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Abstract 26 
Elucidating the relationships between a class I peptide antigen, a CD8 T cell receptor 27 
(TCR) specific to that antigen, and the T cell phenotype that emerges following antigen 28 
stimulation, remains a mostly unsolved problem, largely due to the lack of large data sets 29 
that can be mined to resolve such relationships. Here, we describe Antigen-TCR Pairing 30 
and Multiomic Analysis of T-cells (APMAT), an integrated experimental-computational 31 
framework designed for the high-throughput capture and analysis of CD8 T cells, with 32 
paired antigen, TCR sequence, and single-cell transcriptome. Starting with 951 putative 33 
antigens representing a comprehensive survey of the SARS-CoV-2 viral proteome, we 34 
utilize APMAT for the capture and single cell analysis of CD8 T cells from 62 HLA A*02:01 35 
COVID-19 participants. We leverage this unique, comprehensive dataset to integrate with 36 
peptide antigen properties, TCR CDR3 sequences, and T cell phenotypes to show that 37 
distinct physicochemical features of the antigen-TCR pairs strongly associate with both T 38 
cell phenotype and T cell persistence. This analysis suggests that CD8+ T cell phenotype 39 
following antigen stimulation is at least partially deterministic, rather than the result of 40 
stochastic biological properties.  41 
 42 
  43 
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Introduction 44 

CD8 T cells play a major role in adaptive immunity against pathogens, exhibiting a 45 
functional diversity that includes, as major phenotypes, naïve, memory, effector memory, 46 
effector, and exhausted, with each of those phenotypes encompassing multiple sub-47 
phenotypes1,2. Recent literature has suggested the existence of relationships between a 48 
given antigen-specific T cell clonotype and the phenotypic trajectory that clonotype can 49 
take following antigen stimulation. For example, tissue-resident, antigen-specific T cell 50 
clonotypes in both tumor and chronic viral infection settings have been intimately 51 
associated with specific phenotype differentiation trajectories3–5. We and others have 52 
shown that, for at least certain immunogenic viral antigens, T cell clonotype is the 53 
dominant factor in determining T cell phenotype6–8. These similar results, from tissue and 54 
peripheral blood, and in very different disease settings, suggest that there may be rules 55 
that underlie T cell clonotype-T cell phenotype relationships. Elucidating such 56 
relationships requires experimental methods for collecting a large, longitudinal data set in 57 
which the transcriptome-level phenotypes of antigen-specific T cells are co-measured 58 
across a large number and diversity of antigens, coupled with computational methods for 59 
elucidating what, if any, relationships between the T cell receptor (TCR) α/β genes, 60 
cognate peptide antigen – major histocompatibility complex (pMHC), and T cell 61 
phenotype exist.  62 

Initial hints at what such a rule set might contain can be found in the literature. For 63 
example, the importance of hydrophobicity at certain TCR residues is known to associate 64 
with cytotoxicity and self-reactivity in CD4 T cells6,9–11, and the hydrophobicity of certain 65 
residues is known to associate with the immunogenicity of antigens12. These observations 66 
suggest that the biochemical nature of the TCR:pMHC interface may play an important 67 
roles in determining T cell phenotype and cell fate trajectory. This question is not just of 68 
fundamental importance to T cell immunology, but it is also highly relevant to the 69 
engineering of T cells for use as therapeutic agents for treatments of both cancers13 and 70 
autoimmune diseases14,15. However, existing studies predominantly explore only one 71 
aspect of the Antigen-TCR-phenotype interplay: either resolving the antigen specificity of 72 
T cells from biological samples16–18, or conducting T cell receptor analysis on existing 73 
dataset lacking antigen specificity (or containing only limited number of antigens)6,19,20. 74 
Recent advances highlight the need of high-throughput, high-dimensional approaches as 75 
powerful tools for identifying and analyzing antigen-specific CD8 T cells17,20–22. 76 

We describe an integrated experimental-computational framework, APMAT for the 77 
antigen-specific capture of T cells from many patient biospecimens in parallel, and is 78 
integrated with single-cell multi-omics profiling designed to integrate paired antigen and 79 
