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Abstract

Proximity and affiliation to the local market appear to be two of the most relevant factors to explain farmer’s choices to
select a particular trading point. Physical barriers may limit the options , especially in developing countries. A network of
villages linked by traders/farmer-traders sharing livestock markets was built with field data collected in 75 villages from 8
kebelles in the Wassona Werna wereda of the Ethiopian Highlands. Two exponential random graph models were fitted with
various geographical and demographic attributes of the nodes (dyadic independent model) and three internal network
structures (dyadic dependent model). Several diagnostic methods were applied to assess the goodness of fit of the models.
The odds of an edge where the distance to the main market Debre Behran and the difference in altitude between two
connected villages are both large increases significantly so that villages far away from the main market and at different
altitude are more likely to be linked in the network than randomly. The odds of forming an edge between two villages in
Abamote or Gudoberet kebelles are approximately 75% lower than an edge between villages in any other kebelles (p,0.05).
The conditional log-odds of two villages forming a tie that is not included in a triangle, a 2-star or a 3-star is extremely low,
increasing the odds significantly (p,0.05) each time a node is in a 2-star structure and decreasing it when a node is in a 3-
star (p,0.05) or in a triangle formation (p,0.05)), conditional on the rest of the network. Two major constraining factors,
namely distance and altitude, are not deterrent for the potential contact of susceptible small ruminant populations in the
Highlands of Ethiopia.

Citation: Ortiz-Pelaez A, Ashenafi G, Roger F, Waret-Szkuta A (2012) Can Geographical Factors Determine the Choices of Farmers in the Ethiopian Highlands to
Trade in Livestock Markets? PLoS ONE 7(2): e30710. doi:10.1371/journal.pone.0030710

Editor: Alejandro Raul Hernandez Montoya, Universidad Veracruzana, Mexico

Received July 18, 2011; Accepted December 24, 2011; Published February 15, 2012

Copyright: � 2012 Ortiz-Pelaez et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was carried out as part of the EU funded INCO-CT-2004-003670 RP/PPR MARKVAC project. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: angortpel@yahoo.com

Introduction

Livestock trade is an activity often occurring via an intermediate

step in the form of a market or trading point with various levels of

organization, procedures and control. An essential actor in this

supply chain is the trader or middleman that represents a conduit

between production sites and trading and consumption areas. For

disease surveillance and control purposes, the interest lies in the

different forms of interaction between production sites where

susceptible animals are kept. This interaction usually occurs via a

physical medium (fomites) and the actor/s (farmer, trader) for they

can act as mechanical carrier of the virus, or move infected

animals from an infected to susceptible farms. Markets have been

shown to play a role in the dispersal of infectious diseases between

livestock premises in countries with intensive and highly technified

farming systems [1–2–3–4] although there is not much evidence of

the drivers that take farmers to select a particular trading point.

Proximity and affiliation to the local market as part of the

community network appear to be two of the most relevant factors

to explain farmer’s choices. Other factors like biosecurity, animal

welfare and environmental compliance are not a priority for both

farmers at the time to move livestock to markets and market

operators as part of their business operations [5]. This risk-prone

behaviour must be interpreted as the negative effect of the attempt

to maximize the profitability of the farming enterprise. In

developing countries the choices might be conditioned by market

demands which usually operate initially at local level and the

limited available resources in terms of transportation facilities. A

priori it seems there is not much difference in the incentives that

farmers from different farming systems are presented with to

discriminate between multiple trading points.

There has been a recent surge of research efforts to understand

the pattern of animals movements and the role of livestock markets

in developing countries, mainly due to their putative association

with the spread and persistence of infectious diseases like H5N1

Highly Pathogenic Avian Influenza (HPAI) [6–7], FMD [8] and

Trypanosomiasis [9], to name a few.

