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ABSTRACT High-throughput sequencing (HTS) of gene amplicons is a preferred
method of assessing microbial community composition, because it rapidly provides
information from a large number of samples at high taxonomic resolution and low
costs. However, mock community studies show that HTS data poorly reflect the ac-
tual relative abundances of individual phylotypes, casting doubt on the reliability of
subsequent statistical analysis and data interpretation. We investigated how accu-
rately HTS data reflect the variability of bacterial and eukaryotic community compo-
sition and their relationship with environmental factors in natural samples. For this,
we compared results of HTS from three independent aquatic time series (n � 883)
with those from an established, quantitative microscopic method (catalyzed reporter
deposition-fluorescence in situ hybridization [CARD-FISH]). Relative abundances ob-
tained by CARD-FISH and HTS disagreed for most bacterial and eukaryotic phylo-
types. Nevertheless, the two methods identified the same environmental drivers to
shape bacterial and eukaryotic communities. Our results show that amplicon data do
provide reliable information for their ecological interpretations. Yet, when studying
specific phylogenetic groups, it is advisable to combine HTS with quantification us-
ing microscopy and/or the addition of internal standards.

IMPORTANCE High-throughput sequencing (HTS) of amplified fragments of rRNA
genes provides unprecedented insight into the diversity of prokaryotic and eukary-
otic microorganisms. Unfortunately, HTS data are prone to quantitative biases, which
may lead to an erroneous picture of microbial community composition and thwart
efforts to advance its understanding. These concerns motivated us to investigate
how accurately HTS data characterize the variability of microbial communities, the
relative abundances of specific phylotypes, and their relationships with environmen-
tal factors in comparison to an established microscopy-based method. We compared
results obtained by HTS and catalyzed reporter deposition-fluorescence in situ hy-
bridization (CARD-FISH) from three independent aquatic time series for both pro-
karyotic and eukaryotic microorganisms (almost 900 data points, the largest ob-
tained with both methods so far). HTS and CARD-FISH data disagree with regard to
relative abundances of bacterial and eukaryotic phylotypes but identify similar envi-
ronmental drivers shaping bacterial and eukaryotic communities.
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High-throughput sequencing (HTS) of 16S and 18S rRNA gene amplicons has
revolutionized microbiome research in environmental samples (1) because it

allows for the unprecedented time- and cost-effective processing of large numbers of
samples, providing data at high taxonomic resolution (2). Presently, HTS methods are
a commonly used tool to study microbial communities in diverse environments (3–8).
They provide data on the abundance of sequence reads affiliated with a particular
phylotype relative to the total numbers of reads in the sample. In many studies, such
data are treated as actual proportions of the studied microbes in the original habitat,
and they are used to generate correlation-based hypotheses on the importance of
environmental factors for specific microbial groups (9). Unfortunately, biases intro-
duced during sample processing, such as DNA extraction (10), PCR amplification (11),
and uneven coverage of primers across phylogenetic groups (12), result in low quan-
titative accuracy of amplicon data with respect to translating the relative abundance of
a specific phylotype in a sequencing library to its contribution in the samples. This
shortcoming has been repeatedly documented using mock communities (13–15) but is
largely ignored in the absence of an alternative. It is further aggravated by the uneven
distribution of rRNA operons in prokaryotes (1 to 15 copies of rRNA genes) (16) and
even more pronounced in eukaryotes (1 to 315,000 copies of rRNA genes) (17, 18).
While current pipelines for the analysis of amplicon data minimize errors arising from
sequencing and chimera formation (19–22), none of the postsequencing bioinformatic
analysis can mitigate the previously listed biases. Thus, statistical analysis based on the
relative abundances of individual microbial lineages derived solely from HTS data may
hinder, or even misguide, our understanding of microbial community dynamics and
functioning.

Catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) pro-
vides estimates of relative abundance (percent contribution to total bacterial or eu-
karyotic numbers) of individual microbial lineages defined based on rRNA gene phy-
logeny (23, 24), and it is a verified quantitative tool in numerous studies on bacterial
and eukaryotic communities (25–30). The accuracy of CARD-FISH may be compromised
by imperfect probe coverage and specificity, uneven permeabilization across phyloge-
netic groups, differences in the presence of endogenous peroxidases between phylo-
genetic groups and environmental samples, poor detection of low abundance or
inactive community members, and difficulties in counting aggregated cells (23, 24).
Despite these limitations, relative abundances obtained with CARD-FISH corresponded
well to the actual proportions of phylotypes in mock communities (31). The main
advantage of CARD-FISH over the HTS methods is that the relative abundance of a
particular lineage can be evaluated independent of the other taxa in the samples.
Moreover, the CARD-FISH procedure can be separately optimized for each target group
(probe), which is not possible for PCR with primers that target many different tem-
plates. Finally, CARD-FISH results can be readily combined with results from direct
enumeration methods, such as microscopy or flow cytometry, to provide absolute
abundance estimates of microbial lineages in the samples. Nevertheless, the consider-
ably less labor-intensive HTS methods have largely replaced CARD-FISH for studies of
microbial communities (32).