TCR sequence with T cell phenotype. For antigen-specific T cell capture, we utilize large 80 
libraries of single-chain-trimers (SCTs)22,23. We have recently reported on the feasibility 81 
of these libraries to capture and characterize both viral antigen-specific and (tumor-82 
associated) neoantigen-specific T cell populations. Here we use SCTs to construct a 951-83 
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element pMHC library that represents a comprehensive survey of putative Class I 84 
antigens, presented by HLA A*02:01, from across the full SARS-CoV-2 genome. The 85 
DNA-barcoded SCT-pMHC library (for n = 558 expressed SCT) is used to identify and, 86 
through single cell (sc) RNA-seq analysis, characterize SARS-CoV-2 specific T cells from 87 
62 HLA A*02:01 participants at the stages of acute and post-acute COVID-19. We identify 88 
several viral antigen-specific T cell populations observed in previous work by ourselves 89 
and others24–27 demonstrating the feasibility of this framework on a whole viral proteome 90 
scale. Moreover, resultant data set allows for an in-depth exploration to reveal insights 91 
into how the physicochemical properties of the TCR-pMHC interface associate with T cell 92 
phenotype and T cell persistence. This study elucidates, for a whole viral proteome and 93 
a single HLA allele, the physiochemical basis linking TCR:pMHC molecular interactions 94 
to the phenotypic behavior of antigen-specific CD8+ T cells, and thus advances our 95 
understanding of immunological mechanisms.  96 
 97 
Results 98 
APMAT enables integrated multi-modal analysis of antigen-specific CD8 T cells  99 
We utilized APMAT to identify SARs-CoV-2 antigen-specific T cell responses to COVID-100 
19 infection in a previously described longitudinal cohort of 209 COVID-19 101 
participants25,26. From this cohort, we selected 62 HLA- A*02:01 participants representing 102 
a range of COVID-19 disease severities (Fig. 1a) with longitudinal reference datasets 103 
available at acute (diagnosis and approximately 1-week post-diagnosis), and post-acute 104 
(2-3 months post-diagnosis) timepoints (Supplementary Table 1)25,26. 105 
 106 
For antigen-specific CD8 T cell capture, we utilized DNA-barcoded, pMHC-like SCT 107 
multimers (SCT-dextramers). For library construction, we first utilized NetMHCpan28 to 108 
analyze the full SARS-CoV-2 viral genome (original strain) to resolve a list of 951 putative 109 
9 - 10 mer antigens (Supplementary Table 2.1) for HLA-A*02:01. This peptide list was 110 
converted into PCR-optimized DNA primers and used to build the plasmid library. 111 
Plasmids were then transfected into Expi293 cells over four days to induce secretion of 112 
the SCT protein product. 558 of the 951 putative antigens yielded usable SCT product 113 
(Fig. 1b top). Each SCT was then purified, biotinylated, and assembled into a fluorophore-114 
labeled and DNA-barcoded dextramer, using previously reported protocols23. To minimize 115 
batch effects and enable integrated analysis, PBMCs from all 62 participants, collected 116 
at the stage of acute disease, were pooled and profiled in parallel within one experiment 117 
(Fig. 1b middle left). SCT-dextramer-positive CD8 T cells were sorted for scRNAseq to 118 
profile gene expression, TCRα/β genes, and antigen specificity (Fig. 1b middle right). For 119 
each cell captured, antigen-specificity was identified through the dominant pool hashtag 120 
(Supplementary Fig. 1a) and dextramer (Supplementary Fig. 1b). Each cell was 121 
associated with a specific patient through comparison of de novo computed single 122 
nucleotide polymorphisms (SNPs) from scRNA-seq with germline whole genome 123 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2025. ; https://doi.org/10.1101/2025.01.08.631993doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.08.631993
http://creativecommons.org/licenses/by-nc-nd/4.0/


sequence (WGS) profiles of all patients (Supplementary Fig. 1c). Sex gene validation 124 
further confirmed patient assignments (Supplementary Fig. 1d). Out of 19,103 cells from 125 
scRNA-seq data, only 166 (0.87%) were not assignable to a donor (Supplementary Table 126 
2.2). With such a multi-modular dataset, the characteristics of the peptide antigens and 127 
the TCR CDR3 sequences can be integrated with T cell phenotype and longitudinal multi-128 
omics datasets (Fig. 1b bottom). 129 
 130 
APMAT enables high-throughput representation of whole SARS-CoV-2 genome 131 
