mL, 10 to 20 ng/mL, 20 to

30 ng/mL and�30 ng/mL

PTB<37 Weeks -Compared to those individuals with�30

ng/mL 25(OH)D, pregnant women with

lower vitamin D (< 30 ng/mL) did not have

significantly increased PTB risk OR = 0.90;

95% CI (0.45, 1.23). Similar insignificance

was found across all other 25(OH)D cutoffs.

Obstetrics & Gynecology;

Bodnar et al. 2015[9]

N = 3453

(1126 PTB)

Case-cohort Three cutoffs for analysis:

<20 ng/mL, 20 to 30 ng/mL,

and�30 ng/mL

sPTB and PTB<37

Weeks

sPTB and PTB <34

Weeks

The incidence of PTB and sPTB among

mothers with 25(OH)D levels <20, 20–30

declined significantly as vitamin D levels

improved. Risk of sPTB at less than 37

weeks of gestation, PTB less than 37 weeks

of gestation, or preterm birth at less than 34

weeks of gestation among mothers with

serum 25-hydroxyvitamin D less than 50

nmol/L was 1.8- fold to 2.1-fold greater than

mothers with serum 25-hydroxyvitamin D

75 nmol/L or greater (OR = 1.8; 95% CI

(1.2–2.7); OR = 1.8; 95% CI (1.3–2.6);

OR = and 2.1; 95% CI (1.3–3.6).

Clinical Endocrinology;

Sablok et al. 2015 [48]

N = 160 Randomized

Control Trial

Three cutoffs for analysis:

<7.9 ng/mL (deficient), 7.9 to

15.7 ng/mL (insufficient), and

>15.7 ng/mL (sufficient)

preterm labor (PTL)<

37 weeks

In the supplement group (sufficient subjects

received one dose of 60,000 IU, insufficient

subjects received two doses of 120,000 IU,

deficient subjects received four doses of

120,000 IU), 8.3% of the patients had PTL

whereas in placebo group, 21.1% had

PTL, OR = 2.6; 95% CI(1.21–5.58); P = 0.02

https://doi.org/10.1371/journal.pone.0227193.t002
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vitamin D status, so we replicated subset of sPTB gene signatures that were also associated

with vitamin D status in the discovery phase in an independent dataset according to the sPTB

status. Similar to our discovery cohort, the sPTB cases in the replication cohort had a tran-

scriptome profile from earlier pregnancy cohort; however, they had mostly sPTB at 32–37

weeks of gestation (N = 51, 10 cases with sPTB < 32 weeks), while our cases had sPTB < 32

weeks of gestation.

The identification of a network that represents an overlapping gene module between sPTB

and vitamin D gene signatures, as well as the reduced risk of sPTB as a result of vitamin D suf-

ficiency based on collective published evidence justify the necessity for further research on this

association with a larger sample size. One consideration for such studies should be the vitamin

supplementation dose. In the VDAART, only 74% of the subjects who received the 4,000 IU

dose of vitamin D3 had a sufficient level of serum vitamin D (� 30 ng/mL) at 32 to 38 weeks of

gestation, as compared to 82% at 1 month prior to delivery in an NICHD trial on a similar

dose [56]. The results of these 2 studies highlight the latest emerging evidence that higher sup-

plementation doses (2,000–6,000 IU/day) than the current recommendation of 400 to 600 IU/

day, particularly in the absence of adequate sun exposure, might be necessary to support suffi-

cient levels throughout pregnancy. Furthermore, we recommend pre-pregnancy, individual-

ized doses for women who have a predisposition for vitamin D deficiency and/or a risk of

non-adherence to supplementation. These recommendations need to be definitively tested in a

pre-pregnancy clinical trial in a population of women at high risk of sPTB. Finally, we believe

that follow-up studies should include a differential gene expression analysis of mothers with

sPTB before 37 weeks of pregnancy.

In conclusion, the peripheral blood gene expression patterns of women who had sPTB

show immune gene activation at 10 to 18 weeks, suggesting the importance of vitamin D suffi-

ciency in early pregnancy. With further knowledge about the pathways underlying sPTB, we

hope to be able to identify modifiable risk factors affecting these biological pathways related to

sPTB and predict which subjects are predisposed to PTB based on their vitamin D levels and

those risk factors; to achieve this, a larger study looking at vitamin D levels and supplementa-

tion in early pregnancy as it relates to sPTB is necessary.
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S1 File. Replicated gene signatures of common genes with differential expression between

sPTB and Vitamin D status and their literature curation (N = 43, Table A), Gene Ontology

(GO) enrichment analysis of the replicated gene signatures that were mapped to the protein-

protein interaction network, i.e., sPTB module (N = 36, Table B), and GO enrichment analysis

of the Largest Connected Component (LCC) of sPTB module (N = 20, Table C).
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