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Abstract

The rapid development of genomic technology has made high throughput genotyping widely accessible but the associated
high throughput phenotyping is now the major limiting factor in genetic analysis of traits. This paper evaluates the use of
thermal imaging for the high throughput field phenotyping of Solanum tuberosum for differences in stomatal behaviour. A
large multi-replicated trial of a potato mapping population was used to investigate the consistency in genotypic rankings
across different trials and across measurements made at different times of day and on different days. The results confirmed
a high degree of consistency between the genotypic rankings based on relative canopy temperature on different occasions.
Genotype discrimination was enhanced both through normalising data by expressing genotype temperatures as differences
from image means and through the enhanced replication obtained by using overlapping images. A Monte Carlo simulation
approach was used to confirm the magnitude of genotypic differences that it is possible to discriminate. The results showed
a clear negative association between canopy temperature and final tuber yield for this population, when grown under
ample moisture supply. We have therefore established infrared thermography as an easy, rapid and non-destructive
screening method for evaluating large population trials for genetic analysis. We also envisage this approach as having great
potential for evaluating plant response to stress under field conditions.
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Introduction

Most breeding effort in crop plants has focused on commercially

important traits such as yield and traits directly linked to

commercially important traits. For further improvements there is

a need to extend the range of traits studied. Although many

physiological traits are critical for plant growth and development

and hence contribute to yield and to tolerance of environmental

stresses, they have rarely been used in plant breeding [1]. This has

largely been because of the lack of appropriate high throughput

phenotyping methods to the extent that phenotypic analysis is

becoming the major limiting factor in plant breeding [1,2,3,4].

As accurate and elaborate phenotyping is the basis of any plant

study for responses to stress, there is a need to develop robust

phenotyping systems. A number of laboratory or glasshouse-based

phenotyping platforms such as the Keytrack System (KeyGene,

The Netherlands) and Phenofab have been developed recently (see

[5,6]). These use multiple view imaging systems including thermal

sensors, together with automated plant handling under controlled

environment conditions to quantify plant growth and function.

However, genetic analysis and breeding for most crop species is

usually carried out under natural conditions because results from

glasshouse trials do not always correlate well with field behaviour

[7,8,9,10]. Phenotyping in field trials is therefore likely to provide

better insights into crop behaviour than studies under glasshouse

conditions, especially for crops such as potato that have large

canopy size and show restricted growth in pots [11]. Thus, there is

a strong requirement and need to establish phenotyping methods

that can be used to screen large crop plant populations under

natural environmental conditions.

One important physiological trait, especially in water-limited

conditions, is stomatal conductance; this plays a crucial role in

balancing a need to maximize photosynthesis while minimizing

water loss [12]. Drought leads to stomatal closure, thus reducing

water loss but with consequent reductions in photosynthesis and

hence growth and yield. With increasing constraints on water

availability, the efficient use of water is becoming more critical in

agriculture, and manipulation of stomatal behaviour has been

considered to be a likely target for improving crop water use

efficiency [13,14]. In breeding crops adapted to drought condi-

tions it is also necessary to consider the optimal stomatal response

with the need for some plasticity in stomatal behaviour so that

stomata remain open when water is available but close to improve

water use efficiency and survival as water deficits increase.

Optimal stomatal responses depend on the probability of future

rainfall [12,15,16]. Thermal imaging has been shown to be a

particularly sensitive method for the study of stomatal conductance

[17] and is especially useful for screening mutant populations

because it averages large areas of canopy, and is hence much more

rapid and provides greater replication than the use of porometry

[18,19,20].
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A number of previous studies have demonstrated relationships

between stomatal conductance and the commercially critical trait

of yield. For example, work on rice has shown that genotypic

differences in grain yield in rice were closely related to crop growth

rate, which in turn was closely related to higher stomatal

conductance during the two–week period preceding full heading

[21,22,23]. Similar results have been found for wheat and cotton

[24,25,26,27,28]. These latter results have also shown a relation-

ship between stomatal conductance and yield that is independent

of photosynthetic rate [28,29].