The network paradigm allows the integration of such interac-

tion by joining actors represented by farms, production areas or

animals and the trader or the trading point represented by the

market. This phenomenon can be seen as a 2-mode or affiliation

network [10] where the nodes are made of two distinctive classes: a

set of actors (villages in our study) and a set of events (markets,

traders); and the edges between nodes of different class that
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represent the choices of the farmers and/or traders to trade their

small ruminants in a particular market or trading point. These are

the basis of a bipartite graph that can be analyzed itself or

transformed into other network structures.

Ethiopia has one of the largest population of small ruminants in

Africa with 25 million of sheep and 23 million of goats in 2008

[11], distributed across a range of agro-ecological zones including

a region of highlands in the central part of the country. Around

half of the small ruminant population of Ethiopia are found in this

area, mainly in small flocks [12–13]. In a recent study, the contact

structure of small ruminant flocks in the Bassona Werna wereda

(region) of the highlands of Ethiopia, based on the use of shared

water and grazing points, has been described and analyzed [14].

Using the results of a survey carried out in the same area and

within the framework of the same project, the study presented in

this paper aimed to investigate the trade patterns among small

ruminant traders/farmer traders at village level with the view to

set hypotheses on potential factors that explain the observed

choices of markets, with special emphasis on the geographical

barriers that traders/farmer-traders face at the time to trade

livestock. By revealing the underlying structures of a contact

network of production units represented by villages in the Bassona

Werna wereda (Figure 1), these choices might be better understood.

Alternative hypotheses about the observed contact structure and

the underlying processes that generated it could be also postulated

for further studies.

Methods

2.1 Ethics statement
There was not approval obtained by any ethical committee

since no human experiments were conducted in this study. The

participation to the study required only to answer a questionnaire

and participants were assigned a unique code for data entry and

analysis remaining anonymous in the further steps of the project.

All persons in charge of the field activities of the project were

informed and aware of the protocol. Agricultural officers in the

area were informed of the nature of the study as well. Consent of

participants was obtained orally and in their vernacular language

since most of them were illiterate and written consent was not

possible. Farmers who were not willing to participate were not

forced to. However none of the approached individuals refused to

do so. Voluntary participants were informed of the objectives of

this study and the data were analyzed and presented in this paper

anonymously.

2.2 Sampling strategy, data collection and network
definition

The highland town of Debre Berhan located in the Bassona

Werna wereda at 2805 m above the sea level (m.a.s.l.) was used as a

base for a set of research activities. The town is located 130 km

North along the main road from the capital city of Addis Ababa.

Ten out of the 29 kebelles of the Bassona Werna wereda were

preselected for the study according to two accessibility factors: the

number of walking days necessary to reach them and the physical

ability of the interviewers to reach the kebelles. The two most

remote kebelles were used to pilot the study protocol and

questionnaires, with the remaining eight being involved in the

main body of research. In each of the eight kebelles, 10 villages on

average were selected and within each village, 10 small-ruminant

owners were selected, using a systematic approach, for individual

interviews. Details of the sampling strategy are described elsewhere

[14]. During the visits, which took place in February-March 2007,

global positioning system location of the village was recorded

along with the total number of households and the number of

households keeping small ruminants. For each selected individual,

the following demographic and trade behaviour data items were

collected via a structured questionnaire: name of the trader/

farmer-trader, name of the village and kebelle of origin, name and

frequency of visits to the market for purchase and/or sale during

the last year, average number of animals brought to the market,

number of sheep and/or goats bought/sold last year, reasons for

purchasing livestock, names of the kebelles crossed on their way to

the market and whether they make a stop and mix with other

flocks/herd in the kebelles they crossed. Additional attribute data of

the villages identified by the interviewees were available from

complementary studies in the area [14]. Questionnaire data were

used to generate descriptive statistics for variables at village level

assumed to reflect the flock contact structure mediated by livestock

markets.

A symmetric binary 2-mode network was built linking villages

and markets if trader/farmer-trader from a particular village

reported to have operated in the market within the time window,

i.e., during the year prior to the interview. The two-mode network

is a bipartite graph that represents an affiliation network in which

nodes of one class, the actors (villages), are linked to nodes of the

second class, the events (markets) through the trading choices

made by traders. This is so since traders/farmer-traders only

traded animals from their villages of origin. The 2-mode network

was converted to a 1-mode binary symmetric network of villages

linked via trader/s operating in a common market during the time

window.