We graph the distribution of putative antigens against the SARS-CoV-2 genome, and 132 
highlighted the 558 (58.7%) constructs that were expressed and used for the T cell 133 
capture experiment, and the 102 (18.3%) that captured at least 1 cell (Fig. 2a, 134 
Supplementary Fig. 2a). While APMAT identified CD8 T cells against antigens from 135 
across the SARS-CoV-2 genome, antigens from the Spike protein (S) exhibited the 136 
highest rate (26.6%) of cell capture (SCTs that captured at least 1 cell) (Fig. 2b, 137 
Supplementary Table 2.1). We identified immunodominant epitopes against SARS-CoV-138 
2 and common viruses across patients, confirming some previously reported epitopes 139 
while discovering new ones (Supplementary Fig. 2b). We also found agreement for 140 
dominant TCR gene usage for top epitopes in our dataset with reported literature 141 
(Supplementary Table 2.3). For example, HLA-A*02:01/S269- YLQPRTFLL is 142 
predominately recognized by TRAV12-1 containing TCRs in our dataset, consistent with 143 
previous reports29. Selected TCRs were validated via in-vitro Lenti-virial transduction and 144 
tetramer assay to confirm antigen specificity (Supplementary Table 2.4, Supplementary 145 
Fig. 3a, b). 146 
 147 
We next investigated the antigen sequences associated with SCT expression and cell 148 
capturing. In Fig 2c (left) we provide a sequence logo representation of the 9-mer SCTs 149 
that were or were not expressed, and those expressed as SCTs that did or did not capture 150 
cells (Fig. 2c right). We observed an enrichment of hydrophobic amino acids in non-151 
anchor residues for non-expressed SCT constructs (Fig 2c left bottom). For SCTs that 152 
captured cells, polar and charged residues such as Threonine (T) and Arginine (R) were 153 
enriched in non-anchor positions (Fig 2c right top). We next generated a matrix for each 154 
peptide that contained the NetMHCpan prediction, the amino acid identities, and the 155 
numeric physicochemical properties (such as hydrophobicity, polarity, etc) for peptide 156 
anchor residues (Anchor) and residues exposed to the TCR (Exposed) (Fig. 2d, 157 
Supplementary Table 3). As expected, expressed SCTs showed better NetMHCpan 158 
prediction (lower prediction rank and lower predicted binding affinity) relative to non-159 
expressed SCT constructs (Fig. 2e left, Supplementary Fig. 4a). Notably, SCT expression 160 
yield did not correlate with predicted affinity (Supplementary Fig. 4b). However, the 161 
physicochemical properties analysis allowed for a quantitative validation of the 162 
hydrophobic trends of non-expressed SCTs (Fig 2e right), and the polar/charged residue 163 
trends of cell-capturing SCTs (Fig 2f right). We also show the agreement between SCT 164 
expression and NetMHCPan prediction. We categorized peptides as weak-binders, 165 
medium-binders, or strong-binders based on NetMHCPan prediction against the A*02:01 166 
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MHC molecule (See Methods). In fact, our observations that peptides that are expressed 167 
as an SCT exhibit a lower average hydrophobicity closely mirror the NetMHCPan pan 168 
predictions. The strong-binders indeed exhibit a relatively higher polarity and a lower 169 
hydrophobicity relative to all attempted A*02:01 SCT constructs (Supplementary Fig.4c). 170 
In addition, for those strong binders, the hydrophobicity and polarity of expressed vs non-171 
expressed SCTs are not significantly different (Supplementary Fig.4d). Finally, we found 172 
that the likelihood that an SCT would be successfully expressed strongly agrees with 173 
prediction. For weak-binders, SCT expression rate is 42.0%; For strong-binders, SCT 174 
expression is elevated to 82.5% (Supplementary Fig.4e). Hence, the potential SCT-175 
expression biases match closely with the NetMHCPan predictions with respect to the 176 
physicochemical properties of the putative epitopes, suggesting that little or no bias 177 
originates from the SCT expression itself.  178 
 179 
Overall, APMAT enabled a direct and comprehensive analysis of putative epitopes, 180 
supporting prediction algorithms for the common HLA A*02.01 allele. The data further 181 
suggests that an analysis of the physicochemical properties of the antigens (and possibly 182 
their cognate TCRs) may provide insights for interpreting the large multimodal data set 183 
generated through APMAT.  184 
 185 
Three peptide groups distinguished by sequence physicochemical properties 186 