Regardless of their complexity, mock communities used for an assessment of
accuracy of HTS methods are substantially simpler than natural communities. So far,
comparative studies of HTS versus microscopic counts from environmental samples
have focused on few phylotypes and/or were based on a low number of samples,
yielding rather inconsistent results (33–39). Moreover, in the case of eukaryotes, HTS
data have usually been compared with abundance data derived from morphological
analyses, even though the correspondence between morphotypes and phylotypes is
limited by sequence availability in repositories (36, 40).

Despite these limitations, changes in and differences between microbial communi-
ties are typically deduced only from proportions of read numbers and so are the
proposed external factors potentially affecting them. The latter are often elucidated
from statistical multidimensional correlation models based on dissimilarity between the
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samples (41). Although significant correlations between HTS and CARD-FISH data (33)
indicate that the similarity matrixes calculated from both types of data might also
agree, to our knowledge this has not been tested on larger data sets so far.

We analyzed three data sets from distinct aquatic habitats that were investigated in
parallel by using 454 pyrosequencing with general bacterial or eukaryotic primers (HTS
data) and by CARD-FISH, to evaluate the correspondence of these methods in estimat-
ing the composition and variability of microbial communities and their relationships
with external factors. The eukaryotic data set consisted of 31 samples collected weekly
from the Baltic Sea, analyzed by HTS and by CARD-FISH using 11 probes. The bacterial
data sets originate from two high-frequency sampling campaigns in contrasting fresh-
water environments. The first one included 24 samples collected from the humic Jiřická
Pond (Czech Republic), analyzed by HTS (V1-V3 region) and by CARD-FISH using 20
probes. The second data set consisted of 24 samples from the oligo-mesotrophic Lake
Zurich (Switzerland), analyzed by HTS (V3-V5 region) and by CARD-FISH using 5 probes.
All together, this yielded 883 data points (278 for eukaryotes and 605 for bacteria),
representing the largest comparative data set from environmental studies available
so far.

RESULTS AND DISCUSSION
Direct comparison between HTS and CARD-FISH data (relative abundance/

biovolume). The general agreement between the relative abundances of eukaryotic
taxa determined by either CARD-FISH or HTS was poor (Fig. 1A; see Fig. S1 in the
supplemental material). Correlations were not significant, and regression slopes dif-
fered significantly from the value of 1 for most of the lineages except for the hapto-
phyte genus Haptolina (Table 1). HTS data of freshwater pelagic ciliates correlated
better with biomass than with abundance (40), likely due to a higher number of rRNA
genes in larger species (18). Unfortunately, of the studied nanoplanktonic groups, this
was the case only for cryptophytes (Table 1; Fig. S2 and S3). The agreement between
the two approaches was also analyzed by plotting differences between the relative
abundances of CARD-FISH and HTS data points against their means (42). The average
difference between these two values was greater than zero, both for abundance
(Fig. 1B) and biomass (Fig. S2), providing further evidence for rather poor correspon-
dence between HTS and CARD-FISH data (relative abundance or biomass) for specific
eukaryotic phylotypes.

The agreement between HTS and CARD-FISH was better when samples in each data
set were ranked from highest to lowest relative abundance (Fig. 1C and D; Fig. S4 and
S5). The Spearman rank correlations were strong for most eukaryotic groups and
significant for biovolume (Table 1). These findings speak for the use of nonparametric
methods for the analysis of HTS data (9).

In general, the agreement between the two approaches was better for bacteria than
for eukaryotes, for both relative and rank data (Fig. 2; Table 1). Most bacterial groups
were underrepresented in HTS data compared to CARD-FISH data, e.g., different
lineages of Limnohabitans, “Candidatus Methylopumilus planktonicus,” Polynucleobac-
ter subclusters B and C, “Ca. Planktophila vernalis”, the uncultivated Betaproteobacteria
lineage GKS98 and Verrucomicrobia (without Opitutae). In contrast, “Ca. Methylopumilus
turicensis.” Opitutae, or the Luna-2 cluster of Actinobacteria were overrepresented in
HTS data compared to CARD-FISH data (Table 1; Fig. S6). Such phylotype-dependent
agreement between the HTS and CARD-FISH data was also observed in marine meso-
cosms (43), indicating that a simple interpretation of HTS data in terms of relative
abundance should be avoided for bacteria as well.

Considerably higher agreement between the two approaches was obtained when
rank-transformed relative abundances were used (Fig. 2C and D), especially for “Ca.
Nanopelagicus,” Polynucleobacter cluster A, “Ca. Planktophila vernalis,” and the GKS98
lineage (Table 1; Fig. S7). Interestingly, there was a site-specific difference for “Ca.
Nanopelagicales” (Actinobacteria), which yielded a good correspondence for samples
from Jiřická Pond but a poor one for Lake Zurich (Fig. 3). The opposite was observed
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for “Ca. Methylopumilus planktonicus,” which was not detected at all by HTS in Jiřická
Pond. These incongruities could not be explained by discrepancies in the respective
coverage of the different primer sets used for generating the two data sets, as both
primer pairs displayed very good in silico coverages of these two bacterial groups
(90.9% versus 92.9% for “Ca. Nanopelagicales” and 98.3% versus 90.9% for “Ca. Methy-
lopumilus planktonicus”) (Tables S1 and S2).