2.3.The exponential random graph models (ergm)
A collection of n nodes linked via a set of relations (ties, links,

edges) constitute a network. In network analysis not only the

structure of the relational data can be of interest, but also the

attribute characteristics of the nodes and of the edges can be

important explanatory variables for the presence of the edge [15].

New developments in statistical network modelling allow research-

ers to move beyond the mere descriptive approach and test

hypotheses about network structure [16]. One of them is a family

of statistical models for generalised network inference, the

exponential random graph models (ergm), developed as an

extension of the first proposed log-linear model for network data:

the p1 model [17]. The exponential random graph models,

referred to as p* models in the social network literature and

developed during the 1990 s by Wasserman and Pattison [18] as

an extension of the Markov random graph [19], establish a general

framework for the estimation of the probability that an edge is

present in the network in the logit form, as a linear function of

predictors, in a similar fashion as a logistic regression model. The

particularity of these models is that the edge appears on both sides

of the equation (as outcome and predictor) and often in multiple

predictors, making the edge probabilities recursively dependent

[20].

In the graph from which the network of this study is derived, the

presence or absence of the edge between n number of villages

(nodes) is defined by an adjacency matrix Y of dimension n x n so

that

Yij~
1 if the edge exists between node i and node j

0 otherwise

�

In general, the erg model specifies the probability of a random

set Y of relations (edges and non-edges) given y, a particular set of

Application of Erg Model to Farmer Contact Network
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relations among a set of nodes (villages), namely the observed

network, and their attributes, as a function of statistics that may

depend on the network itself as well as covariates measured on the

nodes , as described by [21]:

Ph(Y~y)~
1

k

� �
exp

X
h

hh gh y,xð Þ
 !

ð1Þ

where

– h is a configuration of the network represented by the observed

set of edges among a subset of nodes of the graph containing

them; different sets of configuration types represent different

models (e.g. dyadic independence or dyadic dependent/

Markov random graph) [22];

– gh (y, x) is a vector of statistics based on the observed adjacency

matrix y, representing the structure of the network. x allows for

additional covariate information on the network. The model

covariates could include raw network parameters like counts of

the configurations in the observed graph (number of recipro-

cated edges, number of k-stars, number of triangles) but also

node or edge-wise covariates like the distance of the village to a

certain market or whether the edge is established between

villages of the same kebelle, respectively. Each covariate should

be a function of the observed data. The variables related to the

covariates are of the form [23]:

Figure 1. Location of the 75 villages and 9 markets in the Bassona Werna wereda region.
doi:10.1371/journal.pone.0030710.g001
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gh y,Xð Þ~
X

1ƒiƒjƒNv

yij fh xi,xj

� �

Where fh is a symmetric function of xi or xj, and xi or xj are the vector

of observed attributes for the ith or the jth node. The function h can take

two forms: an additive one fh xi,xj

� �
~ attributeizattributej

� �
for

main effects; and an indicator of the equivalence of the respective

attribute of a pair of nodes for second-order effects fh xi,xj

� �
~I attributei~attributej

� �
– hh are non-zero coefficients that denote the statistical

parameter governing the probabilistic formation of the

network. These are unknown parameters to be estimated.

– k is a normalization constant and represents the quantity from

the numerator summed over all possible networks, so that all

probabilities sum to 1.

Eq. [1] can be re-expressed as the conditional log-odds (logit) of

individual edges:

logit P Yij~1jn villages, Y c
ij

� �h i
~
X
h~1

hhdgh (y,X ) ð2Þ

where

– Yc
ij denotes all edges between nodes i and j other than the

observed Yij (the compliment of Yij in Y), and

– dgh(y, X) is the amount by which gh(y, X) changes the log odds of

an edge when the edge variable Yij is changed from 0 to 1

(absence or presence of the edge).

