
Bare et al. BMC Bioinformatics 2010, 11:382
http://www.biomedcentral.com/1471-2105/11/382

Open AccessS O F T W A R E
SoftwareIntegration and visualization of systems biology
data in context of the genome
J Christopher Bare1, Tie Koide2, David J Reiss1, Dan Tenenbaum1 and Nitin S Baliga*1

Abstract
Background: High-density tiling arrays and new sequencing technologies are generating rapidly increasing volumes
of transcriptome and protein-DNA interaction data. Visualization and exploration of this data is critical to
understanding the regulatory logic encoded in the genome by which the cell dynamically affects its physiology and
interacts with its environment.

Results: The Gaggle Genome Browser is a cross-platform desktop program for interactively visualizing high-
throughput data in the context of the genome. Important features include dynamic panning and zooming, keyword
search and open interoperability through the Gaggle framework. Users may bookmark locations on the genome with
descriptive annotations and share these bookmarks with other users. The program handles large sets of user-
generated data using an in-process database and leverages the facilities of SQL and the R environment for importing
and manipulating data.

A key aspect of the Gaggle Genome Browser is interoperability. By connecting to the Gaggle framework, the genome
browser joins a suite of interconnected bioinformatics tools for analysis and visualization with connectivity to major
public repositories of sequences, interactions and pathways. To this flexible environment for exploring and combining
data, the Gaggle Genome Browser adds the ability to visualize diverse types of data in relation to its coordinates on the
genome.

Conclusions: Genomic coordinates function as a common key by which disparate biological data types can be related
to one another. In the Gaggle Genome Browser, heterogeneous data are joined by their location on the genome to
create information-rich visualizations yielding insight into genome organization, transcription and its regulation and,
ultimately, a better understanding of the mechanisms that enable the cell to dynamically respond to its environment.

Background
The genome encodes the physiological functions and reg-
ulatory logic by which a cell interacts with its environ-
ment. Therefore, visualization and exploration of
genome-wide data in the context of their organization
across the genome is critical to fully understand how an
organism dynamically utilizes the information encoded in
its genome to affect its physiology [1]. Recent advances in
whole genome tiling arrays and next-generation sequenc-
ing technologies are providing new ways to collect
genome-wide data at much higher resolution than previ-
ously possible. The ability to dynamically explore and
visualize these data in a flexible, interactive and informa-
tive manner will be key to understanding these data and

directly linking the mechanistic information they provide
with cellular physiology.

To this end, we have created the Gaggle Genome
Browser (GGB), an interactive graphical tool which
enables plotting of multiple tracks of data of diverse types
along the genome at multiple scales with dynamic pan-
ning and zooming. Applications initially targeted are
visualization of expression and protein-DNA interaction
from several measurement technologies including gene
expression arrays, whole-genome tiling arrays, mass
spectrometry, chromatin immunoprecipitation (ChIP-
chip) and sequencing (RNA-seq or ChIP-seq) for micro-
bial genomes.

Several genome browsers have existed for some time
and our intention was not to duplicate previous efforts.
With development of GGB, we focus on interactive
exploration, easy access to user data, and interoperability,

* Correspondence: nbaliga@systemsbiology.org
1 Institute for Systems Biology, 1441 N 34th Street, Seattle, WA 98103, USA
Full list of author information is available at the end of the article
© 2010 Bare et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons At-
tribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20642854

Bare et al. BMC Bioinformatics 2010, 11:382
http://www.biomedcentral.com/1471-2105/11/382

Page 2 of 8
along with the ability to handle large sets of user-gener-
ated data gracefully. Interoperability with the Gaggle [2]
framework is a central feature. By connecting to the Gag-
gle framework, the genome browser joins a suite of bioin-
formatics tools giving the researcher the power to analyze
complex biological systems across several data types,
from high-resolution gene expression to protein interac-
tions, metabolic pathways, and much more.

Implementation
The Gaggle Genome Browser is written in the Java [3]
programming language using the Swing UI framework
and the SQLite [4] database engine. Message passing
between applications is provided by the Gaggle frame-
work. These components support the design goals of cre-
ating a cross-platform interactive graphical application
that can handle large user-generated datasets, interoper-
ate with existing tools and flexibly accommodate exten-
sion. Several key features are illustrated in Figure 1.

Data model
The program shares its basic data model with several
genomics software packages. Its core abstractions (Figure
2, blue shading) are sequences, tracks and features, with a
dataset composed of a collection of sequences and a col-
lection of tracks. Sequences, which may be chromo-
somes, plasmids, contigs or any other sequences of
interest, define the coordinate system on which track data
is plotted. Tracks group together features from a com-
mon source. A feature is a tuple containing coordinates
on the genome (sequence, strand, start, and end) aug-
mented by additional data specific to a particular type of
feature. Genes, microarray probe values, peptide mea-

surements, or protein-DNA binding sites are all poten-
tially features. In addition, datasets, sequences and tracks
have attributes (key/value pairs) which are used to assign
visual properties, provenance or other information to
these entities. This flexible and extensible data model
means that our software is not tied to any particular for-
mat, data type, or array platform. Any feature encoding
data that can be related to position on the genome can be
displayed in the browser.