We probed for potential relationships between the physicochemical properties of putative 187 
epitopes and the antigenicity of those epitopes. We encoded the 951 peptides by residue-188 
level descriptors of their physicochemical properties (Fig. 3a, Methods). Unsupervised 189 
clustering based on peptide amino acid identity and properties resulted in a two-190 
dimensional peptide Uniform Manifold Approximation and Projection (Pep-UMAP) (Fig. 191 
3b, Supplementary Table 4). The upper right wing of this UMAP exhibits higher 192 
hydrophobicity and bulkiness, and is dominated by non-expressed SCTs. Conversely, the 193 
lower left wing displays greater polarity, and is enriched for expressed SCTs (Fig. 3c, 194 
Supplementary Fig. 5a). However, SCTs that successfully captured T cells are uniformly 195 
distributed across the UMAP, indicating that additional factors beyond hydrophobicity 196 
modulate antigenicity. 197 
 198 
We next utilized unsupervised clustering to resolve whether combinations of 199 
physicochemical properties could be used to further classify the peptide antigens. Such 200 
analysis clearly distinguished three peptide groups (Pep-Groups), PG1-3 (Fig. 3d). 201 
Specifically, PG1 exhibited higher hydrophobicity yet lower charge and polarity (Fig. 3d 202 
left top). PG2 and PG3 both showed higher polarity, but differ in anchor and secondary 203 
anchor (Position 6) properties (Fig. 3d left bottom). When analyzing only the cell-capturing 204 
SCTs, the hydrophobicity of PG1 becomes even more prominent while PG2-3 distinctions 205 
diminish (Fig. 3d right). Accordingly, Pep-Groups occupied different regions on the Pep-206 
UMAP (Fig. 3e, Supplementary Fig. 5b). Comparisons of PG1-3 for hydrophobicity, SCT 207 
expression rate, and cell-capture rate (Fig. 3f) reveal the most hydrophobic group (PG1) 208 
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is the most challenging to express, but also exhibits the highest rate for cell capture. Thus, 209 
we categorized all putative antigen peptides into unique Pep-Groups for downstream 210 
analysis. 211 
 212 
Pep-groups associate with different T cell phenotypes  213 
We next investigated whether the PG1-3 peptide groups associate with distinct CD8 T 214 
cell phenotypes during the acute COVID-19 response. The SARS-CoV-2 SCT-dextramer-215 
positive CD8 T cells were filtered to only include those with an assigned patient ID, 216 
antigen specificity, and paired TCRα/β sequences. These cells were then projected onto 217 
a gene expression UMAP (GEX-UMAP) based on the scRNAseq data (Fig. 4a). Unbiased 218 
clustering and differential gene expression analysis defined canonical CD8 T cell 219 
phenotypes including naïve, central memory (CM), effector memory (EM), hybrid, and 220 
cytotoxic phenotypes (Fig. 4b). For instance, CCR7, LEF1, TCF7, and SELL were up-221 
regulated in naïve and central memory (CM) cells, while memory markers such as IL7R, 222 
GZMK were elevated in CM and effector memory (EM) phenotypes (Fig. 4b, 223 
Supplementary Fig. 6a-b). Phenotype assignment based on transcriptomics was further 224 
validated by surface protein expression measured by scCITE-seq (see Methods) 225 
(Supplementary Fig. 6c). As expected, cytotoxic and EM phenotypes dominate the SARS-226 
Cov-2-specific CD8 T cell response during acute disease26,30,31, with elevated effector 227 
markers such as GZMB, GZMA and PRF1. In addition to gene expression, in Fig. 4c we 228 
projected the polarity of exposed residues on the antigen recognized by the individual T 229 
cells (left), the distribution of T cells captured by a given antigen across multiple 230 
participants (middle), and all captured SARS-CoV-2 specific T cells for a given participant.  231 
 232 
The projection of antigen polarity on the GEX-UMAP (Fig. 4c) showed a strong skewing 233 
towards cytotoxic CD8 T cell phenotypes, suggesting that antigens with particular 234 
physicochemical properties may associate with specific T cell phenotypes. We explored 235 
this concept by projecting each cell’s antigen specificity (Pep-Groups) onto the GEX-236 
UMAP (Fig. 4d top). PG1-specific cells were dominated by naïve-like phenotypes and 237 
exhibited less clonal expansion relative to the other two groups (Supplementary Fig. 6d). 238 
PG2-specific cells were enriched with EM and CM phenotypes, and PG3-specific cells 239 
were mainly cytotoxic (Fig. 4d bottom). Furthermore, differentially expressed genes 240 
(DEGs) in PG3-captured cells have enriched pathway signatures related to immune 241 