These reports suggest that there is therefore good reason to

focus on screening for stomatal conductance as a means for

improving yield, while the importance of stomatal conductance in

controlling water loss suggests that it will be particularly important

under water-limited conditions. The work described in this paper

aims to explore the reproducibility and sensitivity of canopy-scale

thermal imaging (by infra-red thermography (IRT)) as a tool for

assessing the genetic variation in stomatal conductance in a diploid

potato mapping population. We report the first extensively

replicated trials of large scale thermal phenotypic screening under

field conditions, with strong evidence for good reproducibility at

different times of the day and on different days. We also evaluate

and compare methods for processing, assessment and use of

images and the requisite statistical methods to eliminate the effect

of varying weather conditions over time. We further investigate

whether there is any relationship between the observed canopy

temperature and yield.

Materials and Methods

The work was carried out on a biparental diploid potato

population (06H1), derived from a cross between two hybrid

clones (99FT1b5 and HB171(13)) each of which are clones derived

by crossing Solanum tuberosum group Phureja and Solanum tuberosum

group tuberosum (manuscript in preparation). In this study 188

clones from the population together with the two parents and two

commercial varieties (Record and Cara) were planted in the field

as a replicated trial using an alpha design [30]. Field trials were

conducted in 2011 at Balruddery farm, The James Hutton

Institute (Latitude 56.48uN, Longitude 3.13uW). Field trials were

established with separate independent plots each representing a

harvest to take place at five different time points (stolon initiation

to tuber initiation) during the life cycle of potato (described as Trial

1, Trial 2, Trial 3, Trial 4 and Trial 5). Each of these trials

comprised the selected 192 clones in the form of two-plant plots

replicated twice except for trial 5 which had five plant plots

replicated twice and was used to assess the final yield. The trials

were planted in 16 plot rows and the genotypes were randomized

according to an alpha design with small block size of 8 (as an

example, Trial 1 is shown in Figure 1).

Acquisition of infrared images
Thermal images were obtained using a ThermaCAM P25

infrared camera (FLIR systems, USA) that operates in the spectral

range of 7.5–13 mm and has a focal plane array (FPA) uncooled

microbolometer detector with a spatial resolution of 3206240 pix-

els. Images were taken from a fork-lift at about 8 m height and

covered up to 9 plots horizontally and 3–4 rows (Figure 1 and

Figure 2). Thermal images were taken at 3 developmental stages

(28 June and 5 and 12 July: referred as day 1, day 2 and day 3 in

the rest of paper) with images on day 1 for all the 5 trials, day 2 for

trials 2, 3, 4 and 5 and on day 3 for trials 3, 4 and 5. Images were

taken at an angle to maximise the number of individual plots in

any image [20]. Data acquisition took up to 6 hours on day1

(between 9:30 am and 3:00 pm) as imaging took nearly 0.75 h for

each trial and imaging on the consequent days took slightly less

with similar time between trials (Table S1). The camera

parameters such as reflected, atmospheric and optics temperatures

(20uC) and relative humidity (40%) were kept constant through the

whole experiment. The absolute error this causes did not affect our

analytical approach which depends on relative values only.

Thermal Image Analysis
Thermal images were processed using ThermaCAM Research-

er Pro 2.8 SR-1 software (FLIR systems). To estimate the canopy

temperature of each plot (genotype), the acquired images were

loaded into the ThermaCAM software and typical areas of canopy

for each plot were selected by drawing polygons, avoiding edges

and patches of bare ground. Plot temperature was estimated by the

mean temperature of the enclosed pixels (Figure 2). As a quality

control measure to ensure that no ground-pixels (as opposed to

leaf-pixels) had been included, the histogram of all the individual

pixel temperatures in each polygon was used as a visual check to

ensure that no temperature outliers had been included in the

sampled area.