Rendering
Features are drawn on the plot by an implementation of
TrackRenderer, an abstract class which is a key extension
point of the program (Figure 2, green shading). Visualiza-
tions are implemented by extending this class. Several
renderers are built into the program including those for
genes, quantitative data series, and heatmaps. Renderers
visually encode properties of individual features using
color, shape, and other cues. Tracks are mapped to the
user's choice of renderer by the track's attributes, which
also hold other parameters used to configure the ren-
derer. The open-ended data model for features with arbi-
trary key/value pairs dovetails with customizable
renderers to support extension of the software with new
visual representations or visualize unforeseen data types
while confining code changes to a limited scope.

Data access
An in-process database, SQLite, provides data storage
and a command shell with a standard data manipulation
language (SQL) without the need for a separate database
server or the overhead of socket communication. Fea-
tures are stored in a database in a separate table per track
to avoid restricting the types of features the program can

Figure 1 Features of Gaggle Genome Browser. Features of GGB in-
clude interactively panning and zooming through large amounts of
user-generated data, dynamically scaling track data for effective dis-
play in limited screen resolution, integration with the Gaggle frame-
work, search for named features, and facilities for creating and editing
annotated bookmarks of regions of interest. Data shown here is RNA-
seq measurements of the transcriptome of Bacillus anthracis by Passa-
lacqua et al.

Search

Zoom

Cursor tools

Gaggle toolbar

Bookmarks

Data tracks

Genome track

Figure 2 Object model and data flow. The basic classes of the do-
main model, highlighted in blue, are common to several genomics ap-
plications. A genome browser dataset consists of a list of sequences
which define the coordinate system and tracks holding feature data to
be plotted against those sequences. Data access (in yellow) is handled
by loading contiguous blocks of feature data from an in-process data-
base. An index can quickly determine which blocks intersect with the
viewing area. Data flow (blue arrows) proceeds from the database
through an LRU (least-recently-used) cache and is presented to Track-
Renderers (in green) as tracks and features.

name
length

Sequence

name
uuid

Track

Dataset

BlockIndex

trackUuid
sequence
strand
start
end
firstRowId
lastRowId

BlockKey

Block

Given screen coordinates,
BlockIndex finds keys for

intersecting blocks.

BlockKey used to look up
block data in cache or DB.

DB

Cache

Given screen coord

LabeledFeature

BlockIndex finds k
intersecting blo

QuantitativeFeature

GeneFeature

NestedFeature

sequence
strand
start
end

Feature

...

TrackRenderer

GeneRenderer

ScalingRenderer

HeatmapRenderer

...

Specialized track renderers draw
the visual representation of each

track onto the viewing area

Data flow shown as blue arrows

Bare et al. BMC Bioinformatics 2010, 11:382
http://www.biomedcentral.com/1471-2105/11/382

Page 3 of 8
handle. All feature tables have columns holding coordi-
nates on the genome. Additional columns may be
included to represent properties such as quantitative val-
ues or statistical measures.

The main task of the program is to visualize features
according to their position on the genome. Doing this
quickly requires an efficient flow of data from the data
store to the screen, with particular attention to minimiz-
ing disk access. Features are collected in tracks, which
may have hundreds of thousands of features for tiling
arrays or many millions for high-throughput sequencing.
For large tracks, features should only be loaded into
memory as needed. This is accomplished by dividing
each track into contiguous blocks of features. A block
may be loaded into memory and paged out as needed,
providing a unit for caching and preserving a degree of
locality (Figure 2, yellow shading). Like individual fea-
tures, blocks are keyed by their genomic coordinates, so
the program can efficiently determine which blocks inter-
sect the visible window and schedule them to be loaded.
Caching reduces the odds of rereading the same block
repeatedly while keeping a tunable limit on memory
usage.

Queueing
Both data access and rendering take place off the Swing
event dispatch thread so the user interface remains
responsive to user input. Data access and rendering are
time-consuming and can lag behind the events generated
by the UI. This mismatch of rates is handled using the
queueing arrangement shown in Figure 3. To protect
Swing's event dispatch thread from long-running tasks,
GGB creates a separate task queue for data access and
rendering tasks. A worker thread takes tasks from this
second queue, rendering to an off screen image buffer.

Only the copy to the display need be performed by the
Swing event dispatch thread.

Gaggle connectivity
The genome browser is a stand-alone desktop program,
but its power is multiplied when used within the Gaggle
framework. The Gaggle framework [2] provides data
exchange between bioinformatics applications using a
handful of universal data types which cover a wide range
of use cases within the systems biology domain. Gaggle
data types include lists of identifiers, tuples (sets of key/
value pairs), matrices containing numeric data, and net-
works.

Applications become part of the Gaggle framework by
implementing the ability to send and receive messages
containing these data types. Software tools connected
through the Gaggle include: Cytoscape [5], a network
viewer; MeV [6], an application for analysis, visualization
and data-mining of large-scale genomic data; the R Proj-
ect [7] for statistical computing; and Bioinformatics
Resource Manager [8], a data management, analysis and
integration environment for systems biology. Firegoose
[9], a toolbar for the Firefox browser, further extends the
Gaggle environment to web resources such as: KEGG
[10], for metabolic pathways; STRING [11], for protein
interactions; and DAVID [12], for functional annotations.

