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ABSTRACT Cassava (Manihot esculenta Crantz) is an important staple food in sub-Saharan Africa. Breeding
experiments were conducted at the International Institute of Tropical Agriculture in cassava to select elite
parents. Taking into account the heterogeneity in the field while evaluating these trials can increase the
accuracy in estimation of breeding values. We used an exploratory approach using the parametric spatial
kernels Power, Spherical, and Gaussian to determine the best kernel for a given scenario. The spatial kernel
was fit simultaneously with a genomic kernel in a genomic selection model. Predictability of these models was
tested through a 10-fold cross-validation method repeated five times. The best model was chosen as the one
with the lowest prediction root mean squared error compared to that of the base model having no spatial
kernel. Results from our real and simulated data studies indicated that predictability can be increased by
accounting for spatial variation irrespective of the heritability of the trait. In real data scenarios we observed
that the accuracy can be increased by a median value of 3.4%. Through simulations, we showed that a 21%
increase in accuracy can be achieved. We also found that Range (row) directional spatial kernels, mostly
Gaussian, explained the spatial variance in 71% of the scenarios when spatial correlation was significant.
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Estimation of breeding value for targeted genotypes is themain aim of a
breeding experiment. Error in this estimation due to field heterogeneity
is a critical factor while conducting evaluations in the field. Efficient
experimental designs have been developed to mitigate this issue. For
example, blocking canbe used to group experimental units (plots) in less
heterogeneous space based on prior information about the field. Effi-
ciency of blocking primarily depends on the assumption that plot
variation within a block is small compared to that among blocks
(Gusmao 1986). However, this might not be true, either due to the
large size of blocks, or bad alignment of the blocks with the field
variability (Stroup et al. 1994). Spatial variation within a block can

mask the genotypic effect, and result in reduced accuracy in estimation
and wrong ranking of genotypes.

Theprimary ideaof accounting for spatial dependencywasproposed
by Papadakis (1937) using the nearest neighbor (NN) approach. The
NN approach was a simple method where spatial dependency was
assumed to be discontinuous beyond the neighbors in perpendicular
directions. Wilkinson et al. (1983) modified this model using an iter-
ative approach. Schwarzbach (1984) developed another variation of
iterative NN in which spatial adjustments were made only in one di-
rection, unlike that in the model proposed by Papadakis (1937).

The random field (RF) approach in spatial experiments provides
more accurate estimates of treatment contrasts than NN ap-
proaches. The spatial heterogeneity can be modeled as a random
process. When spatial coordinates index the random variables in
this process it is called a RF (Chung 2007; Adler 1981). The RF can
be isotropic, meaning the spatial heterogeneity lacks any preferred
direction, or it can be directional, assuming the heterogeneity
follows Range or Column directions. The spatially related vari-
ables in RF can be modeled using a correlation structure. The
realization of these spatial variables (e.g., temperature and soil
moisture) in the RF (Cameletti et al. 2013) can be estimated as a
function of distance. These realizations can be used to make infer-
ences about the process, and also for spatial prediction (Zimmerman
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and Harville 1991). The RF approach can be used to analyze data with
heterogeneous plot size and shape (Matérn 1986), in agricultural
fields having spatial variation along all dimensions, (Schabenberger
and Pierce 2010; Gonçalves et al. 2007; Stroup et al. 1994), and in
conjunction with blocking effects.

Use of RF in agriculturalfield experiments was initiated byGleeson and
Cullis (1987), who proposed to sequentially fit a low-order autoregressive-
integrated-moving-average (ARIMA) correlation structure to the plot
errors in one direction. This model increased trial efficiency. The single
directional spatial trend analysis was analogous to time series analysis
where spatial points corresponded to time points. Later, Cullis and
Gleeson (1991) modified this model to use both Range (Row) and
Column directions in a regularly spaced field. For quantitative traits
in agriculture, first order separable (separate functions for Row and
Column) autoregressive (AR) structure of residuals as direct product
(AR1 · AR1) was considered as an appropriate initial model for spatial
analysis (Gilmour et al. 1997). AR structure is a special case of the more
general ARIMA structure.

A generalization of AR is the Power correlation structure. AR
assumes that the points are equidistant, whereas the Power structure
accounts for nonequal distance, and continuity of values under study
(Piepho et al. 2015). In the Power structure, the correlation is raised
to power of the actual distance between points unlike that in AR
where powers of 1, 2, 3, etc. are used. AR and related structures are
commonly used in agricultural field evaluations. However, other
forms of dependency should also be tested.

In modern plant breeding, a large number of test genotypes are
evaluated, and they can often not be replicated within an experimental
field due to limitation in resources. Therefore, only check genotypes are
replicated and randomly assigned to the field in blocks, or Ranges and
Columns. Genomic selection (GS) models can be used to mitigate the
lack of replication while evaluating these genotypes: GS models use a
genomic relationship matrix based on genetic markers, so that pheno-
typic information is shared across related genotypes (Goddard and
Hayes 2007). Using all marker data as predictors of performance can
consequently delivermore accurate estimations (Jannink et al. 2010). In
this paper, we discuss the use of GS models with a RF component to
account for spatial variation in order to reduce the error in estimating
breeding value.

Gilmour et al. (1997) distinguished natural, extraneous, and global
sources of experimental variation. Natural variation comes from soil
and/or topographic features. This variation can be taken into account
by the GS model using a spatial correlation structure. Extraneous var-
iation is due to experimental operations (e.g., direction of field tillage),
and can be modeled using random effects of Range and Column in the

model. Global variation is modeled as caused by variation in genotypes.
Selection of genotypes after accounting for the potential spatial depen-
dency can provide better estimates of the genotypic effect and modify
ranking of the genotypes (Duarte and Vencovsky 2005).