synapse formation, PD-1 signaling, CD28 co-stimulation, which further highlighted the 242 
effector state of PG3-specific cells relative to PG2 (Fig. 4e, Supplementary Table 5-6). 243 
This analysis suggests strong associations exist between the physicochemical properties 244 
of the peptide antigens, and the phenotypic characteristics of the T cells specific to those 245 
antigens.  246 
 247 
TCR hydrophobicity is an important factor for effector function 248 
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Intrigued by the link between antigenic peptides and T cell phenotypes, we investigated 249 
whether a similar connection exists for the physicochemical features of each antigen-250 
associated TCR-CDR3 sequence by overlaying those features on the GEX-UMAP (Fig 251 
5a, Supplementary Fig. 7a). Specifically, we categorized CDR3β	residues into V, J, and 252 
CDR3βmer (central) regions: The V and J regions comprise the highly conserved n- and 253 
c-terminal motifs respectively; while the central CDR3βmer region, which primarily 254 
contacts the antigen, is the most diverse in length and amino acid usage. As expected, 255 
cytotoxic cells showed maximal clonal expansion followed by effector memory (EM) cells 256 
(Supplementary Fig. 7b). We compared the CDR3β features of effector cells (cytotoxic 257 
and EM) relative to other cell types (Supplementary Table 7-8). TCR feature differences 258 
were not significant for the V and J regions as expected (Fig. 5c middle). However, for 259 
the CDR3βmer region, a preference of sequence features was observed. Effector T cells 260 
were marked by higher CDR3βmer hydrophobicity and bulkiness, lower polarity and 261 
charge, and shorter length (Fig. 5c top and bottom). Note that CDR3β hydrophobicity was 262 
defined both by the percentage of hydrophobic residues, and by the average 263 
hydrophobicity across central residues (See method). We validated the above trends by 264 
plotting how the selected CDR3β physicochemical properties varied across all cell 265 
phenotypes. The CDR3β sequences displayed the trend of increased hydrophobicity and 266 
decrease in charge and length from naïve, to EM and cytotoxic phenotypes (Fig. 5d).  267 
 268 
The hydrophobicity of the CDR3β exhibited the strongest significant association with T 269 
cell phenotype. This prompted us to define a binary classifier (HPhobic-High and 270 
HPhobic-low) based on the percentage of hydrophobic residues in CDR3βmer (cutoff = 271 
25%) (Fig. 5e top, see Methods). Cells expressing HPhobic-High TCRs were more 272 
clonally expanded than HPhobic-Low ones (Fig. 5e bottom). We first validated that TCR-273 
Groups still preserve the physicochemical features observed earlier: Indeed, HPhobic-274 
High TCRs exhibited higher hydrophobicity, shorter CDR3β length, and lower charge 275 
(Supplementary Fig. 7c). Density mapping validated that HPhobic-High TCRs were more 276 
prevalent in cytotoxic cells than in memory and naïve subsets (Fig. 5f), with elevated 277 
exhaustion markers such as LAG3 and TIGIT (Supplementary Fig. 7d). Gene set 278 
enrichment analysis linked HPhobic-High clonotypes to TCR activation (e.g. CD3 and 279 
TCR Zeta-chain phosphorylation), inflammation, and apoptosis pathways (Fig. 5g, 280 
Supplementary Table 9-10). To test whether dominant clonotypes affect our result, 281 
additional analysis was performed by removing dominant TCRs, although dominant TCRs 282 
were only found for a few of the epitopes in our dataset (Supplementary Fig. 8a, Details 283 
in Method). We observed consistent results with or without the dominant clones. Cells 284 
with hydrophobic-high CDR3βs consistently showed elevated PRF1 and GZMB gene 285 
expression, as well as higher cytotoxic scores relative to cells with hydrophobic-low 286 
CDR3βs after removal of large clones (Supplementary Fig. 8b top). On contrast, 287 
hydrophobic-low CDR3βs associated with higher expression of naïve and memory related 288 
genes including CCR7 and IL7R (Supplementary Fig. 8b bottom). These results indicate 289 
that our original conclusions are not biased by specific dominant clones.  290 
 291 
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Overall, we demonstrated that, the physicochemical properties of both the peptide antigen 292 
and the TCR CDR3β exhibit strong associations with T cell phenotype for SARS-CoV-2 293 
specific CD8 T cells. 294 
 295 
Integrated analysis of both peptide and TCR physicochemical features orchestrate 296 
phenotypes of SARS-CoV-2-specific CD8 T cells in acute disease 297 