The effect of Gaggle connectivity is that the genome
browser can focus on visualization without taking on the
impossible task of reimplementing all the functionality of
the various Gaggle-connected resources.

Architecture
The application is factored into modular components
which communicate with each other through events. The
application exposes an API (currently in prototype form)
for use by components, plug-ins and scripting. This API
is used to implement Gaggle integration and forms the
basis for an R package that enables control of the genome
browser by commands within the R environment.

Heer et al. [13] present a system of software design pat-
terns for visualization, several of which are applied in
GGB. The general structure of the application loosely fol-
lows the Reference Model design pattern, a specialization
of the Model-View-Controller pattern that further
divides the model into the underlying data model and a
visualization, a mapping onto visual properties such as
color, shape, and position.

When a single track has features numbering in the tens
or hundreds of millions, allocating an object for each fea-
ture is prohibitively inefficient. For this reason, features
in GGB are typically Flyweights [14]. For all features of a
track, a single flyweight feature provides an object ori-
ented interface backed by parallel arrays. An individual
feature then reduces to an index into the arrays and iter-

Figure 3 Queueing provides responsive user interface. The Swing
event thread dispatches events from the AWT event queue (in blue)
handling interaction with the user and the display. Data access and
rendering tasks are placed in a task queue (in green) and executed on
a separate thread. The results are rendered to an off-screen buffer
which can then be rapidly copied onto the display by the UI event
thread.

Swing Event Dispatch Thread

Data Access and Rendering Thread

Swing
UI Event
Queue

Mouse /
Keyboard / etc.

1. Read Event

2. Handle Event

2. Read block of data
(from DB or cache)

3. Render data to off-
screen buffer

Display

4. Queue event to copy
off-screen buffer to

display

Task
Queue

3. If necessary, generate
tasks to refresh view

1. Read task from queue

Bare et al. BMC Bioinformatics 2010, 11:382
http://www.biomedcentral.com/1471-2105/11/382

Page 4 of 8
ating through features simply amounts to incrementing
the index. Thus memory is used efficiently and features
nearby in the genome are also nearby in memory boost-
ing cache locality.

Software designed to meet the fluid requirements of
research applications must be flexible, adapting to chang-
ing needs and a range of usage styles [15]. The goal of our
architecture is to provide the necessary flexibility through
extensibility and interoperability with a range of tools
from point-and-click web resources to sophisticated envi-
ronments such as R.

Results
The architecture described above results in a versatile
tool for visualizing genome related data. Data can be
imported from a wide variety of sources including the
GFF standard file format [16] and the UCSC Genome
Browser [17] through a wizard interface. Once imported,
data can be visualized at multiple zoom levels and navi-
gated by scrolling, searching, or jumping to directly to
bookmarked regions of interest. Computationally ori-
ented users can leverage the powerful data manipulation
features of the R statistical environment [7] or SQL. Track
data can be visualized using several renderers, including
one for heatmaps and a scaling renderer that changes rep-
resentation based on zoom level (Figure 4).

Fast graphical rendering is difficult to achieve in cross-
platform applications. GGB delivers frame rates sufficient
for interactive visualization for datasets in our experience
(Figure 5). Leaving aside window dimensions, rendering
speed depends mainly on the number of features visible
in the viewing area (zoom level) and the complexity of
their visual representation. For example, a heatmap takes
longer to draw than a line plot. Rendering speed shows no
discernible dependence on the size of the database or
total number of features. In all cases, even when render-
ing slows, the program remains responsive to user input,
resulting in good subjective performance. The program
has been tested with datasets as large as 500 million fea-
tures, equivalent to covering human chromosome 1 at
single nucleotide resolution. It runs comfortably with a
heap size of 256 MB resulting in a total memory footprint
of about 350 MB independent of total data size. We tested
the program both on a workstation class machine (2.66
GHz Quad-core, 8 GB main memory) and on modest
hardware (1.92 GHz CPU and 1 GB main memory) find-
ing adequate performance even on the low-end machine.
Further performance measurements are available on the
GGB website [18].

A pair of case studies demonstrate the use of the Gaggle
Genome Browser in analyzing diverse, complex and large
datasets to discover biologically meaningful insights. The
first focuses on a discovery of internal promoters that was
made possible by extensive manual exploration and cura-

tion of the transcriptome structure in conjunction with
protein-DNA interactions and interactive statistical anal-
ysis in R. The second example illustrates that GGB grace-
fully handles 8 tracks of single nucleotide resolution next-
generation sequencing data, with a total of over 45 mil-
lion features in a 358 MB database.