In this study, we illustrated the application of three parametric
correlation structures, Power, Gaussian, and Spherical for spatial anal-
ysis. We used a cross-validation (CV) method to determine the spatial
dependency insteadof relyingona semivariogram.CVwasusedbecause
improvement in predictability was our primary purpose. Simulation
studies were also conducted to explore the behavior of models given
different forms and importance of spatial variation. Finally, we provided
R-based functions to automate real data analysis and simulations.

We used cassava (Manihot esculenta Crantz), which is a staple food
in much of tropical Africa as the study organism. Cassava is an impor-
tant crop for food security in Africa due to its drought tolerance, ability
to grow in marginal soil, and flexible harvest period (Fresco 1986; El-
Sharkawy 2006). This is the main source of calories for half a billion
people in Africa (FAO 2004).

MATERIALS AND METHODS

Materials and design of experiment
The International Institute of Tropical Agriculture (IITA) conducted
experimental field trials in 2013 and 2014 using cassava breeding
populations in Ibadan, Ikenne, and Mokwa in Nigeria. The clones for
the trials consistedof the IITAGeneticGain (GG)populationcomprised
of historically important, mostly advanced genotypes including those
derived from the West African gene pool, the Tanzania interspecific
hybridization program, and hybrids from the LatinAmerican gene pool
(Wolfe et al. 2016; Ly et al. 2013). We also used data from cycle 1 (C1;
progeny of GG), and cycle 2 (C2; progeny primarily of C1), and the GG
clones themselves in a preliminary yield trial (PYT). In summary,
83 parents from GG population gave rise to 2187 progenies for C1.
Later, 84 C1 and 13 GG clones (total 97) were selected as parents giving
rise to 2466 progenies for C2.

Thefieldswerepartitioned intoRanges running fromNorth toSouth
and Columns running from East toWest. The genotypes were assigned
to afield in a randomized design using replicated check genotypes (1–10
check genotypes). Unreplicated test genotypes belonging to the same
family were assigned to adjacent plots in a Range in C1 and C2 trials.
Check genotypes were used in C1 and C2 trials, and they were assigned
to a Range in such a way that every Range had two checks, except when
the field layout required particularly small Ranges. Exceptions had no
checks or up to four checks in a Range. For the PYT, checks were not
used and test genotypes were replicated twice in a randomized block
design. Details on the dimensions of field and plot can be found in
Table 1, and the information on number of genotypes and replications
can be obtained from Table 2. Plots were arranged in a serpentine
fashion starting from the first Range. Plots were rectangular in shape,
with their longer edge shared across the Ranges. This arrangement
means that the distance between two adjacent Ranges was shorter than
that between two adjacent Columns.

For the current study, four agronomic traits were evaluated: fresh
weight of storage roots (FYLD) and root drymatter content (DM), fresh
weight of shoots (SHTWT), and harvest index (HI). The DM is the
percentageof the root that isnotwater.TheFYLDis the freshrootweight
measured in kilograms. The SHTWT is the total fresh weight of
harvested foliage and stems measured in kilograms. The HI is the
proportion FYLD to the total harvested weight (FYLD + SHTWT)
(Ly et al. 2013). Genotyping of single nucleotide polymorphic (SNP)
markers was done as described by Wolfe et.al. (2016).

n Table 1 Details of trials used in real data analysis

Year Cycle Plot Dimension Location Field Dimension #Plots

2013 C1 5 · 1 Ibadan 24 · 33 736
Ikenne 16 · 54 855
Mokwa 8 · 116 858

2014 C1 5 · 4 Ibadan 19 · 18 293
Ikenne 19 · 18 330
Mokwa 19 · 18 329

C2 5 · 1 Ikenne 10 · 46 444
Mokwa 20 · 23 432

PYT 10 · 1 Ibadan 8 · 26 176

Plot dimension is expressed as length · width, where length is the number of
plants in a row, and width is the number of rows in a plot. Field dimension is
expressed as the number of Ranges · number of Columns in a field. Finally,
#Plots gives the number of plots planted.
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The relatedness of genotypes (including check and test)within afield
study was calculated based on the additive relationship matrix using all
the markers with.1%minor allele frequency. The relationship matrix
was calculated as described by Endelman and Jannink (2012) using the
A.mat function from the package “rrBLUP” in R. The function uses the
Method 1 of VanRaden (2008).

Statistical models
To explore the spatial correlation, we used three correlation structures:
the generalized autoregressive or Power,Gaussian (Gaus), and Spherical
(Sph). The correlation structures were calculated as follows:

Power ¼ uDn ·n ;

Gaus ¼ exp

�
2D2

n · n
u2

�
;

Sph ¼
�
12 1:5

�
Dn·n

u

�
þ 0:5

�
D3
n · n
u3

��
if  

�
Dij #u

�
; else  0;

where u is the standardizing parameter for Power whose values range
from 0 to 1; u is the standardizing parameter for other RF structures
whose values can range from 0 to the maximum distance between any
two plots in the field; D is the Euclidean distance matrix and n is the
number of observations in the dataset; and i and j are indices to plot
coordinates. Depending on the value of the standardizing parameter, the
correlation expressed by these structures decays more or less rapidly with
distance (Figure 1). The larger the standardizing parameter, the slower is
the decay. The correlation value for Power and Gaus structures reaches
zero asymptotically. For the spherical, the correlation is conditionally
limited to zero based on the value of standardizing parameter.