The presence of Yc
ij in the conditional probability reflects the

mutual dependence of ties. The logit formulation clarifies the

interpretation of the h vector: if forming an edge increases gh by 1,

then the log-odds of that edge forming increase by hh, with a single

edge affecting in some cases multiple g statistics [20]. A positive

estimate means that the effect is more frequent in the observed

network than expected by chance and a negative estimate means

that the effect appears less in the network than it could be

expected.

2.3.1. Dyadic independent erg model
Network inference can be drawn assuming a dyadic indepen-

dency whereby the state of the dyad (two nodes and their edge)

depends on the attributes of the two nodes, for example, but not

on the state of other dyads. Under this independency and when

fitting these models, the vector of statistics gh (y, X) may always be

calculated for Yij, regardless of the values of i and j, without

knowing anything about Y, in the case of an undirected network

[24]. Given the difficulty for most networks to calculate the

normalizing constant k, maximum pseudolikelihood estimation

methods (MPLE) have been traditionally applied to estimate the

model parameters assuming this conditional independence of the

edge (for a review, see Wasserman and Robins [15]), superseded in

the last few years by Markov chain Monte Carlo Maximum

Likelihood Estimation (MCMCMLE) techniques [25]. Models

with only dyadic independent terms have a likelihood function that

can be maximized using standard logistic regression methods, as

shown above [26].

An initial dyadic independent exponential random graph model

was fitted with the edge count as the only non-zero effect in the

model, which corresponds with a Bernoulli random graph

distribution, often called the simple random graph or Erdös–

Renyi graph distribution [22]. To determine the variables in the

final model, we used an iterative exploratory technique of

progressively decreasing the model complexity by removing

variables by decreasing order of p-values from the model

containing the edge count and all other pre-selected covariates:

pairwise difference in altitude of villages linked in the observed

network, euclidean distance to the main market Debre Berhan

(measured in decimal degrees), number of small ruminant farmers

in the village, number of village sheep sold at the market, number

of traders identified during the survey, kebelle (first order effect) and

kebelle (second order effect). The model with the best fit (highest log

likelihood) and more parsimonious was selected for reporting and

diagnostics. Coefficients and p-values for each covariate and log

likelihood and the Akaike Information Criterion (AIC) for the final

model were extracted and displayed in Table 1.

2.3.2 Dyadic dependent erg model
When the likelihood of a dyad depends on the presence or the

state of other dyads, the models to account for this dependency

require computationally intensive estimation and imply complex

forms of feedback and global dependence that ‘‘confound both

intuition and estimation’’ [26]. The fitting of these models are

based on an algorithm that draws on Markov Chain Monte Carlo

simulations (MCMC), a stochastic process that produce different

results every time they are run, unlike dyadic independent models.

In order to describe the internal structure of the study network a

dyadic dependent exponential random graph model was fitted

using some of the traditional configurations in undirected networks

that describe the structural cohesiveness of the network: the k-star

(2-star and 3-star) and the triangle, apart from the edge count, as

in the previous model. A 2-star is a subset of three nodes in which

one node is connected to each of the other two, and a triangle is a

subset of three mutually connected nodes. These configurations

are defined hierarchically, so that a triangle also includes three 2-

stars [22]. The statistics estimated in the model are related to the

count of these structures presented in the observed network

(Figure 2). To prevent the degeneracy of the model the MCMC

sample size was increased up to 100,000 [27].

2.3.3 Goodness-of-fit test and model diagnostics
In order to check if the selected final models capture the

structure of the original observed network, a set of 100 randomly

generated networks were simulated using the parameters of the

fitted final model. They were then compared with the observed

network by four diagnostic parameters as proposed by Hunter

et al. [24]:

– geodesic distance distribution defined as the proportion of pairs

of nodes whose shortest connecting path is of length k, for k = 1,

2…m (pairs of nodes that are not connected are classified as

k = 1);

– the edgewise shared partner distribution: based on the number

of edges that serve as the common base for exactly i distinct

triangles, expressing the tendency in the observed network for

linked nodes to have multiple shared partners [21];

– the degree distribution or the frequency of nodes with different

degree values;

– and the triad census distribution defined as the proportion of 3-

node sets having 0, 1, 2, or 3 edges among them.