Case study: Discovery of a conditionally active promoter
inside a coding sequence of the succinate dehydrogenase
operon
Our genome browser was developed in conjunction with
a study of the transcriptome structure of Halobacterium
salinarum[19]. (GEO GSE13150) Transcription and pro-
tein-DNA binding were measured using whole-genome
tiling arrays at several time points over the growth curve.
This data was used to revise computationally predicted
genes and discover new protein-coding regions and non-
coding RNAs. A segmentation algorithm was used to find
breaks in transcription defining transcription start and

Figure 4 Gallery of Gaggle Genome Browser visualizations. (1) H.
salinarum growth series showing 14 tracks of strand sensitive tiling ar-
ray data taken as a time series during growth. The track nearest the hor-
izontal axis shows reference RNA, while the remainder of the tracks are
log ratios relative to the reference. Segmentation, overlaid on the ref-
erence RNA in red, computationally delimits transcriptional units. Ra-
tios are also overlaid with segmentation, using red to indicate
increased expression and green for decreased expression relative to
the reference for that segment. This view shows about 200 thousand
features out of 7.25 million in the whole dataset. (2) A view supporting
curated annotation of transcriptional start and termination sites. Heat-
maps are used to represent tiling array data relative to the reference
condition, shown with blue circles overlaid with segmentation in red.
Computed boundaries of transcription are drawn as dashed verticals
with supporting statistics shown in brown and green along the outer
edge. Blue blocks show PFAM domains. Dark blue bars show compu-
tationally predicted operons. (3) A comparison of array platforms. Data
from different tiling array platforms is compared to spotted expression
arrays. On the outer edge, we overlay all time points from both repli-
cates giving some idea about the distribution of values at each point.
(4) MeDiChI profiles and predicted binding sites overlay multiple repli-
cates of ChIP-chip data for several transcription factors, showing TF
binding sites in relation to genes and transcription data.

1 2

3 4

reference RNA +

reference RNA -

reference RNA +

reference RNA -

reference RNA +

reference RNA -

reference RNA +

reference RNA -

series 1 +

series 1 -

series 2 -

series 2 +

tiling all +

tiling all -

gr
ow

th
 s

er
ie

s
+

gr
ow

th
 s

er
ie

s
-

tim
e

tim
e

tim
e

tim
e

growth
series +

growth
series -

break density +

break density -

transcription
probability +

transcription
probability -

MeDiChI
overlayed on
ChIP data

MeDiChI
overlayed on
ChIP data

tiling arrays

spotted arrays

spotted array probe locations

Bare et al. BMC Bioinformatics 2010, 11:382
http://www.biomedcentral.com/1471-2105/11/382

Page 5 of 8
termination sites and operon structure. In some cases,
these structures were shown to change over the growth
curve revealing the dynamic nature of transcription.
ChIP-chip data was used to relate changes in transcrip-
tion to the binding of transcription factors.

An important discovery made in this study was that
there is a higher than expected incidence of transcription
initiation inside operons, including within the coding
sequences of member genes. The discovery of these and
other novel insights required the Genome Browser to
support extensive interactive exploration of transcrip-
tome structure changes and protein-DNA interactions in
context of the genome map and to integrate well with R,
which was used to process raw signal data and compute
derived data such as segmentation and probable binding
sites. Part of this analysis is reconstructed here to illus-
trate the features of the genome browser and its interop-
erability with other tools. The reader is encouraged to
follow along with the detailed instructions on the Gaggle
website [18].

In brief, we will focus on an observation that there is a
growth-associated transcriptome structure change within
the 4 gene operon for succinate dehydrogenase. We
wished to investigate whether the break in transcription
associated with this event coincides with the location of a
transcription factor binding site (TFBS) for the transcrip-

tion factor TFBd. We assayed DNA binding for TFBd
using chromatin immunoprecipitation followed by two
different whole genome tiling array platforms, an in-
house array with 500 base-pair resolution (GEO
GSE7045) [20] and a higher resolution Nimblegen tiling
array (GEO GPL8468). Part of the intent was to test the
sufficiency of the 500 bp array to predict binding sites.

Given the low resolution of this data it is difficult to
evaluate visually whether there is a statistically significant
TFBd binding event in the vicinity of the putative internal
promoter. The resolution to which specific binding sites
in a ChIP-chip assay can be identified is limited by: (a) the
resolution of the tiling microarray, and (b) the variable
sizes of the immunoprecipitated DNA fragments.
Together, these issues can influence the accuracy of local-
izing TFBSs from ChIP-chip data. To address these tech-
nical challenges we developed MeDiChI [21], to precisely
localize binding locations at a resolution higher than the
tiling array probe spacing. MeDiChI produces a model fit
and peaks representing locations and intensities of pre-
dicted TFBSs.