The distancematrixwas calculated taking into consideration the plot
dimension. Therefore, the distance between plots in any two Ranges
(range distance) and Columns (column distance) was calculated as the
numberofRangesmultipliedby thewidthof the plot, and thenumberof
Columnsmultipliedby the lengthof theplot. The distance betweenplots
that were diagonal to each other was calculated as the hypotenuse of a
triangle based on the Pythagorean theorem:

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
range  distance2 þ column  distance2

p
:

Weconsidered three scenariosofpotential spatial correlation. First, the
correlation was assumed to be isotropic, and the distance was calcu-

lated in Range, Column, and diagonal directions. In the second and
third scenarios, correlation was assumed to be Range or Column
directional as special cases of anisotropy. Here, either Range or
Column distance was taken into consideration while calculating the
distance matrix. The model used was:

Yn·1 ¼ mþ Zn·ggg·1 þ e; (1)

e ¼ sn·1 þ rn·1
s � N

�
0; Ss2

s

�
r � N

�
0; Is2

s

�
g � N

	
0;Ks2

g



;

whereY is the response variable (e.g., DM);m is the generalmean;Z is the
design matrix for genotypic effect, n is the number of observations, and g
is the number of unique genotypes in the data; g is the vector of genotypic
effect; s and r are the vectors of spatial effect and residual error; K is the
genomic relationship matrix (here, the additive relationship matrix); and
S is the spatial correlation matrix; I is the identity matrix.

A ten-fold CV repeated five times was used to calculate the pre-
dictability.Genotypeswere separated into folds at random,ensuring that
the training and test datasets didnot contain the samegenotypes. Because
the genotypes were random, the specific plots included in each fold were
also random.Model 1, using various spatial structures, was compared to
a base model (here after called Base) having no spatial component. The
best model was chosen as the one having the lowest prediction root
mean squared error (pRMSE) between observed (Y) and calculated (Ŷ)
response values for the test dataset. The calculated response (Ŷ) was

Ŷn·1 ¼ mþ Zn·g ĝg·1 þ In·n ŝn·1;

where n is the number of observations in the test data; the design
matrix for genotypic effect in test data are Zwith the dimension n · g,
where g is the number of unique genotypes in the full dataset (training +
test); ĝ is the best linear unbiased prediction (BLUP) of genotypes
calculated from themodel on fitting the training data; the designmatrix
for spatial effect in test data are I with dimension n · n; and ŝ is the
BLUP of the spatial effect. To calculate the response variable for the base
model, everything else was the same but the spatial component was
removed. Relative reduction in pRMSE for Model 1 was calculated as
the ratio of difference in pRMSE to Base pRMSE. The prediction cor-
relation (pCOR or accuracy) was also recorded for the best model as the
correlation between observed and calculated response values for the test
dataset. Relative increase in pCOR was calculated as the ratio

Figure 1 Spatial correlation with distance (meters) using different structures and standardizing parameters—an illustration. (A) Power; (B) Spher-
ical; (C) Gaussian.
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pCORModel1 2 pCORBase

12 pCORBase
:

The spatial components accounted for by Model 1 assume smooth
decay of correlation with distance. Field operations, however, can lead
to discontinuities between Ranges or Columns not well fitted by
Model 1 [the extraneous error of Gilmour et al. (1997)]. To test
and account for such error structures, we added a random effect of
Range, Column, or both. These effects were added to the Base model if
it was the best model after CV. The model with Range and Column
effects is called Model 2. A full Model 2 with both Range and Col-
umn effect is

Yn·1 ¼ mþ Zn·ggg·1 þ Z2n·rarara·1 þ Z3n·clclcl·1 þ e; (2)

ra � N
�
0; Is2

ra

�
cl � N

�
0; Is2

cl

�
;

where Z2 with the dimension n · ra is the design matrix for the range
effect, ra;Z3with dimension n · cl is the designmatrix for the column
effect, cl.

The data were fitted using the “regress” package in R v. 3.2.5 using
restricted log likelihood. A Chi-square test was used to test the signif-
icance of the additional variance component in the selected model
compared to the base. Since the x2 follows a mixture distribution,
the significance threshold with one degree of freedom was taken as
2.706 at a value of 0.1 (Stram and Lee 1994).

x2 ¼ 2ðllk  of  model2 llk  of   baseÞ

x2 � 1
2
x2ð0Þ: 1

2
x2ð1Þ;

where llk is the log likelihood, and “model” is the selected model
adding either the spatial error component and/or the extraneous error
component to the base model. The threshold value was changed with
degrees of freedom. For example, on comparing Model 1 with a full
Model 2 having two additional components, the threshold was taken
as 4.605 at a value of 0.1. Heritability was calculated based on the
approach introduced by Cullis et al. (2006) as follows:

h2 ¼ 12
V̂BLUP  difference

2ŝ2
g

;

where V̂BLUP  difference is the variance of difference between pairs of
genotypic BLUPs; ŝ2

g is the estimated variance of genotypes. The
datasets and SNP file used for performing this study can be found
in the following link:datasets.

Simulation studies
Weconducted a simulation study to (i) test the validity of theGS-spatial
model in reducing the error and in correctly partitioning genotypic
variance, and (ii) evaluate the performance of thismodel as a function of
the different parameters involved. A dataset containing 829 genotypes,
including11checkgenotypesandtheirfieldcoordinate information,was
used to start the simulations. Genotypic effects were simulatedwith zero
mean and unit variance and without using the relationship matrix.