Frequency distributions of the four diagnostic parameters were

produced for the observed data (the study network) and the 100
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simulated networks. This was conducted using the built-in

goodness of fit method in the package statnet of the statistical

software R [28]. For good-fitting models, the plot of the simulated

networks should closely match that of the observed network.

The statistical estimates of the parameters of the erg models

indicate whether network realizations with the theoretically

hypothesized properties have significantly large probabilities of

being observed in subgraphs of the network data collected.

Following this rationale, a further diagnostic of the final models

was conducted by the following procedure: firstly, one edge of the

original network was removed. Then a set of 100 randomly

generated networks were simulated using the covariates of the final

models fitted with new network (the original minus one edge). The

number of times that the eliminated edge is included in the

simulated networks was counted. This procedure was repeated by

selecting randomly 10 edges present in the network and removing

one at a time. Average number of times the edges are included in

their respective simulated batch of one hundred networks is

reported, as a measure of the reproducibility of the edge present in

the observed network and subsequently removed using the

covariates of the final models.

For the dyadic dependent model and in order to test its

degeneracy, plots of the chain for each model statistic produced in

every MCMC sample were produced. Visual exploration was

conducted to check whether the statistics of the model vary

stochastically around the mean as expected in a converged model

and do not depart steadily away from the mean [27]. All the

analyses were conducted using the statistical software R version

Table 1. Descriptive statistics of the village attributes, coefficients and p values, AIC and log likelihood parameters of the three erg
models: the edge count and of the final dyadic independent and dependent models.

Covariates
Descriptive statistics
Median IQR (25th–75th) Edge

Erg dyadic independent
model Coefficients
(P value)

Erg dyadic dependent
model Coefficients
(P value)

Edge 20.32
(,0.05)

29.64 (,0.05) 2112.3 (,0.05)

Absolute difference altitude (m.a.s.l.) 3008.5 (2813–3116) 0.003 (,0.05)

Distance to Debre Aber (decimal degrees) 0.13 (0.11–0.16) 29.9 (,0.05)

Number of small ruminant farmers 27 (21–34)

Total number of sheep sold at the market 16 (12–29)

Number of traders identified during the survey 10 (10–10)

Kebelle (second order effect):

Abamote 21.3 (,0.05)

Angolela 0.6 (0.07)

Bere Ager 0.6 (0.07)

Birbisa 21 (0.08)

Debele 20.1 (0.73)

Goshebado -Inf (NA)

Gudoberet 21.5 (,0.05)

Keyit 0.08 (0.8)

2-star 2 (,0.05)

3-star 20.01 (,0.05)

Triangle 21.7 (,0.05)

Log-likelihood 21888.3 21418.87 246.9

AIC 3778.6 2859.7 101.8

doi:10.1371/journal.pone.0030710.t001

Figure 2. Examples of the network configurations included in the dyadic dependent exponential random graph model.
doi:10.1371/journal.pone.0030710.g002
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2.12.0 (R Development Core Team (2010). R: A language and

environment for statistical computing. R Foundation for Statistical

Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://

www.R-project.org).

Results

841 responses were collected with information on either the

trader or the market or both. Seventy seven responses did not

include the name of the trader or farmer-trader. Of those with

names, five individuals reported two markets each where they had

traded and 759 only declared a single market, making a total of

764 different individuals reporting trade in the survey.

A hundred and ninety two individuals did not provide

information on the number of animals traded but they provided

the markets where they traded. Two did not specify market name,

194 mentioned market ‘‘none’’, 4 mentioned ‘‘village’’ as the

market where they traded, making a total of 9 markets identified

and 570 observations where a different pair of trader/farmer-

trader and market/s could be both identified and were included in

the final dataset for analysis. The 9 markets identified were:

Abadale, Ankober, Arbgebeya, Chacha, Debre Berhan, Gudo-

beret, Keyit, Mendida and Rob gebeya. A total of 75 different

villages from the 8 kebelles were identified in the 570 paired

observations. Locations of both the villages and markets included

in the analysis are shown in Figure 1.