The workflow used to derive these results started with a
track of ChIP-chip data in GGB, which was transmitted
to R for analysis with MeDiChI. Products of that analysis
are then transmitted back to the Genome Browser for
visualization. Data transfer was done by establishing a
connection between the Genome Browser and R using
the Gaggle framework (Figure 6, step 1) assisted by a

Figure 5 Comparison of image rendering times for different data-
sets and zoom levels. Complexity of the visual representation has a
large effect on rendering time, as does the number of features visible
in the viewing area. Whiskers indicate the range of rendering times,
while boxes show the middle two quartiles. Rendering is usually under
one second even for very complex renderings on workstation class
hardware and slower but still acceptable on a low-end machine. Slow-
er rendering times are associated with cache misses. The B. anthracis
dataset (43 million features total, shown in figure 1) is the fastest to ren-
der, benefiting from the scaling renderer that adapts to zoom level.
The H. salinarum dataset (7.25 million features total, shown in panel 1
of figure 4) is of moderate complexity with 30 total tracks. Shown are
rendering times for a zoomed in view with 20 thousand features visible
and a zoomed out view with 200 thousand features visible. The S. sol-
fataricus dataset, (27 million features total, shown in panel 2 of figure 4)
with 39 tracks including heatmaps shows slowest rendering times. We
show rendering times for 10 thousand and 20 thousand features.
While more zoomed out views of datasets with heatmaps render slow-
ly, the program remains responsive at all times.

200k 20k 200k 10k 20k

5
0
0

1
0
0
0

1
5
0
0

m
il
li
s
e
c
o
n
d
s

200k 20k 200k 10k 20k

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

7
0
0
0

m
il
li
s
e
c
o
n
d
s

Workstation Low-end hardware

B. anthracis H. salinarum S. solfataricus B. anthracis H. salinarum S. solfataricus

(features) (features)

Figure 6 Processing track data in R with the MeDiChI ChIP-chip
deconvolution algorithm. GGB can be used in conjunction with the
R environment for statistical computing through the Gaggle frame-
work. After connecting both the genome browser and R to the Gaggle
framework (1) we broadcast a description of the dataset using the Gag-
gle toolbar (2) from the genome browser to R. We can then inspect the
dataset in R (3) and load track data into the R environment (4). Locating
the region of interest, the sdh operon, using the search feature (5) we
then apply MeDiChI's chip.deconv function to the track (6). From R, we
broadcast data to the genome browser which then creates new tracks
for model fit (7) and peaks (8). We then adjust the visual properties of
the new tracks (9) to display predicted transcription factor binding
sites.

1

2

3

6

4

5

7 8

9

Bare et al. BMC Bioinformatics 2010, 11:382
http://www.biomedcentral.com/1471-2105/11/382

Page 6 of 8
library of supporting functions called genome_
browser_support.R.

First, a description of the dataset was broadcasted from
the genome browser to R. (Figure 6, step 2) This descrip-
tive data about the dataset and its tracks includes infor-
mation necessary to access the Genome Browser's
underlying database directly from within R. Sharing the
database between R and GGB amounts to a form of pass-
by-reference which avoids pushing large data structures
through Gaggle's messaging protocol, efficiently passing
pointers instead. The 500 bp resolution ChIP-chip track
was selected by interrogating the dataset metadata (Fig-
ure 6, step 3) and the track data loaded into the R envi-
ronment (Figure 6, step 4).

MeDiChI was then applied to the ChIP-chip data over
the genome region containing the succinate dehydroge-
nase operon. The Genome Browser's search function was
used to find the coordinates of this region (Figure 6, step
5) for input into MeDiChI's chip.deconv function (Figure
6, step 6). The two kinds of derived data from this analy-
sis -- a profile which represents the best fit of MeDiChI's
model to the data and a list of peaks at the predicted sites
of protein-DNA binding -- were broadcasted back to the
Genome Browser for visualization (Figure 6, steps 7 and
8). The genome browser's Track Visual Properties Editor
was then used to set rendering options for the new tracks
(Figure 6, step 9).

By visualizing the raw and processed transcriptome and
ChIP-chip data we observed a binding site for TFBd close
to the 3' end of sdhB. As growth progresses, a break in the
transcript for this operon appears, suggesting that there
are condition-dependent alternative transcripts for this
operon. Based on such interactive analysis we hypothe-
sized the presence of transcriptional promoters in at least
40% of all operons in H. salinarum NRC-1. Several of
these were validated with promoter-GFP fusion assays. In
sum, the interactive exploration of the diverse genomic
datasets within GGB was crucial in formulating hypothe-
ses that led to the discovery of extraordinary complexity
in prokaryotic transcription.

Case study: Inspection of transcriptome structure through
interactive exploration of 350 MB of next-generation
sequencing data
Passalacqua, et al. [22] mapped the transcriptome of
Bacillus anthracis at single-nucleotide resolution using
high-throughput sequencing technology (RNA-seq). To
test our ability to handle data at this density, we imported
the eight tracks of single nucleotide coverage data for this
5.4 megabase genome. As represented in the genome
browser, these ~43 million features occupy 358 MB. GGB
renders this data responsively and maintains a moderate
memory footprint (~350 MB when run with a maximum
heap size of 256 MB). This visualization is shown in Fig-

ure 1 and is available as a live demo on the Gaggle website
[18]. Bookmarks annotating a region of the genome with
a name and short description are included to allow quick
navigation to features discussed in the paper.

Because data come from instruments, public reposito-
ries and other software in a bewildering variety of for-
mats, GGB allows users to import data using their choice
of tools and scripting languages. In this example, a short
Python script created the SQLite data file taking as input
sequence annotation data from NCBI (refseq IDs
NC_007530 and NC_007322) and coverage data provided
by the authors in tab-delimited text files. The same result
could have been achieved using R and Gaggle or SQLite's
command line shell as well as importing from formatted
text files.