Wesimulated ratios of spatial to total error variance ranging from0.3
to 0.9, and of genotypic to total phenotypic variance also ranging from
0.3 to 0.9. The combination of genotypic and spatial error ratio values
was used to determine the variance of spatial and residual error effects.
Genotypic ratio determined the variance in total error, which was then

partitioned into spatial and residual based on their ratio. The variance
indicated the spatial heterogeneity while different standardizing param-
eters (u or u) defined the coverage of correlation.

Twodifferent correlation structureswere used to simulate the spatial
effect: PowerandGaussian.These twowere chosenas theywere themost
dissimilar among structures used in this study. For Power, u values
ranged from 0.2 to 0.8 and for Gaus, u values ranged from 0.5 to
60.5. We believe these ranges cover plausible values that might be
encountered in practice (Figure 1). The correlation was calculated on
the assumption that plot dimension was 2 · 1.

Three scenarios of genotype replication were considered. First, a
datasetwithminimumreplicationcontainedonly replicated checkswith
all the testgenotypes representedonce.Second, 50%of the testgenotypes
were replicated twice inaddition to thepresenceof replicatedchecks. Ina
third scenario all test genotypes were replicated twice.

Data were analyzedwith all three spatialmodels and the basemodel.
The best model was selected as the one with the lowest RMSE, where
error is thedeviationbetween the true simulatedgenotypic effect and the
estimated genotypic effect, and highest accuracy (correlation) between
estimated and realized genotypic effects.

Automation of real data analysis, simulation of data, and
its analysis
Functions were written to automate the real data analysis and simula-
tions using algorithms described above. For the real data analysis,
the minimum requirements for the function are a .csv file having
field coordinates (Ranges and Columns), trait(s), and genotypes, and
a genotypic relationship matrix based on marker or pedigree data.
Providing a plot dimension (width · length to calculate distance
between Ranges and Columns) can help to increase the accuracy of
the model. The function can take care of the initial processing of the
data, including removal of missing values for a particular trait,
matching the genotypes with those in the relationship matrix, and
removal of potential outlier points that have a residual 2.5 times the
residual SD (after testing using the base model). Outlier data points
are removed because they can affect the spatial dependency in the
field. The output of the function will be saved in the working di-
rectory of R. The output will contain the predictions for genotype
and spatial effect, pRMSE and pCOR values. Given that the function
fits many models, some models fail, and these are trapped by the
“try” function in R. The number of such failed models is returned.
Finally, summaries of the base and the selected model, including the
standardizing parameter value (if the selected model is different
from the Base), is returned. For the simulations, a dataset with
genotypes and field coordinates is to be given, along with a vector
of standardizing parameters, fraction value for spatial to total error
variance, genotypic ratio or heritability value, and plot dimension.
The output contains .csv files of RMSE and COR between simulated
and predicted genotypic, spatial, and residual effects, fraction of
spatial error, heritability, and number of models failed. The func-
tions are available in the following folder: ftp://ftp.cassavabase.org/
manuscripts/Elias_et_al_2017_spatial.zip.

Data availability
Supplemental Material, Tables S.1–S.6 in File S1 contains ANOVA
tables on analyzing the simulated data. Figure S.1 in File S1 indicates
the variation in spatial to total error variance for simulated data. Figure
S.2 in File S1 shows the original observation, spatial BLUP, residual
from Model 1 and Base for all the trial-traits mentioned in Table 2
except for that in Figure 2.
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RESULTS

Real data studies
For 39% of the trial–trait combinations, Model 1 fit significantly better
than Base at an a value of 0.1 (Table 2). All but one of these scenarios
showed reduction in error variance, up to 44%, compared to residual
error variance from Base. One instance (Mokwa_2013_C1) FYLD
showed a marginal increase in error variance. This instance also showed
a reduction in genotypic variance of 33%. The spatial kernel explained
from 2 to 80% of the total phenotypic variance when spatial dependency
was significant. Total phenotypic variance remained unchanged on com-
paring the values between Base andModel 1 in 50% of instances. In 36%
of the scenarios, a marginal increase of phenotypic variance, with a
median relative value of 3.6% was observed. This increase was due to a
marginal increase in genotypic variance, and contribution of spatial
variance. For the remaining two cases—HI in Ibadan_2014_C1 and
SHTWT in Mokwa_2014_C2—total phenotypic variance increased by
167 and 402% respectively. In Ibadan_2014_C1, the spatial variance
contributed to 64% of the total variance, and a 5.5% decrease in genotypic
variance was observed. In Mokwa_2014_C2, the genotypic variance in-
creased by 11%, while the spatial variance contributed to 80% of total
phenotypic variance inModel 1. A large contribution of spatial variance
resulted in increased phenotypic variance in both cases. The increase in
phenotypic variance due to the spatial component could be an artifact of
the spatial correlation matrix with high standardization parameter.

Heritabilityof the traits ranged from0.28 to0.9 (Table2). Slight orno
modification in heritability was observed when spatial variation was
accounted for in the model. An exception was the 28% decrease in
heritability observed in the PYT trial for DM.

Predictability as measured by reduction in error between observed
and predicted values (pRMSE) was improved by ,2% in most cases
(Table 2). For Ibadan_2014_PYTDM and SHTWT, pRMSE decreased
9 and 4% respectively. These two cases also exhibited a relative increase
in accuracy of 28% and 23%, respectively, while an increase of ,10%
was observed in the remaining cases.