Data analysis and Statistics
Plot canopy temperatures estimated from the thermal images

were analysed using GenStat (ver-14.1.0.5943; VSN international

Ltd) and R statistical software (ver 2.14.0; The R Foundation for

Figure 1. An example of field trial layout showing the imaging
strategy. The sequence of images is illustrated showing the overlap
between images with many plots having repeated measurements. Each
plot in the plan contains a single genotype plot (2 or 5 plants). So a
single trial with 192 genotypes replicated twice has 24 rows of 16 plots.
doi:10.1371/journal.pone.0065816.g001

High Throughput Field Phenotyping
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Statistical computing). Two methods of normalizing the plot

temperatures were considered, regression analysis (REML) and a

simple differencing approach. The significance of differences

among genotypes was determined using analysis of variance.

REML analysis was performed in GenStat using Trial, Genotypes

and Picture temperature as fixed effects with genotypic means and

picture temperature means predicted by averaging across trials.

Measurement of yield, height and maturity
In order to find the relationship between the canopy temper-

ature and yield of the genotypes, tuber yield was assessed at

physiological maturity. Yield is represented as harvested yield from

five plants from Trial 5. To explore the relationship between

thermal data and yield before physiological maturity, tuber yield

was also measured for Trial 4. Maturity was assessed quantitatively

for trial 5 on a scale of 1–9, where 9 is less mature and 1 is most

mature.

Results

Acquisition and normalisation of Images
The procedure for acquiring the thermal images involved

deliberate but non-systematic overlapping and therefore most plots

appeared in two or more images (Figure 1). There are two main

consequences of image overlapping, firstly that the increased

replication reduces the standard error of the genotype means.

Secondly it provides scope for better normalisation of each image

for changing environmental conditions such as increasing or

decreasing cloud cover. Figure 3 shows image-to-image variation

in the raw individual image plot temperatures (referred to as IPTs

from now on) for 80 consecutive images covering 3 trials taken on

a single day. The between-image variation was caused by

environmental changes such as cloud cover (and irradiance), wind

speed, temperature and humidity [17,20]. Therefore the plot

temperatures in each image were normalised by subtracting the

mean temperature of all the plots in that image, giving the

individual-image normalised plot temperature (IINPT). The

normalised plot temperature (NPT) for plots occurring in more

than one image was estimated as the mean of the IINPTs (for

individual plots across different images). The NPTs were then used

in all subsequent statistical analyses. Genotypic means or

normalised genotype temperatures were obtained by averaging

across replicates for each trial. A more sophisticated approach

using REML to estimate genotype means, adjusted for Trial,

Image, time and replication generated similar genotype estimates.

Comparison of these two approaches showed that the estimated

genotype means were similar and Pearson correlation coefficients

between the estimated genotype means were .0.95 for all trials,

with no evidence for systematic bias (data not shown). Therefore it

was decided to proceed with the more direct image-differencing

approach rather than technically more complex REML.

The overlap strategy and the normalisation technique used

above assist in analyzing data with more precision and reduction

in standard error of the genotype means. This is shown in Figure 4,

where comparisons between different scatter plots demonstrate

that the degree of variability decreases with increased replication

and use of normalisation. The comparison in Figure 4 is made

with Genotype means on the x-axis, with the y-axis representing

individual plot temperatures (IPT) in Figure 4(A), the individual-

image normalised plot temperatures (IINPT) in 4(B) and

normalised plot temperature in 4(C). Figures 4 (A) and 4 (B)

shows the effect of normalisation, whereas comparison between 4

(B) and 4(C) shows the benefit of increased replication as a result of

Figure 2. Visual (RGB) image and corresponding thermal image
of part of the potato field trial. A): Visual image of the randomised
potato field trial showing markers to aid localisation in the thermal
image. The marked circle indicates one of the two-plant plots. B)
Corresponding thermal image; this shows the selected area of canopy
for each plot isolated in the ThermaCAM Researcher Pro software.
doi:10.1371/journal.pone.0065816.g002

Figure 3. Canopy temperature (6C) variation within images and
between successive images. Dot plot covering measurements on
three trials on a single day showing the substantial temporal variation,
with the major reduction in temperatures between images 34 and 42
resulting from variability in environmental components. Each cross
represents the temperature of a single plot in one image.
doi:10.1371/journal.pone.0065816.g003

High Throughput Field Phenotyping
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overlap between images, while comparison of Figures 4 (A) and 4

(C) illustrates the benefit of both normalisation and replication.