Discussion
Related work
The insight to be gained by visualizing biological data
plotted along the scaffold of the genome has long been
recognized. There are several established genome brows-
ers. Recent developments in both laboratory techniques
and computing technologies have motivated several new
entries in this category as well.

The UCSC Genome Browser [17] and its microbial
counterpart [23] are the most widely known. A major
asset of these popular resources is that each model organ-
ism is augmented with a rich collection of curated track
data. The Table Browser feature [24] provides user-level
and programmatic access to this data making these ser-
vices excellent data sources as well as visualization tools.
A wizard interface to acquire chromosome layout data
from these sources is built into GGB, as is a link in the
right-click menu that opens the currently selected or dis-
played region in the UCSC Genome Browser, for avail-
able organisms. The UCSC Genome Browsers are page-
based web applications in which images are generated on
the server, which places some limits on interactivity. For
example, pan and zoom operations require a page refresh.

Rich web technologies can provide a more interactive
experience with all the advantages of a remotely hosted
web application. X:Map [25] is an impressive example,
using the Google Maps API to interactively scroll and
zoom through pre-rendered image tiles. JBrowse [26]
demonstrates the efficiency of AJAX based client-side
rendering. Like its predecessor GBrowse [27], JBrowse is
backed by the BioPerl library. Web applications benefit
from handling data and CPU intensive operations on the
server. However, requiring users to upload their own data
to another institution's server has implications for secu-
rity and bandwidth. Even so, a rich web implementation
remains an appealing option especially one taking advan-
tage of the enhanced vector graphics capabilities of Flash,
SVG or HTML5.

Bare et al. BMC Bioinformatics 2010, 11:382
http://www.biomedcentral.com/1471-2105/11/382

Page 7 of 8
Our choice to build the GGB as a desktop application
was largely motivated by the need to support large user-
generated datasets. Java was chosen to complement other
Gaggle tools and for cross-platform support. Other desk-
top genome browsers also implemented in Java include
the Apollo Genome Annotation Curation Tool [28],
which was used to annotate the fly genome. Affymetrix
released the Integrated Genome Browser (IGB) [29] and
the supporting Genoviz SDK [30] as open-source proj-
ects. The Broad Institute provides Argo [31] and IGV
(Integrative Genomics Viewer) [32]. The recently pub-
lished MochiView [33] is an excellent tool which inte-
grates support for motif detection based on ChIP data.
Both IGV and MochiView emphasize handling of high-
density data types.

The central distinguishing feature of GGB is Gaggle
integration, which offers a wealth of options for exploring
different types of data in relation to location on the
genome. Also, GGB's flexibility in track rendering enables
visualizations that would be difficult to reproduce using
any other software. This flexibility derives mainly from a
variety of customized renderers and a free-form approach
to laying out tracks. Multiple data series may be drawn on
top of each other or partially overlapping, using transpar-
ency and z-order to convey additional information.
Finally, GGB offers a point-and-click wizard for creating a
new project based on any genome curated by UCSC. A
similar feature using NCBI as a data source is under
development.

Future directions
GGB remains a work in progress. Various directions for
future development are under consideration, dependent
on user demand. Primarily, GGB is designed to be ready
for extension in the kinds of visualizations and the data
types being visualized as well as additional avenues of
interoperability.

A feature currently lacking is the ability to work directly
with sequence data. Directly storing and looking up
sequence data is one option, but we hope that integration,
through Gaggle or other mechanisms, with existing appli-
cations may serve this purpose. We also do not display
exons, given the emphasis in our own research on
microbes. New data types and renderers supporting exon
display could be implemented through existing extension
points.

Interoperability is a particular emphasis in our develop-
ment efforts. Building on Gaggle integration, we are pro-
totyping a library of R functions for communicating with
GGB. Further developing this library could help compu-
tational scientists use the sophisticated analysis and data
manipulation capabilities of R and Bioconductor [34]
together with visualization in the genome browser. For
other users, enhanced point-and-click import of data

from widely used sources such as the UCSC Genome
Browser, NCBI Entrez [35], or DAS (Distributed Annota-
tion System) [36] would be most important. Extending
these mechanisms would allow the software to be applied
to a larger variety of organisms and to more easily take
advantage of the wealth of existing resources.

To address rendering performance in zoomed out
views, where data points greatly outnumber the pixels
available in which to display them, our scaling renderer
aggregates features during rendering by computing
ranges and means. Precomputing these aggregates at pre-
defined scales could further increase performance. Buff-
ering and reusing previously rendered image tiles would
decrease CPU load while increasing opportunities for
parallelism.

Conclusions
GGB provides the researcher with an interactive visual-
ization tool for any data type that can be related to a loca-
tion on the genome. Through the Gaggle framework,
GGB can function as part of a powerful suite of bioinfor-
matics tools able to exchange data with analysis software,
other visualizations, and several public data sources.