Adding random Range and Column significantly improved 13% of
the models previously fitted by just the spatial kernel, while 28% of
datasets where the Base was best were improved by Range and Column
effects (Table 3). In general, adding extraneous effects did not help in
explaining the phenotypic variance in a model once a significant spatial
dependency effect was identified. Nevertheless, we believe that extra-
neous effects can be expected in an uneven field, and proper use of
blocking and orientation of Ranges and Columns should be performed
to account for this in the initial designing stage.

The genotypic variancewas the largest component of the phenotypic
variance in 86% of scenarios. In these trials the selected spatial kernel
explained,20% of the variance. There were two cases where the spatial
variance was$40% of the total spatial + residual variance. Traits DM
from Ibadan_2014_PYT and FYLD from Ibadan_2014_C1 indicated
that these below ground traits were influenced by the underlying spatial
pattern. A striking change in residual pattern can be observed between
the residuals from GS-spatial (Figure 2, column 3) and Base (Figure 2,
column 4) models for Ibadan_2014_PYT DM. The residuals from the
spatialmodel were distributed randomly, fulfilling the random assump-
tion, whereas those from the Base model followed a spatial pattern. The
spatial kernel explained 19% of the total phenotypic variance for DM in
Ibadan_2014_PYT with an increase in genotypic variance and a 45%
relative reduction in error variance. For Ibadan_2014_C1 FYLD, spatial
variance explained only 4% of the total phenotypic variance, and most
of the variance was explained by genotype.

The variance of either spatial or residual error converged to a
boundary solution in two scenarios—HI in Ibadan_2014_C1and Ikenne_
2013_C1—when significant spatial variance was identified (Table
2). This boundary effect could be an artifact of the model where the
error variance is partitioned into two: spatial and residual. Addition-
ally, we found six and two scenarios, respectively, for spatial and
residual variance where the values were bound to zero in cases where
spatial variance was not found to be significant (result not provided).
In such scenarios, lack of estimated spatial variance could also be
because the true spatial variance is close to boundary. This phenom-
enon can be better explained using the simulated data. The estimated
spatial variance converged to a boundary solution when the data were
simulated with values close to boundary (Figure S.1 in File S1).

Thestandardizationparameteraswell as the typeof spatial kernel can
influence the correlation between estimated spatial and residual effects.
The dimension of incidence matrices to explain spatial correlation and
residual error is the same.Thecorrelationstructureexplainingthe spatial
dependency separates the spatial effect from the residual. In an isotropic
function, varying values for effect are expected for each plot, unlike that
in a directional function. In a directional function, the samevalue for the
spatial effect is estimated for plots identified as belonging to the same
Range orColumn.The spatial correlation values of an isotropic function
beyond the first pair of plots will be close to zero if the standardization
value of the function is small. This scenario can result in a spatial
correlation structure similar to the identity matrix used for calculating
the residual error. This similarity could contribute to correlation be-
tween estimated spatial and residual effects that are otherwise assumed
to be uncorrelated.

Figure 2 Original observation (column 1), spatial BLUP (column 2), residual from Model 1 (column 3), and residual from Base (column 4) for dry
root weight (DM) for Ibadan_2014_PYT. Plots are rectangular, and white dots inside each plot indicate the plots whose observation was used.
Missing values were interpolated linearly for visualization. These plots do not represent the actual dimension of those in the field, but used as
placeholders in order to visualize the trends in effects.
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Weused three different spatial kernels to explain spatial dependency.
Out of these, the Power function, which is a generalization of the
commonly used AR in agricultural experiments, best explained spatial
dependency in only 14% of the scenarios (Table 2). The rest of the
scenarios were most often (79% of the time) best explained by
the Gaussian kernel. Additionally, directional spatial correlation was
exhibited in nearly three-fourths of the scenarios, predominantly across
Ranges. The center-to-center distance between adjacent plots across
two Ranges was lower than that across two Columns, possibly explain-
ing why the Range directional spatial kernel identified dependency even
when u values were small. Underlying soil characteristics that influ-
enced the performance of cassava could also be a reason for the selec-
tion of directional kernels (including Column directional). A clear
gradient in spatial dependency in the North-South (N–S) direction
was evident in 53% of the scenarios (Figure 2 and Figure S.2 in File
S1, column 2). For the remaining scenarios, an uneven gradient can be
observed either in N–S or in East–West (E–W) direction. The gradient
from spatial variation was similar (Figure 2, Figure S.2 in File S1,
column 2, and Table 2) for different traits from the same field. This
similarity indicated that the cause of spatial variation was consistent
across traits; for example, possibly due to changes in soil properties.
However, the influence of soil properties on different traits differed as
indicated by the range of variance components (Table 2) and visuals
(Figure 2 and Figure S.2 in File S1, column 2).

Simulation studies
Results from simulation studies throw light on the importance of
identifying a spatial relation in a field with the correct function in order
to increase the accuracy in prediction irrespective of the genotypic ratio
of the trait (Figure 3 and Tables S.1–S.6 in File S1). It was observed that
the Gaussian kernel exhibited the lowest accuracy when the spatial
dependency was simulated with the Power function, especially with
an increase in the fraction of spatial to total error variance (Figure 3,
A.1 and B.1). On the other hand, accuracy when using the Power
function on Gaussian simulated data was comparable. However, the
rate of increase in accuracy with increase in the fraction of spatial
variance was relatively low, with the pattern more noticeable with high

genotypic ratio (Figure 3, A.2 and B.2). A similar pattern in accuracy
was observed with increase in spatial coverage in both Power and
Gaussian simulated datasets (figure not shown). The spatial error could
be a confounder for genotypic effect. However, the spatial error can be
detected statistically using the correct spatial kernel, and can be re-
moved from genotypic effect. Thus, increased fraction of spatial vari-
ation leads to higher accuracy. Furthermore, as the spatial coverage
increases, the spatial error becomes more distinct from the residual
error, and, therefore, can be better estimated, leading to higher accu-
racy. Simulation results also showed that the Spherical structure was a
robust kernel, irrespective of the underlying spatial pattern, as its ac-
curacy was comparable to the correct kernel in all instances.