The overall poor agreement between relative abundances derived from HTS and
CARD-FISH could not be explained by different specificities of probes and primers. On
the one hand, the 10-fold-higher HTS-derived relative abundance of the haptophyte
genus Prymnesium (Fig. S1), detection of which is a major concern in areas where it
forms toxic blooms (44), could be attributed to the lower coverage of the group by the
CARD-FISH probe than by the primer (70.3% and 87.2%, respectively) (Tables S1 and
S2). On the other hand, Pavlovophyceae, whose coverages by probe and primers are
very similar (87.2% and 83.0%, respectively) (Tables S1 and S2), were completely
undetected by sequencing (Fig. S1). All bacterial lineages that were overrepresented in
the HTS data set displayed comparable or even slightly higher in silico coverages of
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FIG 1 (A) Scatterplot of relative abundances of studied eukaryotic groups by 454 sequencing libraries (HTS) and CARD-FISH. (B) Scatterplot of differences
between relative abundances of studied eukaryotic groups estimated by CARD-FISH and HTS against the average of the two values. (C) Scatterplot of ranked
relative abundances of studied eukaryotic groups by HTS and CARD-FISH. (D) Scatterplot of differences between ranked relative abundances of studied
eukaryotic groups estimated by CARD-FISH and HTS against the average of the two values. Black lines in panels A and C show a 1:1 relationship. Solid black
lines in panels B and D show the average difference for the whole data set, solid gray lines show 1 standard deviation, and dashed gray lines show 2 standard
deviations. Different eukaryotic groups are color coded. Individual plots for panels A and C are shown in Fig. S1 and S2 in the supplemental material,
respectively.
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CARD-FISH probes than of HTS primers (“Ca. M. turicensis,” Opitutae, “Ca. Nanopelagi-
cus,” and Actinobacteria of the Luna-2 lineage) (Tables S1 and S2). Likewise, some
lineages that were overrepresented by CARD-FISH had a much higher coverage with
general PCR primers (e.g., Verrucomicrobia excluding Opitutae, the Betaproteobacteria
lineage GKS98), while coverage was very similar in others (e.g., “Ca. Planktophila
vernalis,” Polynucleobacter lineage PnecC) (Tables S1 and S2). In fact, agreement be-
tween the differences in coverage by HTS primers (80%) and CARD-FISH probes (100%)
and of the relative abundances detected by either approach was found only in
Polynucleobacter lineage PnecB. In any case, differences in coverage between probes
and primers cannot explain phenomena such as the good agreement between HTS and
CARD-FISH for “Ca. Nanopelagicales” in Jiřická Pond but not in Lake Zurich (Fig. 3), as

TABLE 1 Statistics for regressions and Spearman correlations between relative contributions to HTS or CARD-FISH dataa

Group

Regression
Spearman
correlation

nAdjusted r2 Slope P (r) P value for slope of 1 Rho P (S)

Eukaryotes—abundance
Chlorophyta �0.01 0.13 0.4420 �0.0001 0.10 0.5881 31
Pedinellales 0.04 0.31 0.1608 0.0029 0.36 0.0580 28
Cryptophyceae �0.02 �0.32 0.5409 0.0167 0.02 0.8991 30
CRY1 cryptophytes 0.04 0.46 0.1869 0.1295 0.47 0.0320 21
Chrysochromulina 0.62 0.62 0.0042 0.0411 0.92 0.0005 10
Haptolina 0.70 0.69 0.0015 0.0661 0.92 0.0005 10
Prymnesium �0.04 �0.13 0.7570 �0.0001 �0.42 0.2696 9

Eukaryotes—biomass
Chlorophyta �0.02 0.12 0.4980 �0.0001 0.16 0.3954 31
Pedinellales 0.11 0.42 0.0468 0.0084 0.45 0.0181 28
Cryptophyceae 0.23 0.95 0.0043 0.8612 0.54 0.0024 30
CRY1 cryptophytes 0.08 0.46 0.1138 0.0644 0.49 0.0258 21
Chrysochromulina 0.53 0.58 0.0101 0.0419 0.81 0.0082 10
Haptolina 0.53 0.62 0.0106 0.0774 0.75 0.0184 10
Prymnesium �0.14 �0.01 0.9410 0.0005 �0.23 0.5517 9

Bacteria—Jiřická Pond
Alphaproteobacteria �0.01 �0.38 0.4043 0.0053 �0.27 0.2094 24
Actinobacteria 0.48 0.47 �0.0001 �0.0001 0.72 0.0001 24
“Ca. Nanopelagicales” 0.90 0.74 �0.0001 �0.0001 0.93 �0.0001 24
Luna-2 cluster, Actinobacteria 0.17 0.51 0.0279 0.0354 0.39 0.0681 23
“Ca. Nanopelagicus” 0.71 0.73 �0.0001 0.0146 0.84 �0.0001 23
“Ca. Planktophila versatilis” 0.20 0.83 0.0374 0.6432 0.81 �0.0001 18
Bacteroidetes 0.23 0.52 0.0100 0.0149 0.45 0.0277 24
Betaproteobacteria 0.35 0.59 0.0015 0.0187 0.56 0.0055 24
Uncult. lineage GKS98
Betaproteobacteria