Reproducibility of thermal data
Thermal images were taken on the 192 genotypes on three

different days, during the growing season of the potato plants

between stolon initiation and tuber initiation. Data for canopy

temperature on each trial measured on different days were

analysed separately as 12 independent sets of thermal imaging

data (with replication in each trial). This allows us to assess the

consistency and reproducibility of the thermal data (between

trials/time of the day and between days).

Reproducibility at different physiological

stages. Analysis of variance of NPT for trial 4 (Table 1) shows

that the interaction between days and genotypes and also variation

due to day of imaging is not significant and thus provides evidence

for substantial consistency in the genotypic ranking of canopy

temperature over the three days (covering the period between

stolon initiation and tuber initiation). These results are plotted in

Figure 5(A) and show substantial differences in mean normalised

temperatures between extreme genotypes (ANOVA on data for

means for two replicates for trial 4 on different days: between-

genotype MS = 0.1736, df = 191 and within-genotype

MS = 0.0378, df = 384, p,0.001 with genotypes explaining

54.5% variation). As a test of whether these results could have

arisen by chance, a repeated randomization approach (Monte

Carlo analysis) was applied to the data. In this approach the

allocation to genotype was repeatedly randomised separately for

each day. This allowed calculation of an apparent LSD that could

have arisen by chance. The results of one simulation are plotted in

Figure 5(B) where the ‘simulated genotype’ range was approxi-

mately twice the apparent LSD. The result from analysis of

variance on such randomized data show a non-significant main

affect (between-genotype MS = 0.074 and within-genotype

MS = 0.087, p = 0.91). Similar results were obtained for all trials

(data not shown).

Within day reproducibility. The results on normalised plot

temperature data also show good reproducibility in genotype

rankings between trials measured at different times of day

(Figure 6(A) and Table S2). Rank correlations for the 20 genotypes

from each extreme selected for high and low temperature based on

mean ranks on these day 2 trials exhibit a high consistency in

normalised canopy temperature (Spearman’s rho range = 0.802 to

0.918 with p,0.001 for the 4 Trials). Similarly, a comparison of

rankings at different physiological stages (Figure 6(B)) also showed

Figure 4. Effect of replication and normalisation. Illustration of the benefits of image overlaps and of normalisation for calculating the
genotype means during thermal image analyses (using the example of Trial 4_Day1 data). The two replicates are indicated using different symbols. A)
Relationship between individual plot temperature (IPT) on y-axis and Genotype Means. B) Relationship between the ‘‘individual-image normalised
plot temperature’’ (IINPT) and Genotype Means. C) Relationship between Normalised Plot Temperature (NPT) and Genotype Means. Note: Residual
errors as a measure of the difference.
doi:10.1371/journal.pone.0065816.g004

High Throughput Field Phenotyping
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substantial consistency, with the data for the 20 extreme genotypes

(Spearman’s rho = 0.943, p,0.001, based on 20 genotypes from

each extreme selected on mean ranks of day 2 Trials data). Figure 7

and Figure S1 shows the correlations between normalised

temperatures on different trials on day2. In each case the data

are highly positively correlated. The correlations between Day

1_Mean, day 2_Mean and Day 3_Mean, where Mean is the

average of different trials on that day, are higher than those for the

individual trials, suggesting that repeated measures of thermal data

creates higher replication, thus minimizing the variation.