To elucidate how interplay between antigen and TCR interactions influence T cell function, 298 
we systematically linked peptide and TCR features for the subset of SARS-CoV-2 CD8 T 299 
cells with fully paired antigen-TCR information (See Method). This encompassed 87 300 
unique antigenic peptides (SCT-pMHCs) and 440 paired TCR clones (Fig. 6a). Notably, 301 
distinct TCR Groups (HPhobic-Low and HPhobic-High) were discerned within each 302 
Peptide Group, prompting a refined categorization into PG-TCR Groups based on 303 
combined antigen peptide and TCR features (Fig. 6b). For example, PG3-High denotes 304 
cells captured by PG3 peptides with HPhobic-High TCRs.  305 
 306 
We then further evaluated the combinatorial effect of peptide and TCR features for each 307 
PG-TCR group. We depicted key physicochemical properties identified earlier on radar 308 
plots, revealing a significant shift in overall characteristics between PG-TCR groups (Fig. 309 
6c, Supplementary Fig. 9a). For example, PG3:High exhibits high peptide charge and low 310 
hydrophobicity on exposed residues, combined with high CDR3βmer hydrophobicity and 311 
bulkiness (Fig. 6c left). In contrast, PG2:Low (Fig. 6c middle) emphasizes CDR3βmer 312 
length and charge, while PG1:Low (Fig. 6c right) emphasizes distinct characteristics 313 
compared to PG3:High. 314 
 315 
Building on our findings, we explored how PG-TCR groups associate with T cell 316 
phenotypes. PG3:High cells displayed the strongest cytotoxicity – marked by the highest 317 
percentage of effector cells and elevated cytotoxic cytokines (e.g. GZMB, PRF1, GZMH) 318 
(Fig. 6d left, Supplementary Fig. 9b-c). PG1:Low describes cells with TCR:pMHC 319 
interfacial properties that are opposite that of PG3:High, and those cells similarly exhibit 320 
phenotypes that contrast with PG3:High – marked by highest frequency of naïve cells and 321 
elevated naïve-associated markers (e.g. CCR7, LEF1, TCF7) (Fig. 6d right). Notably, 322 
PG1 consistently exhibits a Naïve-like phenotype, regardless of TCR-group. With 323 
intermediate peptide-TCR properties, PG2:Low and PG3:Low represent transitional 324 
phenotypes. These associations between PG-TCR groups and gene expression were 325 
validated using protein markers by integrating existing scCITE-seq data (See Methods) 326 
(Supplementary Fig. 9d). We performed further analysis by directly linking the key 327 
physicochemical properties to phenotypes independent of the PG-TCR groups. This 328 
heatmap highlights the balance between the properties of the antigen and the TCR 329 
CDR3b sequence (Fig. 6e), and illustrates the near opposite relationships between 330 
naïve/CM cells relative to cytotoxic cells at the stage of acute disease. Hence, by 331 
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integrating peptide and TCR sequence features, APMAT reveals fundamental rules in the 332 
peptide-TCR-phenotype synergy. 333 
 334 
Distinct peptide-TCR groups associate with distinct longitudinal fates of SARS-335 
CoV-2-Specific CD8 T cells 336 
T cell activation strength through pMHC-TCR interaction can influence cell fate over 337 
time32–34. Certain T cell phenotypes exhibit long-term in vivo persistence following acute 338 
illness, while highly cytotoxic phenotypes can undergo activation-induced cell death 339 
(AICD) and contract after clearance of pathogen35–37. We hypothesized that distinct Pep-340 
TCR groups may associate with T cell fate decisions across longitudinal disease 341 
trajectories as well. Leveraging the longitudinal scRNA-seq and scCITE-seq data 342 
generated from the same COVID-19 cohort25, we tracked SARS-CoV-2-specific CD8 T 343 
cells matched on patient ID and TCR sequences from acute to post-acute timepoints (Fig. 344 
7a, Supplementary Table 11). This analysis further revealed longitudinal differences 345 
between PG-TCR groups. As expected, the overall percentage of SARS-CoV-2 specific 346 
CD8 T cells identified from the reference dataset decreased from 3% to 1.3% at the post-347 
acute timepoint. Specifically, PG3:High cells were short-lived, showing the greatest drop 348 
in abundance at the post-acute timepoint. By contrast, PG1 cells (including PG1:High and 349 
PG1:Low) were the most persistent, showing an increased abundance at the later 350 
timepoint (Fig. 7b, Supplementary Fig. 9e).  351 
 352 
In addition to abundance changes over time, we examined gene expression changes for 353 
SARS-CoV-2 specific CD8 T cells. Combining all PG-TCR groups, we observed that 354 