0.46 0.71 0.0002 0.0758 0.71 0.0002 24

Limnohabitans cluster LimA 0.59 0.73 �0.0001 0.0408 0.76 �0.0001 24
Limnohabitans cluster LimB �0.05 �0.08 0.8340 0.0078 0.59 0.0036 22
Limnohabitans clusters LimBCD 0.03 �0.19 0.2100 �0.0001 �0.39 0.0808 21
All Limnohabitans 0.35 0.66 0.0013 0.0684 0.60 0.0020 24
Methylophilaceae 0.19 0.64 0.0190 0.1770 0.31 0.1433 24
Polynucleobacter clusters PnecABD 0.70 1.04 �0.0001 0.7979 0.89 �0.0001 24
Polynucleobacter cluster PnecC 0.76 0.72 �0.0001 0.0034 0.57 0.0046 24
“Ca. Methylopumilus turicensis” �0.03 0.15 0.5310 0.0020 �0.15 0.4739 24
Opitutae 0.65 0.98 �0.0001 0.8775 0.81 �0.0001 24
Verrucomicrobia (excluding Opitutae) 0.04 0.69 0.1795 0.5489 0.01 0.9597 24
All Verrucomicrobia 0.67 1.28 �0.0001 0.1508 0.70 0.0002 24

Bacteria—Lake Zurich
Bacteroidetes 0.67 0.82 �0.0001 0.1430 0.75 �0.0001 24
“Ca. Nanopelagicales” �0.02 �0.06 0.44 �0.0001 �0.17 0.4241 24
“Ca. Methylopumilus planktonicus” �0.03 0.12 0.56 0.0002 0.02 0.9164 24
Polynucleobacter cluster PnecB 0.17 0.73 0.025 0.3874 0.52 0.0100 24

aRegression statistics include adjusted r2, slope value, and significance level (P [r]) and Spearman correlation statistics include rho and significance level (P [S])
between relative contributions (percentages) to HTS or CARD-FISH data. A P value slope of 1 indicates a significance level against the desired value of 1, while a P
value slope of �0.05 indicates that the slope is not significantly different from 1. n, number of data points for each group. Uncult., uncultured.

CARD-FISH and HTS Data Provide Similar Ecological Models

March/April 2020 Volume 5 Issue 2 e00052-20 msphere.asm.org 5

https://msphere.asm.org


the group coverages of both HTS primer sets were very similar (92.2% and 90.9%,
respectively) (Table S1) and much higher than that of the probe (68.0%) (Table S2). This
indicates the importance of other, unknown biases besides primer and probe coverage.

Limitations connected with PCR biases and imperfect probe and primer coverage
and specificity may be potentially overcome by the use of taxonomically profiled
metagenomic data to estimate relative abundances of specific groups, but so far tests
with mock communities have suggested otherwise (45). Recently, an addition of known
amounts of Escherichia coli cells has been proposed as an internal standard for
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FIG 2 (A) Scatterplot of relative abundances of studied bacterial groups (pooled data sets from both lakes) by 454 sequencing libraries (HTS) and CARD-FISH.
(B) Scatterplot of differences between relative abundances of studied bacterial groups estimated by CARD-FISH and HTS against the average of the two values.
(C) Scatterplot of ranked relative abundances of studied bacterial groups by HTS and CARD-FISH. (D) Scatterplot of differences between ranked relative
abundances of studied bacterial groups estimated by CARD-FISH and HTS against the average of the two values. Black lines in panels A and C show a 1:1
relationship. Solid black lines in panels B and D show average differences for the whole data set, solid gray lines show 1 standard deviation, and dashed gray
lines show 2 standard deviations. Different bacterial groups are color coded, and lakes of sample collection are indicated by shape. Individual plots for panels
A and C are shown in Fig. S6 and S7, respectively.
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amplicon read normalization in freshwater bacterial communities (31). This approach
provided substantially improved estimates for relative changes of phylotype contribu-
tions between samples compared to those of nonnormalized reads. It would be
valuable to explore its applicability for eukaryotes as well.

Comparison of statistical models. The above results provide further evidence that
the relative abundances of phylotypes as derived from HTS data should not be directly
translated into the proportions or biovolumes of cells from these lineages in a sample.
However, the generally better agreement of rank data suggests that nonparametric
distance-based ordination methods might be appropriate for the analysis of HTS data,
e.g., to study differences between microbial communities in different habitats (9). To
test this hypothesis, we calculated Bray-Curtis distance matrices for both CARD-FISH
and HTS data for all data sets and compared those using two-tailed Mantel tests. For
eukaryotes, we found a weak but significant nonparametric correlation between rela-
tive abundances derived from HTS and both relative abundances (Spearman’s
rho � 0.1533, P � 0.0001) and relative biovolumes determined by CARD-FISH
(rho � 0.1083, P � 0.0211). Similar results were obtained for bacteria from Lake Zurich,
where relative abundances of HTS and CARD-FISH also correlated weakly but signifi-
cantly (rho � 0.2025, P � 0.0005). In contrast, very strong and significant correlations of
HTS and CARD-FISH data were observed for bacteria from Jiřická Pond (rho � 0.8104,
P � 0.0001).