The median number of visits to the market by traders/farmer-

traders during the time window was 2 (IQR: 1–2, range 1–52).

Among those who sold sheep in the markets (569), the median

number of sheep sold was 2 (IQR = 1–3, range: 1–32). The most

frequent reason for selling sheep was ‘to buy clothes’ (59%),

followed by ‘to buy food’ (43%), ‘to buy fertilizer’ (35%), ‘to pay

taxes’ (29%), ‘to pay school fees’ (23%) and ‘to buy feed for

animals’ (14%). In terms of priority, these were also the reasons to

sell in decreasing order of priority for the 528 respondents to this

question. Among those who sold goats (50), the median number of

sheep sold was 1 (IQR = 1–2, range: 1–8). The traders/farmer-

traders included in the survey were mainly suppliers and only 97

(17%) of them reported to have bought sheep during the reporting

period (median: 2, IQR:1–2, range: 1–10). Even less individuals

purchased goats (7), mostly single animals. The main reasons to

buy sheep were: ‘for own consumption’ (50%), ‘for breeding’

(40%) and ‘for fattening and sale’ (10%).

More than a third of the 563 respondents to this question did

not cross any other kebelle on their way to the market (39%) and

when they do it, they stopped at other kebelles in 85% of the

occasions and usually mixing with other herds 9 out of 10 times.

Only 7 respondents crossed three kebelles (1%).

The 1-mode network contained 75 villages from 8 different

kebelles in the Bassona Werna wereda. It is a dense network (42%)

with a median degree of 42 (IQR: 15–53), an overall clustering

coefficient of 0.37 and average geodesic distance of 1.5. These

features are due to the dominant effect of the main market Debre

Berhan in which traders from 54 villages (72%) operated during

the reporting period. Descriptive statistics of the main village

attributes are displayed in Table 1.

The negative coefficient in the initial model including only the

edge count indicates fewer connections between villages in the

network than would have been expected by chance (p,0.05).

The final dyadic independent erg model included the edge

count, pairwise difference in altitude of the villages linked, distance

to the main market of Debre Berhan and the second order effect of

the kebelle, all significant at the 0.05 level. The odds of a edge

increases significantly where the distance to the market Debre

Behran and the difference in altitude between two connected

villages are both large so that villages far away from the main

market and at different altitude are more likely to be linked in the

network than randomly. The odds of forming an edge between

two villages in Abamote or Gudoberet adjusted by distance to

Debre Berhan and altitude are approximately 75% lower than an

edge between villages in any other kebelles (p,0.05 for both

villages), conditional on the rest of the network, whereas edges

between villages in Angolela and Bere Ager were more likely to

occur than randomly and less likely between villages in Birbisa,

although only significant at the alpha level of 0.1.

The final dyadic dependent erg model included the counts of

edges, 2-star, 3-star and triangles configurations. Following the

interpretation of the coefficients, the conditional log-odds of two

villages forming a tie that is not included in a triangle, a 2-star or a

3-star is extremely low as the large coefficient of the edge count

shows, increasing the odds significantly (p,0.05) each time the

node is in one 2-star structure and decreasing it when a node is in

a 3-star (p,0.05) or in a triangle formation (p,0.05). Parameters

estimates and p-values as well as log likelihood and AIC of the

three models are shown in Table 1.

The frequency distributions of the four diagnostic parameters of

both the observed network and the 100 simulated networks for the

dyadic independent and dyadic dependent models are displayed in

Figure 3 and Figure 4, respectively. The independent or attribute-

related model does a good job in capturing the global efficiency of

the network (geodesic distances), a relative good fitting for 2 and 3

triad census, but predicts poorly the local efficiency (edge-wise

shared partners) and the degree distribution due to the bimodal

distribution of degree in the network whereby nodes have degree

below 15 or over 50. On the other side the dyadic dependent

model is able to replicate the four diagnostic parameters of the

observed network much more accurately, with some predicted

outliers of nodes with low edge-wise shared partners. The plots of

the statistics estimated in each MCMC sample of the parameters

of the dyadic dependent model are shown in Figure 5. Visually the

model appears to converge with no deviation of the parameter

estimators from the mean values.