persisting cells at the post-acute timepoint showed higher expression of genes that were 355 
associated with long-lived memory signatures (such as CCR7, IL7R, HLA-DR, MKI67, etc) 356 
(Supplementary Fig. 9f), in agreement with previous studies16,18,20. In addition, our 357 
analysis further suggested a few other trends. Specifically, PG1 cells identified at the late 358 
timepoint showed a relatively lower naïve signature (CCR7, TCF7, etc) and slightly higher 359 
effector functions (GZMB, GZMH, etc) than those cells at the earlier timepoint (Fig. 7c 360 
right, Supplementary Fig. 9g right). By contrast, the few remaining post-acute PG3:High 361 
cells evolve to express lower cytotoxicity (GZMB, PRF1, etc) and higher CCR7, indicating 362 
a shift towards less effector or central memory phenotypes16,38,39 (Fig. 7c left, 363 
Supplementary Fig. 9g left). In summary, APMAT revealed that distinct combinations of 364 
peptide and TCR physicochemical properties exhibit clear associations with not only 365 
cellular phenotypes at acute disease, but also divergent cell fates over time (Fig. 7d). 366 
 367 
Discussion 368 
The conceptual advance we report as APMAT lies in the combination of the large and 369 
comprehensive experimental data set and the biophysical analysis of the TCR-pMHC 370 
interface.  APMAT provides a framework for the integrated analysis of antigen-specific 371 
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CD8 T cells paired with phenotypic data on those T cells. We applied APMAT to 372 
investigate circulating CD8 T cells collected from 62 participants at the acute and 373 
convalescent stages of COVID-19. These cells exhibited specificity to SARS-CoV-2 374 
antigens presented by HLA A*02:01 from across the full viral proteome. Our analysis 375 
uncovered relationships between the physicochemical characteristics of the pMHC:TCR 376 
interface and the corresponding T cell phenotypes and T cell phenotypic evolution. Our 377 
analysis is, in several aspects, aligned with existing literature. We identified T cell 378 
populations targeting previously reported immunogenic antigens17,24,40,41, and we find that 379 
the prediction rankings from the commonly-used NetMHCpan algorithm effectively assist 380 
in designing pMHC multimer constructs that will most likely capture T cells. In addition, 381 
the longitudinal behavior of the antigen-specific clonotypes is consistent with current 382 
literature. Highly-cytotoxic effector clonotypes, which are expanded at acute disease, 383 
contract significantly at the time of convalescence, potentially from antigen-induced cell 384 
death. In contrast, those persisting clonotypes with mild effector properties evolve 385 
towards central or effector memory phenotypes42. Further, clonotypes that exhibit 386 
memory and progenitor-like phenotypes at acute disease persist or expand at 387 
convalescence16,43,44.  388 
APMAT analysis uncovers novel relationships between viral antigen-specific T cells, TCR 389 
clonotype, and T cell phenotype for the common HLA allele A*02.01. Take, for example, 390 
the above-described case of effector T cells that expand during an acute infection and 391 
contract at convalescence42. Our analysis further suggests that T cells possessing TCRs 392 
characterized by a hydrophobic CDR3β, which recognize antigens featuring hydrophobic 393 
anchor residues alongside charged or polar exposed residues, are statistically more 394 
inclined towards effector phenotypes at the stage of acute COVID-19, and contract during 395 
convalescence. An analogous description of the pMHC:TCR interface (but with near 396 
opposite characteristics) can be used to identify those clonotypes that exhibit naïve or 397 
central memory phenotypes at acute disease and remain at convalescence. We focus on 398 
CDR3β, but CDR3α chains can be similarly analyzed to identify specific physicochemical 399 
properties that significantly associate with effector (Cytotoxic, EM, Hybrid) or non-effector 400 
T cells. Those TCRα properties are distinct from those for TCRβ, suggesting that the 401 
influences from the α and β chains might be complementary rather than independent 402 
(Supplementary Fig. 10a). 403 

An additional significant aspect of this study is the detailed characterization of 404 
paired peptide antigen with TCR. Notably, our analysis reveals that the anchor and 405 
exposed residues of the antigen exert different influences on T cell phenotype. Unlike 406 