Multivariate methods are often used to generate correlation-based hypotheses
about the respective importance of different environmental variables for microbial
community dynamics. We analyzed both CARD-FISH and HTS data with distance-based
linear models (DistML). The agreement was very good for the eukaryotic data set, as in
both cases DistML pointed to soluble reactive phosphorus (SRP) as the only explanatory
variable (Table 2). However, this result was largely driven by a single outlier sample, for
which we observed elevated SRP concentrations and a massive bloom of the dinofla-
gellate Heterocapsa triquetra (46). The abundance of nanophytoplankton was substan-
tially lower in this sample, and the sequencing library was dominated by reads from the
dinoflagellate. When this sample was excluded from the analysis, a combination of SRP
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FIG 3 Scatterplots of relative abundances of the same bacterial groups by 454 sequencing libraries (HTS) and
CARD-FISH in Jiřická Pond and Lake Zurich. HTS data for each lake were generated with a different primer set
(Table S1). Black lines show 1:1 relationship.
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and temperature best explained the variability of CARD-FISH relative abundance data,
but there was no significant model for the HTS data. Interestingly, this agreed with the
CARD-FISH biovolume data, for which a significant model was not found in both cases
(Table 2). This imperfect agreement between the models can be partially attributed to
the fact that eukaryotic abundance and biovolume may respond differently to chang-
ing conditions (46). In general, it seems that statistical models calculated from HTS and
CARD-FISH data may identify the same environmental drivers affecting eukaryotic
microbial communities, but it is advisable to combine and calibrate HTS with micro-
scopic methods during experiments aimed to test hypotheses derived from statistical
models on observational data.

Excellent agreement between HTS and CARD-FISH was found in the bacterial data
sets. In the case of Lake Zurich, the patterns of relative abundance derived by either
approach pointed to temperature and abundance of virus-like particles (VLP) as the
best explanatory variables (Table 3). For Jiřická Pond, all models included dissolved
organic carbon, total phosphorus, water residence time, and either dissolved nitrogen
(HTS) or chlorophyll a (CARD-FISH) (Table 3). This almost perfect correspondence
indicates that use of distance-based multivariate analyses for bacterial amplicon HTS
data allows for the generation of models and hypotheses similar to those obtained
from relative abundance data from CARD-FISH.

Caveats of the study. Our HTS data are based on the pyrosequencing 454 method
(Roche) that has been replaced by newer platforms that provide sequencing depth
orders of magnitude higher, such as Illumina or Oxford Nanopore. However, as the
main biases arise from DNA extraction, PCR amplification, and uneven 16S and 18S
rRNA gene copy numbers (47), these newer methods will not necessarily improve the
quantitative accuracy of the sequencing data, as shown with mock communities
sequenced using Illumina (13–15) and Oxford Nanopore (48, 49) platforms. In contrast,
the relative abundances of sequences obtained from the same samples by both
pyrosequencing and Illumina correlated very strongly (r2 � 0.99) (50). It has been
shown that 3,000 reads per sample are sufficient to capture �90% of alpha-diversity in
samples from freshwater lakes and to reveal beta-diversity patterns (2). In our study, the

TABLE 2 DistML models for the eukaryotic data set calculated from HTS and CARD-FISH data (relative abundance and biovolume)

Sample(s) Variablea

DistML model for data calculated from:

HTS: relative abundance
[P value (% explained variation)]

CARD-FISH

Relative abundance
[P value (% explained variation)] Relative biovolume

All samples SRP 0.0276 (13.5) 0.0165 (12.8) No significant model
No outlier sample SRP No significant model 0.0015 (14.2) No significant model

Temp 0.0072 (14.5)
aSRP, soluble reactive phosphorus.

TABLE 3 DistML models for bacterial data sets calculated from HTS and CARD-FISH data

Sampling site Variablea

DistML model for data calculated from:

HTS: relative abundance
[P value (% explained
variation)]

CARD-FISH: relative
abundance [P value (%
explained variation)]

Lake Zurich Temp 0.0001 (42.9) 0.0097 (18.9)
VLP 0.0092 (14.1) 0.05 (11.3)

Jiřická Pond WRT 0.5m 0.0001 (29.4) 0.0004 (10.8)
DOC 0.0001 (18.9) 0.0001 (37.3)
TP 0.0002 (14.9) 0.0009 (15.9)
DN 0.0061 (6.4)
Chl-a 0.5m 0.0231 (5.1)

aVLP, abundance of virus-like particles; WRT 0.5m, water residence time at 0.5-m depth; DOC, dissolved
organic carbon; TP, total phosphorus; DN, dissolved nitrogen; Chl-a 0.5m, chlorophyll a at 0.5-m depth.
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lowest number of reads per sample was 1,724 for the eukaryotic data set (average,
4,742), 34,020 for the bacterial data set from Jiřická Pond (average, 68,450), and 3,877
for the bacterial data set from Lake Zurich (average, 11,863). Finally, although it cannot
be completely excluded that we missed some reads of phylotypes targeted by the
CARD-FISH probes by using 454 pyrosequencing instead of Illumina, rarefaction anal-
ysis indicated that most would belong to the rare biosphere (Fig. S8). All of these
suggest that sequencing depth was sufficient to capture most of the diversity in our
samples. Thus, our conclusions are not considerably affected by lower sequencing
depth and likely apply to all nonnormalized PCR-based sequencing methods.