Low accuracy values for the Gaussian model, when used to analyze
Power spatial pattern, could be because of its dissimilaritywithPower or
other kernels in explaining spatial correlation (Figure 1). In general,
correlation based on all other kernels initially decays rapidly with in-
crease in distance, irrespective of the value of standardizing parameter.
In contrast, the Gaussian model, decay is initially slow followed by a
rapid decay. The initial slow decay forces plots close to each other to
have very similar residuals.

DISCUSSION
Through the analysis of real and simulated datasets, we showed that
predictability ofGSmodels canbe improvedby adding anon-i.i.d kernel
accounting for spatial dependency in trial fields, irrespective of the
heritability of the trait. In real data analyses, spatialmodels increased the
prediction accuracy by a median value of 3.4% compared to models
lacking a spatial factor. In simulations, scenarios with parameters
comparable to those found in real data showed prediction accuracy
improvements of up to 21% (Figure 3B.2). Moreover, these improve-
ments were achieved by simultaneously fitting a genotypic and spatial
kernel in the samemodel in a single step. Adjusting for spatial variation
is expected to provide better estimates of genotypic BLUP values,
thereby facilitating the selection of genotypes.

Use of an AR spatial kernel is very common in agricultural spatial
evaluation.Astudy inrye indicated thatuseofARkernels (one-andtwo-
dimensional) did not improve genomic predictability (Bernal-Vasquez

n Table 3 Output on adding extraneous error component to the selected Model 1 or Base for DM, FYLD, SHTWT, and HI

Data Trait Model
Variance

h2 LLk x-squares2
g s2

s s2
r s2

R s2
C

Ibadan_2013_C1 FYLD Base 7.425 NA 19.791 NA NA 0.7 21359.31 21.34
Model2 6.876 NA 18.171 NA 2.049 0.68 21348.64 (3.80E206)

SHTWT Model1 9.022 1.729 11.875 NA NA 0.59 21275.65 6.48
Model2 8.686 1.763 11.419 NA 0.645 0.6 21272.41 (0.01)

HI Base 0.005 NA 0.009 NA NA 0.44 1092.16 7.89
Model2 0.005 NA 0.009 NA 0.001 0.44 1096.1 (0.005)

Mokwa_2013_C1 FYLD Model1 1.649 1.113 19.218 NA NA 0.86 21475.81 2.88
Model2 1.362 1.101 18.609 NA 0.824 0.87 21474.37 (0.089)

HI Base 0.005 NA 0.009 NA NA 0.62 1270.87 10.15
Model2 0.005 NA 0.009 0.001 NA 0.66 1275.94 (0.001)

Mokwa_14_C1 HI Base 0.007 NA 0.006 NA NA 0.59 561.33 3.66
Model2 0.006 NA 0.005 0 NA 0.54 563.15 (0.055)

Ikenne_2014_C1 DM Base 31.949 NA 0.719 NA NA 0.44 2579.46 21.87
Model2 36.116 NA 0.033 NA 1.379 0.46 2568.52 (2.9e206)

SHTWT Base 721.089 NA 29.191 NA NA 0.5 21109.42 3.27
Model2 752.485 NA 15.792 10.999 NA 0.49 21107.79 (0.071)

Base is the model having only the genetic variance component. Model 1 has a spatial variance component in addition, and Model 2 has extraneous error component
added to the best model selected between Model 1 and Base for a particular trial and trait. Narrow sense heritability (h2) is calculated from BLUP values and
genotypic variance. Chi-square statistic is calculated from the log likelihood values (LLk) of the Base/Model 1, and selected Model 2 is given with p-value in brackets.
The table shows results from trial-trait analysis with significant improvement in model fit of Model 2 over the best of Base/Model 1 at a = 0.1.
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et al. 2014). We not only considered a generalized AR, Power, but also
other forms of spatial kernels, and used an exploratory approach. We
used varying values for standardizing parameters while performing this
analysis. In addition, we considered isotropic and anisotropic patterns
of correlation. All these helped in fitting the complexity and extent of
spatial correlation in our fields. A spatial model that is adequate for
one scenario may not be suitable for another. This property of spatial

variance points out the importance of an exploratory approach to iden-
tify the best model for a given dataset (Richter and Kroschewski 2012;
Richter et al. 2015; Sripathi et al. 2017). In our results, the Gaussian
kernel, which is quite different from the Power kernel, best explained
the underlying spatial variation in most scenarios. Identification of
Gaussian kernels indicated that error deviations in neighboring plots
were highly correlated due to some influencing spatial factors.