Canopy temperature and harvest traits
The relationships between canopy temperature for different trials

and days and growth traits (yield, maturity and plant height) are

presented in Figure 8 and Figure S2: this shows a consistent negative

relationship between canopy temperature and yield (r = 0.541,

p,0.001, Trial 5_Mean and Yield). A similar relationship was found

between canopy temperature and yield in trial 4 (r = 0.531, p,0.001,

data not shown). Final yield was related to yield at trial 4 (r2 = 55%,

p,0.001). The yield data for trial 4 were collected roughly 3 months

after planting (at the stage of tuber bulking) whereas the yield data for

trial 5 were collected at maturity (around 2 months after trial 4 harvest).

Previous studies show that evaporation is the main determinant of leaf

temperature and there is a direct relationship between leaf tempera-

ture, transpiration rate and stomatal conductance [20,31]. These

results imply that the higher yielding phenotypes have higher

transpiration.

Stepwise multiple regression using a forward selection approach

was used to determine the importance of canopy temperature,

plant height and maturity as predictors of yield. Similar results

were obtained using best subsets regression (data not shown). The

majority of variation in yield was associated with variation in

canopy temperature (r2 = 29.2%) and when interacting with

maturity it explains nearly 31.6% of the variation and on further

addition of plant height, the amount of variation explained is 33%.

Thus the results show that stomatal conductance or canopy

temperature as measured in these trials play a significant role in

determining yield, though there are possibly other morphological

and physiological traits that determine yield in interaction with this

trait in potato.

Canopy temperature shows weak correlations with plant height

(ranging from r = 20.215, p,0.003 to 20.396, p,0.001) and

maturity (ranging from non-sig to r = 0.238, p = 0.001) where

maturity is scored on 1 to 9 basis with 9 considered as less mature,

thus suggesting that genotypes with higher canopy temperature

mature later.

Discussion

Normalisation of data
The surface temperature of the plant canopy depends on both

biological and environmental factors. As our experimental design

enabled canopy temperatures to be measured simultaneously for large

numbers of genotypes, the normalisation technique employed

minimises environmentally-caused temperature variation, leaving

primarily the genetic differences. The practice of overlapping different

images increases replication, thus allowing more precise estimation of

temperature differences and thus reducing the standard error of the

plot/genotypic means (Figure 4). Increased replication helps increase

the significance of between genotypes; this should help increase the

power to locate QTLs for this trait [32].

Figure 5. Variation of the normalised temperature for each genotype ranked by mean temperature. A) Graphical representation of the
consistency of the rankings of the different genotypes across three measurement dates for Trial 4. The genotypes are ranked along the x-axis
according to the mean of all the replicate normalised genotype temperatures (uC) over three days. The X-axis also indicates the positions for the two
parents (HB171, 99FT1b5) and two commercial varieties (Var1 = Record and Var2 = Cara). B) The same data as (A) but with data randomly assigned to
‘genotypes’ independently on each day, indicating the range of genotype means that could have arisen by chance. This confirms that the substantial
genotypic differences in mean normalised temperature shown in (A) are not due to chance. LSD values presented at 95% level in all graphs.
doi:10.1371/journal.pone.0065816.g005

Table 1. Analysis of variation testing the consistency and
significance between different trial days and genotype and
day interaction for the Trial 4 thermal data.

Source df MS F ratio p-value

Genotype 191 0.33353 4.65 ,0.001

Days 2 0.08795 1.22 0.295

Days * Genotype 382 0.07177 0.86 0.946

Error 572 0.08354

doi:10.1371/journal.pone.0065816.t001

High Throughput Field Phenotyping
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Reproducibility of data
Jones et al. (2009) demonstrated that clear genotypic variation can

be detected by using normalisation techniques even where substantial

variation in soil moisture exists and have given examples of the

application of infra-red thermography to phenotyping in the field [20].

In this paper we extended this approach to a large scale multi-trial

experiment to investigate the power of normalisation techniques to

improve the consistency and sensitivity of canopy temperature data.