Mock community studies have pointed out the importance of PCR conditions for the
accurate recovery of bacterial lineages (primer choice, annealing conditions, polymer-
ase type, and number of cycles) (13–15, 47). The PCR conditions used here were
standard at the time of the study (51) but have since then been shown to decrease
quantitative accuracy and increase chimera formation (52). However, only very few
chimeras were detected in our data sets (eukaryotes, 1.2% of operational taxonomic
units [OTUs]; bacteria in Jiřická Pond, 9.8% of OTUs; bacteria in Lake Zurich, 5.7% of
OTUs). The phylotype-dependent agreement between HTS and CARD-FISH data (Fig. 1
and 3; Fig. S1 to S7) indicates that a template-dependent PCR bias might have
dominated in our samples (47). Finally, it has been shown that even optimized PCR
conditions do not reproduce original communities with perfect qualitative accuracy (13,
47). All together, although the use of fewer PCR cycles and proofreading polymerase
might have arguably improved the agreement (correlations) between the two meth-
ods, our main conclusions likely remain unaffected.

Conclusions. Our study presents the largest data set comparing HTS and CARD-FISH
data from natural samples (almost 900 data points) to date. It expands previous
observations derived from mock communities, i.e., that the relative abundances of
specific phylotypes obtained by HTS may not necessarily correspond to their relative
abundances in the original samples. Despite this limitation, we show that nonparamet-
ric distance-based multivariate analyses based on HTS and CARD-FISH data often agree
and thus seem to allow for reliable ecological interpretations of the relationship
between microbial community structure and environmental parameters. This appears
to work especially well under conditions that cause substantial changes in community
composition, as observed for Jiřická Pond. In summary, it appears that studies focusing
on the relationship of whole microbial communities with environmental variables can
perhaps rely solely on HTS data. In contrast, we recommend that sequence-based
community analysis (optimally using internal standards) be combined with CARD-FISH
when aiming at more accurate estimates of abundances or biomass of specific bacterial
taxa or when studying eukaryotes.

MATERIALS AND METHODS
Eukaryotes. (i) Sample collection. Coastal waters of the Gulf of Gdańsk (Baltic Sea) were sampled

weekly from 12 April to 7 November 2012. Twenty liters of surface seawater was prefiltered through a
20-�m net and transported to the laboratory within 15 min in a darkened, closed container. Temperature
and salinity were measured in situ with an InoLab probe (WTW).

Biomass for amplicon sequencing was collected from 0.8 to 4.6 liters of sampled water filtered onto
polyethersulfone filters (0.22-�m pore size, 47-mm diameter; GPWP04700; Millipore-Merck KGaA, Darm-
stadt, Germany) under aseptic conditions. The filters were stored at – 80°C.

For CARD-FISH, a 200-ml subsample was fixed by the Lugol-formalin-sodium thiosulfate method
recommended for preservation of fragile protists (53). Fixed samples were stored in the dark at 4°C for
16 h, filtered onto white polycarbonate filters (0.8-�m pore size, 47-mm diameter; Cyclopore; Whatmann,
Maidstone, UK) under low pressure (�2 � 104 Pa), rinsed with 50 ml of sterile MilliQ water, air dried, and
stored at –20°C.

(ii) Environmental variables. Concentrations of dissolved inorganic nitrogen (DIN) as well as soluble
reactive phosphorus (SRP) and dissolved silicate (DSi) were determined by methods recommended for
the Baltic Sea (54). For this purpose, 500 ml of water was collected in an acid-cleaned container, frozen
at –20°C, and analyzed within 1 month.

(iii) DNA extraction and sequencing. DNA was extracted using a PowerWater DNA isolation kit (MO
BIO Laboratories, Inc., Carlsbad, CA, USA). Extracted DNA samples were processed by Research and
Testing Laboratories (Lubbock, TX, USA). The V-4 fragments of 18S rRNA genes were amplified with
TAReuk454FWD1 and TAReukREV3 (see Table S1 in the supplemental material). Amplifications were
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performed in 25-�l reaction volumes with recombinant Hot Start Taq polymerase (Qiagen HotStarTaq
master mix; Qiagen, Inc., Valencia, CA, USA), 1 �l of each 5 �M primer, and 1 �l of template on ABI Veriti
thermocyclers (Applied Biosytems, Carlsbad, CA, USA) under the following thermal profile: 95°C for 5 min,
followed by 10 cycles of 94°C for 30 s, 57°C for 45 s, and 72°C for 1 min and then 25 additional cycles of
94°C for 30 s, 45°C for 45 s, and 72°C for 1 min, and a final 2-min extension at 72°C (51). As the reverse
primer TAReukREV3 poorly targets haptophytes, we additionally sequenced samples with high hapto-
phyte abundance (23 May to 30 July) using the reverse primer HaptoR1 (Table S1) under the following
thermal profile: 95°C for 5 min, followed by 35 cycles of 94°C for 30 s, 55°C for 45 s, and 72°C for 1 min,
and a final 2-min extension at 72°C (55). The amplicons were sequenced using the Roche 454 GS FLX
Titanium platform with an average sequencing depth of 10,000 raw reads per sample.