The randomly removed edge appeared on average in 14% of

the simulated networks for each batch in the dyadic independent

model and in 15.5% in the dyadic dependent model.

Discussion

The highland town of Debre Berhan (elevation 2805 m.a.s.l.)

located in the Bassona Werna wereda was used as a base for the

research. The town is located 130 km North along the main road

from the capital city of Addis Ababa. The market system observed

in this community of small ruminants of Ethiopia is dominated by

a large market, Debre Berhan, that serves as a meeting point for

farmer/farmer-traders to buy/sell small batches of mainly sheep

and at a smaller scale goats. It lays on Road 1, one of the main

arteries of the road network in Ethiopia, stretching from Addis

Ababa to the border with Eritrea in the north.

Following qualitative data collected during the survey and the

parameters of the observed network, most of the markets studied

are medium/small scale located far from the main road, and play

a secondary role in bringing in a few animals at a time which are

sold onto farmer-traders or small-scale traders and then moved to

other markets like Debre Berhan. These however, are often

accessible by car on dirt or main roads. This centripetal general

flow of live animals from production sites to larger towns is

characteristic of the supply chain of livestock production in this

setting [6–29–30]. The dynamism and complexity of the system

Application of Erg Model to Farmer Contact Network

PLoS ONE | www.plosone.org 6 February 2012 | Volume 7 | Issue 2 | e30710



reflects the opportunities to make a profit by trading with small

ruminants. Traders’ strategies include attending several markets

each week and following a gradient of prices from the more

isolated locations to larger towns and/or the capital.

It is extremely difficult to collect reliable field data on this type

of settings where trade information is the main objective of the

questionnaires. Not only because the unfamiliarity of the subjects

to this kind of studies but also the lack of standard denomination

for villages and markets alike. Despite these downsides of the data

collected in this study, the analysis revealed certain patterns in the

contact of production units represented by villages through the

trade of small ruminants via markets.

The exponential random graph models provide a statistical

framework to analyse network data by modelling the probability

that any given graph is drawn from the same distribution as the

observed graph. They also allow different network structures to be

modelled, because the formulation is able to account for the

complex structure of the network via parameters governing the

entire network, rather than breaking it down into dyads [31]. Two

different outputs can be extracted by fitting an erg model: the

Figure 3. Plots of the proportion of dyads against the four diagnostic parameters of both the observed networks (black) and the
100 simulated networks (grey) for the dyadic independent model. The solid lines represent the statistics of the observed network, and the
boxplots represent the distribution of 100 simulated networks based on the fitted ergm.
doi:10.1371/journal.pone.0030710.g003
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prediction of the probability of the observed overall network

structure and/or the likelihood of any specific edge in an observed

network. Another advantage is that the outputs of these models are

interpreted in a similar manner as standard logistic regression.

The dyadic independent village-village network model shows

dyadic independence because the probability of any edge does not

depend on the value of or the presence of other edges, only on the

attributes of the two villages (node) involved in the edge [20]. The

similarity effect is strong with the distance to the main market and

the difference in altitude. The edge parameter is increased/

decreased to compensate the effect of the other covariates from the

initial model that only contain it. This is an indicator of the density

or overall cohesiveness of the network. Reading the results we

conclude that there were fewer edges in this network than

expected, that is, many fewer dyads of villages linked via common

markets that had no other ties. In the context of the study two

major constraints could be expected to influence traders/framer

traders on which market to attend: distance and geographical

barriers expressed in our dataset by the euclidean distance to the

main market measured in decimal degrees and difference in

altitude from the low land to higher, respectively. Although small

in the log of the odds of the edge, the difference in altitude is

Figure 4. Plots of the proportion of dyads against the four diagnostic parameters of both the observed networks (black) and the
100 simulated networks (grey) for the dyadic dependent model. The solid lines represent the statistics of the observed network, and the
boxplots represent the distribution of 100 simulated networks based on the fitted ergm.
doi:10.1371/journal.pone.0030710.g004
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higher in the network than expected and so is the distance to the