Biological data can be joined together along several
axes. Expression, interactions, and functions can be
merged by gene or protein identifiers. Sequence similar-
ity can form the basis of mapping data across organisms
by orthology. In the Gaggle Genome Browser, heteroge-
neous data is joined by its location on the genome to cre-
ate information-rich visualizations yielding insight into
transcription and its regulation and, ultimately, a better
understanding of the mechanisms that enable the cell to
dynamically respond to its environment.

Availability and requirements
The Gaggle Genome Browser is written in Java (1.6 or
higher) and depends on the SQLite database engine. It
runs on Linux, Mac OS X, and Windows, either as a
stand-alone application or by web-start. We recommend
a minimum screen resolution of 1024 × 768 and at least 1
GB of memory.

The program and its source code are released under the
terms of the LGPL http://www.gnu.org/copyleft/
lesser.html and are available on the Gaggle web site [18].
Demos, documentation and forms for submitting bug
reports and feature requests are also linked from this
page.

Authors' contributions
JCB designed and implemented the software and drafted the manuscript. TK
performed the characterization of the H. salinarum transcriptome that led to
the case study. DJR performed the analysis of the H. salinarum transcriptome
that led to the case study and assisted in R and MeDiChI integration. DT
reviewed software design. NSB conceived and initiated the project, provided
direction and feedback on the quality of results and software design and

http://www.gnu.org/copyleft/lesser.html
http://www.gnu.org/copyleft/lesser.html

Bare et al. BMC Bioinformatics 2010, 11:382
http://www.biomedcentral.com/1471-2105/11/382

Page 8 of 8
crafted the case study and drafted the manuscript. All authors reviewed and
approved the manuscript and reviewed early versions of the software.

Acknowledgements
This work was supported by grants from NSF (DBI-0640950), NIH
(1R01GM077398 and P50GM076547), DOE (MAGGIE: DE-FG02-07ER64327) and
Battelle (214610) to NSB.

Author Details
1Institute for Systems Biology, 1441 N 34th Street, Seattle, WA 98103, USA and
2Universidade de São Paulo, Ribeirão Preto, Avenida dos Bandeirantes, 3900,
Ribeirão Preto, SP, Brazil

References
1. Bonneau R, Facciotti MT, Reiss DJ, Schmid AK, Pan M, Kaur A, Thorsson V,

Shannon P, Johnson MH, Bare JC, Longabaugh W, Vuthoori M, Whitehead
K, Madar A, Suzuki L, Mori T, Chang D, Diruggiero J, Johnson CH, Hood L,
Baliga NS: A predictive model for transcriptional control of physiology
in a free living cell. Cell 2007, 131:1354-1365.

2. Shannon PT, Reiss DJ, Bonneau R, Baliga NS: The Gaggle: an open-source
software system for integrating bioinformatics software and data
sources. BMC Bioinformatics 2006, 7:176.

3. Java [http://www.java.com/download/]
4. SQLite [http://www.sqlite.org/]
5. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N,

Schwikowski B, Ideker T: Cytoscape: A Software Environment for
Integrated Models of Biomolecular Interaction Networks. Genome
Research 2003, 13:2498-2504.

6. Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M,
Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov
A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J:
TM4: a free, open-source system for microarray data management and
analysis. BioTechniques 2003, 34:374-378.

7. R Development Core Team: R: A language and environment for
statistical computing. 2009.

8. Shah AR, Singhal M, Klicker KR, Stephan EG, Wiley HS, Waters KM: Enabling
high-throughput data management for systems biology: The
Bioinformatics Resource Manager. Bioinformatics 2007, 23:906-909.

9. Bare JC, Shannon PT, Schmid AK, Baliga NS: The Firegoose: two-way
integration of diverse data from different bioinformatics web resources
with desktop applications. BMC Bioinformatics 2007, 8:456.

10. Kanehisa M, Goto S: KEGG: kyoto encyclopedia of genes and genomes.
Nucleic Acids Res 2000, 28:27-30.

11. von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B: STRING: a
database of predicted functional associations between proteins.
Nucleic Acids Res 2003, 31:258-261.

12. Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA:
DAVID: Database for Annotation, Visualization, and Integrated
Discovery. Genome Biol 2003, 4:P3.

13. Heer J, Agrawala M: Software design patterns for information
visualization. IEEE Trans Vis Comput Graph 2006, 12:853-860.

14. Gamma E, Helm R, Johnson R, Vlissides JM: Design Patterns: Elements of
Reusable Object-Oriented Software. illustrated edition Addison-Wesley
Professional; 1994.

15. Boyle J, Cavnor C, Killcoyne S, Shmulevich I: Systems biology driven
software design for the research enterprise. BMC Bioinformatics 2008,
9:295.

16. GFF [http://gmod.org/wiki/GFF3]
17. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler

D: The human genome browser at UCSC. Genome Res 2002,
12:996-1006.

18. Gaggle Genome Browser [http://gaggle.systemsbiology.net/docs/
geese/genomebrowser/]

19. Koide T, Reiss DJ, Bare JC, Pang WL, Facciotti MT, Schmid AK, Pan M,
Marzolf B, Van PT, Lo F, Pratap A, Deutsch EW, Peterson A, Martin D, Baliga
NS: Prevalence of transcription promoters within archaeal operons and
coding sequences. Mol Syst Biol 2009, 5:285.