(iv) CARD-FISH. The CARD-FISH procedure was performed with Alexa 488-labeled tyramides (Mo-
lecular Probes, Thermo Fisher Scientific, Waltham, MA, USA), as previously described (56), and analyzed
manually using 10 to 20 microphotographs randomly taken by epifluorescence microscopy at �1,000
magnification (AxioVision.M1; Carl Zeiss, Jena, Germany). Biovolume was estimated by multiplying cell
abundance by average cell volume, which was calculated based on manual measurements of cell width
and length and assuming the cell shape to be prolate spheroid, as described by Piwosz in 2019 (46). The
relative abundance of an individual lineage was calculated as the proportion of cells hybridized with the
specific probe to that of cells hybridized with the general eukaryotic probe. A full list of applied probes
(n � 11) can be found in Table S2.

(v) Bioinformatics analysis. Sequences were analyzed using a custom-made pipeline as previously
described (57). Raw sff flowgrams were denoised using AmpliconNoise (52). The demultiplexed and
primer-free reads were quality filtered and trimmed to a length of 250 bp using USEARCH (58) (bases with
a Phred score of �30 were trimmed), and chimeric sequences were discarded with UCHIME (59). OTUs
were clustered by average linkage at similarity levels of 97% upon the pairwise alignment by the
Needleman-Wunsch algorithm. The most closely related sequence for each OTU was identified using
pairwise alignment to the curated eukaryotic PR2 reference data (60), and the corresponding taxonomic
information, together with the coverage and dissimilarity to the query sequence, was assigned. The final
number of reads in samples ranged from 1,707 to 15,233.

Bacteria. (i) Sample collection. Jiřická Pond is a shallow, humic pond in the southern region of the
Czech Republic and is characterized by short-term flooding events, severely shortening its hydraulic
retention time, which triggers sudden fluctuations in microbial communities (61, 62). An intensive
sampling campaign took place between 5 May and 27 June 2014, with samples taken three times per
week. Water samples from a 0.5-m depth were taken with a Friedinger sampler and split into subsamples.
Samples for prokaryotic cell counts and CARD-FISH were fixed with formalin (2%, vol/vol). Fixed
subsamples for CARD-FISH were filtered onto white polycarbonate filters within 16 h after sampling
(0.2-�m pore size, 47-mm diameter; Millipore-Merck KGaA, Darmstadt, Germany) and stored at –20°C.
Samples for enumeration of virus-like particles (VLP) were fixed with glutaraldehyde (0.5%, vol/vol) for
10 min, flash-frozen in liquid nitrogen, and stored at – 80°C until evaluation via flow cytometry (63).
Prokaryotic biomass for amplicon sequencing was collected on polysulfone Sterivex filters (0.22-�m pore
size; Millipore-Merck KGaA, Darmstadt, Germany). Additionally, 2 liters of water was taken for chemical
analyses. These samples were delivered in a ThermoBox to the laboratory and analyzed within 24 h.

For Lake Zurich, a longitudinal transect of eight sampling stations along Lake Zurich (26) and the
connected Upper Lake was sampled in summer 2010 (27 and 28 July). Vertical profiles of temperature,
conductivity, turbidity, and concentrations of oxygen and chlorophyll a (differentiating pigments of
diatoms and Planktothrix rubescens [64]) were recorded with a YSI multiprobe (model 6600; Yellow
Springs Instruments, Yellow Springs, OH, USA) and a bbe FluoroProbe (TS-16-12; bbe Moldaenke GmbH,
Schwentinental, Germany), respectively. Water samples from three different depths representing the
epilimnion (2 to 5 m), metalimnion (12.5 to 15 m), and hypolimnion (20 m) were taken with a Friedinger
sampler for each sampling station and split in subsamples for (i) total counts of prokaryotes, (ii) VLP, (iii)
CARD-FISH analyses, (iv) prokaryotic biomass for amplicon sequencing, and (v) chemical analyses.
Subsamples (i) were fixed with formalin (2% vol/vol) and stored at 4°C. Subsamples (ii) and (iii) were
processed as described above for Jiřická Pond. Subsamples (iv) (600 ml) were filtered on the same day
onto polysulfone filters (0.2-�m pore size, 47-mm diameter; Millipore-Merck KGaA, Darmstadt, Germany)
and stored at – 80°C.

(ii) Environmental variables. For Jiřická Pond, water temperature, water retention time, and
dissolved organic carbon (DOC) and chlorophyll a concentrations at 0.5-m depth were assessed as
previously described (61). Concentrations of nitrate, nitrite, and ammonium ions were determined by ion
chromatography (IC25; Dionex, USA). Values of total and dissolved phosphorus (TP and DP, respectively)
were measured as described by Porcal and Kopáček (62). Dissolved nitrogen (DN) concentrations were
obtained using a vario TOC cube (Elementar, Germany).

For Lake Zurich, concentrations of TP, DP, DOC, and different nitrogen species were determined by
standard techniques by the Zurich Water Supply Company.