main market of Debre Berhan at larger scale, which means that

the geographical barriers and distance do not determine the

decision on which market to trade and hence to be linked to other

village of the study network. If the pattern observed was

extrapolated to a larger population of small ruminant farmers,

the catchment area of a market could not be estimated based on

distance but on other criteria like type of market, price differential

and opportunities for social interaction. In this regard Debre

Berhan is on major road and the advantages of taking sheep and

goats to this main market may outpower the difficulties of moving

animals longer distances, from lower areas and crossing other

villages contacting other flocks. The drawback of this fact is the

opportunities for mixing in the way to the market.

The first model based on the attribute-related dyadic indepen-

dency also showed the assortative mixing of villages by kebelle

whereby villages within two kebelles, Abamote and Gudoberet, are

linked less frequently than expected adjusted by distance to the

main market and the difference in altitude. Although the overall

effect of the network model reveals that the difference in altitude of

two villages does not preclude to be linked, a potential explanation

for this finding is the fact that these two kebelles are located in the

Figure 5. Plot of the statistics estimated in each MCMC sample for the dyadic dependent (left) and the frequency histogram of the
estimation of the parameters of the model (right) using a MCMC sample size of 100000.
doi:10.1371/journal.pone.0030710.g005
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remotest region of the wereda and they may tend to trade via small

local markets reducing their opportunities to be linked via the

larger markets identified in the study. Other attributes inherent to

the 8 kebelles identified in the network and unaccounted for in this

analysis may explain this assortative mixing.

The second model contained the dyadic dependency leading to

an endogenous process of formation of ties in the form of internal

structures (stars, triangles, etc.). Yet again the negative density

parameter indicates that edges occur very rarely (large negative

coefficient), especially if they are not part of higher order structures

such as stars and triangles. The negative triangle parameter can be

interpreted as providing evidence that the edge between villages

do not tend to occur in triangular structures, and hence cluster

into clique-like forms. The transitive triangle parameter is an

indicator of clustering and strength [32]. This statistic is

interpreted as the tendency for many triangles to form together

in the observed network. If high, then the model suggests regions

of high triangulation indicative of core-periphery-type structures

[33].

The star effects are significant suggesting that there is a

tendency for multiple network partners up to degree of 2 (the

positive 2-star estimate) but with a ceiling on this tendency (the

negative 3-star parameter), both significant. k-stars are equivalent

to geometrically weighted degree counts and are useful for

modelling the degree distribution. In fact 1-star is equivalent to

the degree of the nodes. The higher the k-star parameter, the

easier it is for information/commodities to circulate through the

network [32]. In this regard the structure of the study network

showed some resilience to spread diseases globally assuming that

the causative agent is mobilized via movement of small ruminants

in the network.

Both models have a low reproducibility of individual edges with

14% in the attribute-related model and 15.5% in the configura-

tion-related model. Internal structures in the network allow a

better prediction of individual edges than the attributes of the

node, although with a small advantage. However the dyadic

dependent model predicts much better the overall structure of the

network according to the four diagnostic parameters and the log

likelihood of the model.

The results of the study preclude the effect of geographical

barriers on the choices that traders/farmer-traders make to trade

small ruminants in the study area. It could have been expected the

environment to play a role in ‘‘constraining’’ disease transmission

routes by the physical impediment of bringing animals into contact

in the setting of the study. However it has been shown that the two

major constraining factors, namely distance and altitude, are not

deterrent for the potential contact of susceptible small ruminant

populations in the Highlands of Ethiopia. It has also been

observed the assortative mixing of the villages via common

markets by kebelles. The attribute data collected at village level and

included in the analysis captured a limited variability of the

probability of the presence of the edge and other factors

unaccounted for would definitely complement the trading criteria

of the traders/farmer-traders to make their choices.
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