Figure 6. Consistency in genotype ranking at different times and at different physiological ages. A) Contour plots illustrating the
consistency in genotype ranking for normalised genotype temperature (genotype means) between different trials on the same day but measured at
different times (Trial 2, 3, 4 and 5 on Day 2, imaged between 9:00 am to 12:30 pm, refer to Table S1). B) Contour plots illustrating the consistency in
genotype ranking for normalised genotype temperature between different days for one trial (Trial 4 on day1 (28/06), day2 (05/07) and day3 (12/07/
2011)). The arrows in (B) correspond to the positions of the 20 genotypes each rank extreme in (A) with dotted arrows indicating the coolest and solid
arrows the hottest. Data are expressed as genotype rankings on each occasion (x-axis indicating genotype numbers), with black areas indicating
genotypes ranked among the hottest on any occasion and white areas indicating genotypes ranked among the coolest.
doi:10.1371/journal.pone.0065816.g006

Figure 7. Correlation between trials. A representative extract from the full matrix showing both the correlations between normalised genotype
temperatures (represented as uC) for different trials and measurement days and the associated correlation coefficients.
doi:10.1371/journal.pone.0065816.g007

High Throughput Field Phenotyping
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The results confirm that ‘‘between-genotype’’ variation can be

consistently detected among a population of potato lines when using

appropriately normalised thermal data (Figures 5 and 6). The

reproducibility of the data after normalisation was not affected by

either the time of measurement during the day or the physiological

stage of the plant.

Although the replication of genotypes within a trial sets the limits to

the power of a trial, the errors involved in thermal imaging, including

those resulting from environmental variation between images, further

degrade the power of any such trial. We have shown that this further

error can be minimised by enhanced replication of genotype data

either by using ‘image overlap’ or by increasing the number of images

taken. The use of normalised temperatures instead of the raw

temperatures is crucial in eliminating the main effect of environmental

differences (e.g. air temperature, humidity or irradiance) during the day

or between days (Figure 4).

The matrix of correlation plots in Figure 7 and Figure S1

illustrates the high levels of consistency between results for

different trials and on different days. The correlations are highest

between the daily means, indicating the advantage of enhanced

replication using the independent trials.

Relationship of temperature to canopy height
Negative associations of temperature with plant height, similar

to those observed in this paper have been observed in wheat,

where it was hypothesized that the lower temperature for taller

crops was related to a higher boundary layer conductance with

taller crops [33,34]. It remains unclear what underlies the lower

temperatures observed with taller crops. Although this may simply

result from a true correlation between height and stomatal

conductance; as we do not have stomatal conductance data we

cannot rule out the possibility of an aerodynamic effect

contributing to the difference and reducing the power of the

thermal measurements to discriminate conductance [35]. Despite

the fact that maturity for this cross has not been studied extensively

(due to it being a uniformly late maturing population) the results in

this paper indicate that the plants which are less mature have

lower yields: this late maturity is also associated with higher

canopy temperature. Thus, this suggests that under our optimum

water conditions the plants with higher stomatal conductance have

short life cycle or mature early.

Potential for Potato Research
Infrared thermography (IRT) is a powerful tool for studying

plant responses to environmental stress and for screening plants for

differences in stomatal conductance, as changes in canopy

temperature are driven by differences in stomatal conductance,

which itself is particularly sensitive to water deficit stress [17]. IRT

has many advantages over other methods such as the use of a

porometer for the phenotyping of stomatal behaviour as it is both

Figure 8. Genotype temperatures and harvest traits. Relationship between normalised genotype temperatures (mean of three days) for Trials
4 and 5 and harvest traits (Yield, Plant height and Maturity) represented using regression lines in the plots. The numerical figures displayed provide
the correlation coefficients and the p values for the plotted traits.
doi:10.1371/journal.pone.0065816.g008
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more rapid and non-destructive, and it averages the whole canopy