(iii) DNA extraction and sequencing. For Jiřická Pond, nucleic acid isolation was conducted using
phenol-chloroform-isoamyl alcohol extraction according to a previously described protocol (65). The
variable regions V1-V3 of the 16S rRNA gene were amplified with primers 27Fand Uni522R (Table S1). A
single-step PCR using a HotStarTaq Plus master mix kit (Qiagen, Inc., Valencia, CA, USA) was conducted
using the following profile: 94°C for 3 min, followed by 28 cycles of 94°C for 30 s, 53°C for 40 s, and 72°C
for 1 min, and a final elongation step at 72°C for 5 min. After PCR, all amplicon products were mixed in
equal concentrations and purified using Agencourt Ampure beads (Agencourt Bioscience Corporation,
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MA, USA). The amplicons were sequenced using the Roche 454 GS FLX Titanium platform at MR DNA
laboratory (Shallowater, TX, USA) with an overage sequencing depth of 50,000 raw reads per sample.

For Lake Zurich, DNA was isolated with a PowerWater DNA isolation kit (MO BIO Laboratories, Inc.,
Carlsbad, CA, USA). Extracted DNA samples were processed by Research and Testing Laboratories
(Lubbock, TX, USA). V3-V5 fragments of 16S rRNA genes were amplified with primers 341F and 907R
(Table S1). Amplifications were performed in 25-�l reaction mixtures with recombinant HotStart Taq
polymerase (Qiagen HotStarTaq master mix; Qiagen, Inc., Valencia, CA), 1 �l of each 5 �M primer, and
1 �l of template on ABI Veriti thermocyclers (Applied Biosystems, Carlsbad, CA) under the following
thermal profile: 95°C for 5 min, followed by 35 cycles of 94°C for 30 s, 54°C for 40 s, and 72°C for 1 min,
followed by a final 10-min extension at 72°C. The amplicons were sequenced using the Roche 454 GS FLX
Titanium platform with an average sequencing depth of 10,000 reads per sample.

(iv) CARD-FISH. CARD-FISH for bacteria was carried out as previously described with fluorescein-
labeled tyramides (66) and analyzed with a fully automated microscope (AxioImager.Z1; Carl Zeiss) as
outlined by Salcher et al. (67). The relative abundance of an individual lineage was calculated as the
proportion of cells hybridized with the specific probe to that of cells hybridized with the general bacterial
probe. A full list of applied probes (n � 20) is provided in Table S2.

(v) Bioinformatics analysis. The demultiplexed and primer-free reads were quality filtered and
trimmed to a length of 350 bp according to quality report using USEARCH (58). Chimeric sequences were
detected and discarded using UCHIIME (59). OTUs were clustered at similarity levels of 97% using the
UPARSE-OTU algorithm (68). A taxonomical assignment for representative sequences for each OTU was
done with a parallel BLAST search against the SILVA-database SSURef_NR99_132 (69). The final numbers
of reads in samples ranged from 34,020 to 104,696 for samples from Jiřická Pond and from 3,877 to
25,031 for samples from Lake Zurich. Data sets were rarefied to the smallest sample prior to statistical
analysis.

Statistical analysis. The read numbers of all OTUs affiliated with lineages that corresponded to those
targeted by probes were pooled, and their percent contributions to the total number of reads in each
sample were compared with relative abundances (and biovolumes for eukaryotes) estimated by CARD-
FISH. Relative abundances and biovolumes of individual eukaryotic or bacterial lineages were calculated
as percentages of all hybridized cells (i.e., counts with general eukaryotic [Euk516] or bacterial [EubI-III]
probes, respectively). The agreement between the two methods was assessed using graphical tech-
niques, as described by Bland and Altman (42). The same methods were used to compare sample
rankings by HTS and CARD-FISH. In addition, linear regressions and Spearman correlations were calcu-
lated between relative abundances derived from HTS and CARD-FISH. Multiple null values in data
obtained using one of the approaches were pooled, and an average value was calculated for the second
approach (i.e., if in HTS data there were three data points with null values, an average value for
CARD-FISH data for these three points was calculated). The calculations were performed in the R
environment version 3.3.3 (70), and the figures were prepared using functions from the ggplot2 package
version 3.2.0 (71) and the ggpubr package version 0.2.1. Mantel tests were performed with XLSTAT 14
(Addinsoft) to determine Spearman correlations of proximity matrices calculated using the Bray-Curtis
dissimilarity algorithm.

Correlations with environmental variables. The relationships between environmental data and the
relative abundances of studied bacterial and eukaryotic groups were analyzed by Bray-Curtis dissimilarity
distance-based linear models (DistML) (72) in the PERMANOVA� add-on package of the PRIMER7
software (Primer Ltd., Plymouth, UK). Environmental variables were normalized, and a correlation matrix
for the whole set was calculated. From the variables that were strongly correlated (the absolute value of
the correlation coefficient was �0.7), only one was chosen for further analysis. Analyses were performed
on untransformed relative abundance data using a stepwise selection procedure, and the best model
was selected based on the statistical significance (9,999 permutations) and the values of the Akaike’s
information criterion (AIC) and the Bayesian information criterion (BIC).

Data availability. The eukaryotic HTS data obtained with the general primers (TAReuk454FWD1 and
TAReukREV3) were deposited in the ENA database under BioProject no. PRJEB23971, and those obtained
with primers TAReuk454FWD1 and HaptoR1 were deposited under BioProject no. PRJEB31858. Bacterial
HTS data from Jiřická Pond were deposited in NCBI as BioSamples SAMN11974970 to SAMN11974993 as
part of BioProject PRJNA547706, and those from Lake Zurich were deposited under BioProject no.
PRJNA545726.
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