Figure 3 Results from simulation studies using data simulated with Power (column 1) and Gaussian (column 2) spatial kernels. A.1 and A.2
represent data simulated using low genotypic ratio (0.3), while those in B.1 and B.2 represent data simulated with high genotypic ratio (0.9).
Accuracy, the correlation of true to estimated genotypic value, is given on the y-axis. Note differences in y-axis scales across all plots. The x-axis
represents the fraction of spatial to total error variance (fraSp). The interaction of Model with fraSp is shown by nonparallel lines. ANOVA results
are given in Tables S.1–S.6 in File S1.
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In AR, the spatial trend for the entire field is calculated as the direct
product of AR from Range and Column directions (Gilmour et al. 1997),
making this an anisotropic function.With the use of distance-based Power
and other RF kernels, this status of the function can be alleviated, and it can
be applied in both isotropic and anisotropic scenarios (Zimmerman and
Harville 1991). Results from our real data studies indicated that nearly one-
fifth of significant spatial correlation scenarios had an isotropic property
(Table 2). We were able to identify and estimate the isotropy by assuming
that all the plots, including those perpendicular and diagonal, are affected
by the spatial trend in the field. Distancematrices were calculated based on
this assumption, on which all the RF kernels were used. Use of distance-
based RF kernels also remove the ambiguity on dealing the border plots
(Zimmerman and Harville 1991) and presence of missing plots. Consid-
ering plot dimension in the analysis helps to correctly identify the center-
to-center distance between plots. Low distance resulted in high spatial
correlation between Ranges, and 92% of the directional spatial trend sce-
narios were in the Range direction (Table 2).

Visualization can help in identifying the pattern of gradient in the
field. Knowing the pattern of spatial variation, if present, can help in
mitigating the potential causal factors by modifying the management
practices. For example, a continuous decrease or increase in a direction
could be an indication of change in soil physical or chemical properties
such as slope, texture, and structure. In other scenarios, an uneven
gradient was observed. This unevenness could be because of high
variation in soil due to factors such as having ridges and furrows,
and fertilization variation. Visualizing and identifying the direction
and magnitude of variation can help in determining the quantity and
direction of irrigation, fertilization, etc. Visualization can also help in
determining the size and shape of blocks or zones for precision agri-
culture practice (Córdoba et al. 2016; Yao et al. 2016), or even avoiding
certain areas in the field for better experimental design.

Using a linear model, we were able to identify spatial trends and
adjust for them to improve predictions in cassava field trials. Studies
usingsuchamodelingapproachmayhelp tounderstandthesevariations
better, leading to useful changes in field operations and experimental
design. Also, conducting a comprehensive field study on soil and
topographic features can help to determine the causes, and, therefore,
adopt specificmanagementpractices.Additionally, uniformity trials can
be conducted in targeted fields to understand the spatial trends in the
field (Richter and Kroschewski 2012). The linear model we proposed
can also be considered as a first step analysis in estimation of genotype
by environment interaction (G · E) pattern in multi-location trials
(Malosetti et al. 2016).

Conclusion
Through real data and simulation studies, we showed that the pre-
dictability of GS models can be improved by accounting for spatial
dependency in the field. This, in turn, delivers better estimates of
genotypic effect facilitating next cycle of breeding or commercialization.
Use of an exploratory approach helped us to understand the best
GS-spatial model in a scenario with respect to its type, direction, and
gradient. Understanding these properties of spatial variation can lead to
usingmore efficient experimental designmethods, or zoning thefield for
precision farm practices.

ACKNOWLEDGMENTS
We thank A.I. Smith, technical teams at IITA, and A. Agbona for data
curation. We acknowledge the Bill & Melinda Gates Foundation and
UKaid (Grant 1048542; http://www.gatesfoundation.org) and support
from the Consultative Group on International Agricultural Research Re-
search Program on Roots, Tubers and Bananas (http://www.rtb.cgiar.org).

LITERATURE CITED
Adler, R. J., 1981 The Geometry of Random Fields. Wiley, New York.
Bernal-Vasquez, A.-M., J. Möhring, M. Schmidt, M. Schönleben, C.-C. Schön et al.,

2014 The importance of phenotypic data analysis for genomic prediction—a
case study comparing different spatial models in rye. BMC Genomics 15: 646.

Cameletti, M., F. Lindgren, D. Simpson, and H. Rue, 2013 Spatio-temporal
modeling of particulate matter concentration through the SPDE approach.
AStA Adv. Stat. Anal. 97: 109–131.

Chung, M., 2007 Introduction to random fields. Available at: http://www.
stat.wisc.edu/�mchung/teaching/MIA/theories/randomfield.feb.02.2007.
pdf. Accessed: May 16, 2017.

Córdoba, M. A., C. I. Bruno, J. L. Costa, N. R. Peralta, and M. G. Balzarini,
2016 Protocol for multivariate homogeneous zone delineation in precision
agriculture. Biosyst. Eng. 143: 95–107.

Cullis, B. R., and A. C. Gleeson, 1991 Spatial analysis of field experiments-
an extension to two dimensions. Biometrics 47: 1449.

Cullis, B. R., A. B. Smith, and N. E. Coombes, 2006 On the design of early
generation variety trials with correlated data. J. Agric. Biol. Environ. Stat.
11: 381–393.

Duarte, J. B., and R. Vencovsky, 2005 Spatial statistical analysis and selec-
tion of genotypes in plant breeding. Pesqui. Agropecu. Bras. 40: 107–114.

El-Sharkawy, M., 2006 International research on cassava photosynthesis,
productivity, eco-physiology, and responses to environmental stresses in
the tropics. Photosynthetica 44: 481–512.

Endelman, J. B., and J.-L. Jannink, 2012 Shrinkage estimation of the realized
relationship matrix. G3 2: 1405–1413.

FAO, 2004 The global cassava development strategy and implementation
plan, Vol. 1, pp. 70 in Proceedings of the Validation Forum on the Global
Cassava Development Strategy, Reprint from 2001. Food and Agriculture
Organization, Rome.