instead of individual leaves. It has therefore been used extensively

for identifying and monitoring plant stress and as an aid in

irrigation scheduling [31,36]. In this study we have shown that

even with ample water supply there is substantial variation in

canopy temperature between different potato genotypes. The

highly heterozygous population evaluated here showed tempera-

tures varying by ,2.1uC, even under cool conditions with a

maximum environmental temperature of 18uC. A substantial

portion of the temperature variation observed was genotypic as

there was a good consistency between genotypic rankings for

different days and for different trials. The potato population used

in this experiment has shown significant variation among

genotypes for canopy temperature and is being used further to

associate with a large set of Single Nucleotide Polymorphisms

(SNPs) for mapping regions which control canopy temperature/

stomatal conductance. Future work will investigate the behaviour

of these genotypes under irrigated and water stress conditions to

identify genotypes which are stress tolerant and also which are

transpiring more efficiently {by combining IRT data with Carbon

Isotope signatures (delta13C)}. The combination of a mapping

approach and the study of genotypic responses to water availability

will allow one to quantify the genetic differences in stomatal

behaviour. Potentially this will help in breeding genotypes which

can close stomata and conserve water under drought conditions

but take advantage of any available water. The results described

here have identified the extreme genotypes in terms of constitutive

stomatal behaviour under well-watered conditions, while the new

trials will concentrate on responsiveness to drought allowing

mapping of relevant QTLs.

Potential as an indirect trait
The present results also provide evidence for significant negative

correlations between yield and canopy temperature as would be

expected if increased stomatal opening led to enhanced yield. For

example for the trial 5 mean thermal data the correlation with

yield was (20.541, p,0.001) while similar correlations were found

for trial 4 data as well.

It has been shown in rice [22] that canopy diffusive conductance

estimated by remote sensing can be an effective criterion for the

selection of high-yielding rice genotypes, while cooler canopies in

wheat have been consistently positively associated with grain yield

in other cases [37]. This association between grain yield and lower

canopy temperatures has been related to a greater aerial biomass

and higher stomatal conductance and photosynthesis [25,38].

Similarly canopy temperature depression and stomatal conduc-

tance have been positively correlated with the increased linear

progression in grain yield in spring wheat over six years [25]. In

the present study the highest association between temperature and

yield was obtained for temperature measurements at earlier stages

of development. Further work is being carried out to explore the

linkage between stolon and tuber initiation and thermal data.

The present results suggest a negative correlation between

canopy temperature and plant maturity, thus the plants which

have high transpiration rate have shorter life cycle in this

population. However, as this cross is between the hybrids of S.

tuberosum group phureja and S. tuberosum group tuberosum with a

limited range of maturity scores (6–9), this result is only tentative

and needs further evaluation.

We conclude that the use of IRT is an easy, rapid and non-

destructive method of screening for stomatal behaviour and can be

used for evaluating large population trials for genetic analysis. We

have also demonstrated a link between high stomatal conductance

and high yielding genotypes under favourable growing conditions

which suggest that thermal imaging may provide a useful screen in

programmes aiming to increase yield under ample water

availability and consider that it may have similar potential under

stress conditions.

Supporting Information

Table S1 Half-hourly means of meteorological data over the

period of thermal measurements obtained at a location around

800 m from the trial site; start times for imaging of each trial are

indicated.

(DOCX)

Table S2 Analysis of Variance testing the consistency and

significance between different trials on a day.

(DOCX)

Figure S1 Matrix plot showing both the correlations

between normalised genotype temperatures (6C) for

different trials on different measurement days and the
associated correlation coefficients.

(TIF)

Figure S2 Relationship between normalised genotype

temperatures (6C) for Trial 4 and 5 on 3 days of infra-

red imaging and harvest traits (Yield, Plant height and
Maturity) represented using regression lines in the
plots. The numerical figures on left side of the graphical

representation provide the correlation coefficients and the p

values for the plotted traits for each plot respectively. Relationships

between harvest traits and canopy temperature are also shown for

the data on ‘‘Average of All traits’’ on day 1, day 2 and day 3 and

also for data on trial 4 and trial 5 averaged over three days of

imaging. Units: Yield in kg/5plants, Plant height in cm.

(TIF)
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