20. Facciotti MT, Reiss DJ, Pan M, Kaur A, Vuthoori M, Bonneau R, Shannon P,
Srivastava A, Donohoe SM, Hood LE, Baliga NS: General transcription
factor specified global gene regulation in archaea. Proc Natl Acad Sci
USA 2007, 104:4630-4635.

21. Reiss DJ, Facciotti MT, Baliga NS: Model-based deconvolution of
genome-wide DNA binding. Bioinformatics 2008, 24:396-403.

22. Passalacqua KD, Varadarajan A, Ondov BD, Okou DT, Zwick ME, Bergman
NH: Structure and complexity of a bacterial transcriptome. J Bacteriol
2009, 191:3203-3211.

23. Schneider KL, Pollard KS, Baertsch R, Pohl A, Lowe TM: The UCSC Archaeal
Genome Browser. Nucl Acids Res 2006, 34:D407-410.

24. Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, Haussler D, Kent
WJ: The UCSC Table Browser data retrieval tool. Nucl Acids Res 2004,
32:D493-496.

25. Yates T, Okoniewski MJ, Miller CJ: X:Map: annotation and visualization of
genome structure for Affymetrix exon array analysis. Nucl Acids Res
2007. gkm779

26. Skinner ME, Uzilov AV, Stein LD, Mungall CJ, Holmes IH: JBrowse: A next-
generation genome browser. Genome Res 2009, 19:1630-8.

27. Stein LD, Mungall C, Shu S, Caudy M, Mangone M, Day A, Nickerson E,
Stajich JE, Harris TW, Arva A, Lewis S: The generic genome browser: a
building block for a model organism system database. Genome Res
2002, 12:1599-1610.

28. Lewis S, Searle S, Harris N, Gibson M, Iyer V, Richter J, Wiel C, Bayraktaroglu
L, Birney E, Crosby M, Kaminker J, Matthews B, Prochnik S, Smith C, Tupy J,
Rubin G, Misra S, Mungall C, Clamp M: Apollo: a sequence annotation
editor. Genome Biology 2002, 3:research0082.1-0082.14.

29. Nicol JW, Helt GA, Blanchard SG, Raja A, Loraine AE: The Integrated
Genome Browser: Free software for distribution and exploration of
genome-scale data sets. Bioinformatics 2009, 25:2730-1.

30. Helt G, Nicol J, Erwin E, Blossom E, Blanchard S, Chervitz S, Harmon C,
Loraine A: The Genoviz Software Development Kit: A Java toolkit for
building genomics visualization applications. BMC Bioinformatics 2009,
10:266.

31. Argo Genome Browser: An Open Source Bioinformatics Visualization
Tool [http://www.broadinstitute.org/annotation/argo/]

32. Integrative Genomics Viewer (IGV) [http://www.broadinstitute.org/igv]
33. Homann O, Johnson A: MochiView: versatile software for genome

browsing and DNA motif analysis. BMC Biology 2010, 8:49.
34. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B,

Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R,
Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney
L, Yang JYH, Zhang J: Bioconductor: open software development for
computational biology and bioinformatics. Genome Biol 2004, 5:R80.

35. Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V,
Church DM, DiCuccio M, Edgar R, Federhen S, Feolo M, Geer LY, Helmberg
W, Kapustin Y, Khovayko O, Landsman D, Lipman DJ, Madden TL, Maglott
DR, Miller V, Ostell J, Pruitt KD, Schuler GD, Shumway M, Sequeira E, Sherry
ST, Sirotkin K, Souvorov A, Starchenko G, Tatusov RL, Tatusova TA, Wagner
L, Yaschenko E: Database resources of the National Center for
Biotechnology Information. Nucleic Acids Res 2008, 36:D13-D21.

36. Dowell R, Jokerst R, Day A, Eddy S, Stein L: The Distributed Annotation
System. BMC Bioinformatics 2001, 2:7.

doi: 10.1186/1471-2105-11-382
Cite this article as: Bare et al., Integration and visualization of systems biol-
ogy data in context of the genome BMC Bioinformatics 2010, 11:382

Received: 17 February 2010 Accepted: 19 July 2010
Published: 19 July 2010
This article is available from: http://www.biomedcentral.com/1471-2105/11/382© 2010 Bare et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.BMC Bioinformatics 2010, 11:382

http://www.biomedcentral.com/1471-2105/11/382
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18160043
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16569235
http://www.java.com/download/
http://www.sqlite.org/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14597658
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12613259
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17324940
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18021453
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592173
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12519996
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12734009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17080809
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18578887
http://gmod.org/wiki/GFF3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12045153
http://gaggle.systemsbiology.net/docs/geese/genomebrowser/
http://gaggle.systemsbiology.net/docs/geese/genomebrowser/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19536208
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17360575
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18056063
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19304856
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381898
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681465
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17932061
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19570905
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12368253
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19654113
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19706180
http://www.broadinstitute.org/annotation/argo/
http://www.broadinstitute.org/igv
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20409324
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15461798
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18045790
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11667947