Fresco, L. O., 1986 Cassava in Shifting Cultivation: A Systems Approach to
Agricultural Technology Development in Africa. Development oriented
research in agriculture, Royal Tropical Institute; Distributed outside the
Netherlands by Floris Publications, Amsterdam.

Gilmour, A. R., B. R. Cullis, A. P. Verbyla, and A. P. Verbyla, 1997 Accounting
for natural and extraneous variation in the analysis of field experiments.
J. Agric. Biol. Environ. Stat. 2: 269.

Gleeson, A. C., and B. R. Cullis, 1987 Residual maximum likelihood (REML)
estimation of a neighbour model for field experiments. Biometrics 43: 277.

Goddard, M. E., and B. J. Hayes, 2007 Genomic selection. J. Anim. Breed.
Genet. 124: 323–330.

Gonçalves, E., A. St.Aubyn, and A. Martins, 2007 Mixed spatial models for
data analysis of yield on large grapevine selection field trials. Theor. Appl.
Genet. 115: 653–663.

Gusmao, L., 1986 Inadequacy of blocking in cultivar yield trials. Theor. Appl.
Genet. 72: 98–104.

Jannink, J.-L., A. J. Lorenz, and H. Iwata, 2010 Genomic selection in plant
breeding: from theory to practice. Brief. Funct. Genomics 9: 166–177.

Ly, D., M. Hamblin, I. Rabbi, G. Melaku, M. Bakare et al., 2013 Relatedness
and genotype · environment interaction affect prediction accuracies in
genomic selection: a study in cassava. Crop Sci. 53: 1312.

Malosetti, M., D. Bustos-Korts, M. P. Boer, and F. A. van Eeuwijk, 2016 Predicting
responses in multiple environments: issues in relation to genotype · environ-
ment interactions. Crop Sci. 56: 2210.

Matérn, B., 1986 Spatial Variation, Volume 36 of Lecture Notes in Statistics.
Springer, New York.

Papadakis, J., 1937 Méthode statistique pour des expériences sur champ.
Bull. Inst. Amél. Plantes á Salonique 23: 30.

Piepho, H.-P., J. Mohring, M. Pflugfelder, W. Hermann, and E. R. Williams,
2015 Problems in parameter estimation for power and AR(1) models of
spatial correlation in designed field experiments. Commun. Biom. Crop
Sci. 10: 3–16.

Richter, C., and B. Kroschewski, 2012 Geostatistical models in agricultural field
experiments: investigations based on uniformity trials. Agron. J. 104: 91–105.

Richter, C., B. Kroschewski, H.-P. Piepho, and J. Spilke, 2015 Treatment
comparisons in agricultural field trials accounting for spatial variation.
J. Agric. Sci. 153: 1187–1207.

Volume 8 January 2018 | Cassava Spatial-Genomic Prediction | 61

http://www.gatesfoundation.org
http://www.rtb.cgiar.org
http://www.stat.wisc.edu/~mchung/teaching/MIA/theories/randomfield.feb.02.2007.pdf
http://www.stat.wisc.edu/~mchung/teaching/MIA/theories/randomfield.feb.02.2007.pdf
http://www.stat.wisc.edu/~mchung/teaching/MIA/theories/randomfield.feb.02.2007.pdf
http://www.stat.wisc.edu/~mchung/teaching/MIA/theories/randomfield.feb.02.2007.pdf


Schabenberger, O., and F. J. Pierce, 2010 Contemporary Statistical Models
for the Plant and Soil Sciences. CRC Press, Boca Raton, FL.

Schwarzbach, E., 1984 A new approach in the evaluation of field trials: the
determination of the most likely genetic ranking of varieties. Proceedings
Eucarpia Cereal Section Meeting, Vortrage Pflanzenzuchtung Arbeitsgem
Pflanzenzuchtung Ges Pflanzenbauwissenschaften, Weihenstephan, Ger-
many, Vol. 6, pp. 249–259.

Sripathi, R., P. Conaghan, D. Grogan, and M. D. Casler, 2017 Spatial var-
iability effects on precision and power of forage yield estimation. Crop
Sci. 57: 1383–1393.

Stram, D. O., and J. W. Lee, 1994 Variance components testing in the longi-
tudinal mixed effects model. Biometrics 50: 1171–1177.

Stroup, W. W., P. S. Baenziger, and D. K. Mulitze, 1994 Removing spatial
variation from wheat yield trials: a comparison of methods. Crop Sci. 34: 62.

VanRaden, P., 2008 Efficient methods to compute genomic predictions.
J. Dairy Sci. 91: 4414–4423.

Wilkinson, G. N., S. R. Eckert, T. W. Hancock, and O. Mayo, 1983 Nearest
neighbour (NN) analysis of field experiments. J. R. Stat. Soc. B 45: 151–211.

Wolfe, M. D., I. Y. Rabbi, C. Egesi, M.Hamblin, R. Kawuki et al., 2016 Genome-wide
association and prediction reveals genetic architecture of cassava mosaic disease
resistance and prospects for rapid genetic improvement. Plant Genome 9: 7.

Yao, R. J., J. S. Yang, D. H. Wu, W. P. Xie, P. Gao et al., 2016 Characterizing
spatial – temporal changes of soil and crop parameters for precision manage-
ment in a coastal rainfed agroecosystem. Agron. J. 108: 2462.

Zimmerman, D. L., and D. A. Harville, 1991 A random field approach to the analysis
of field-plot experiments and other spatial experiments. Biometrics 47: 223.

Communicating editor: J. Holland

62 | A. A. Elias et al.