many prior studies that relied on a rough annotation of the antigen identity, our approach 407 
takes into account the position of each individual residue, as well as the classification of 408 
antigens that may be comprised of distinct sequences, and yet exhibit biochemical 409 
similarities at the TCR:pMHC interface.  410 

Whether or not these physicochemical determinants are general to other disease 411 
contexts or other HLA Class I alleles is not resolved here, although the consistency of the 412 
picture painted here with what has been observed in tissue settings in murine models of 413 
chronic viral infection,4 as well as in tumors,5,6 does suggest some level of generality. 414 
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Further, an analysis of a separate study on SARS-CoV-2 reactive T cells (Supplementary 415 
Fig. 11a)45, as well as our recently reported phenotypic analysis of T cell clonotypes 416 
specific to three highly immunogenic viral antigens, including two from influenza and 417 
CMV8, (Supplementary Fig. 11b) also suggest a degree of generality. Datasets of similar 418 
breadth and depth for a range of diseases and for antigens presented by different HLA 419 
alleles are needed to more fully resolve this picture, and such work represents an exciting 420 
future direction.  421 

We hypothesize that an analogous study as the one reported here, but directed at 422 
antigens presented by different HLA alleles, might yield a different set of rules that are 423 
dependent upon HLA-specific docking geometries. While Class I HLA A, B, and C alleles 424 
are highly polymorphic, over 90% of the world’s population carries at least one of the 425 
dozen most common. An APMAT analysis centered around those most common alleles 426 
should offer valuable insights for assessing the therapeutic potential of tumor-targeting 427 
TCRs and T cell vaccines.  428 
 429 
Methods 430 
 431 
Lead Contact 432 
Further information and requests for resources and reagents should be directed to and 433 
will be fulfilled by the Lead Contact, Dr. James R. Heath (jim.heath@isbscience.org). 434 
 435 
Participants and sample collection 436 
The study cohort is a subset of the INCOV cohort published previously25,26. Procedures 437 
for the INCOV study were approved by the Institutional Review Board (IRB) at Providence 438 
St. Joseph Health with IRB study number STUDY2020000175 and the Western 439 
Institutional Review Board with IRB study number 20170658. This research complies with 440 
all relevant ethical regulations. Potential participants were identified at five hospitals of 441 
Swedish Medical Center and affiliated clinics located in the Puget Sound region near 442 
Seattle, WA. All enrolled participants provided written in-person informed consent and 443 
samples were de-identified prior to analysis. 62 HLA A*02:01 individuals from the INCOV 444 
cohort were selected for this study. PBMCs collected at Acute timepoint, including 445 
enrollment close to diagnosis (Acute-1) and 1 week (Acute-2), were used for antigen-TCR 446 
paring assay in this study.  447 
 448 
Large-scale preparation of peptide-HLA complex libraries 449 
Single chain trimer (SCT) peptide-MHC (pMHC) libraries of the virus antigens were 450 
generated as described previously231/8/25 4:32:00 PM. Briefly, potential HLA A*02:01 451 
binding epitopes (9-11 mer peptides) were generated from the complete SARS-CoV-2 452 
genome (Wuhan-Hu-1 strain, GenBank ID: MN908947.3) and filtered by NetMHCpan-4.1 453 
prediction28. We categorized peptides as weak-binders (column BindLevel = 0), medium-454 
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binders (column BindLevel = WB), or strong-binders (column BindLevel = SB) based on 455 
NetMHCPan prediction. Note that even the weak-binders are relatively good candidates 456 
compared to peptides that were not attempted for SCT expression. A plasmid library of 457 
pcDNA3.1 vectors encoding covalently linked peptide antigen, b2M, HLA was built and 458 
verified by SANGER sequencing. Plasmids were transfected into Exp293 cells 459 
(ExpiFectamine™, Thermo Fisher) following manufacturer protocol. SCT expression yield 460 
was measured and normalized. Expressed pMHC-like SCTs were biotinylated (BirA 461 
ligase Kit, Avidity) and Histag purified (IMAC PhyTip columns, PhyNexus) in 96-well 462 
format. Individual SCT concentration was measured by protein absorbance at 290nm.  463 
 464 
SCT-dextramer generation and cell staining 465 
SCT dextramers were individually DNA barcoded using dCODE Klickmers (dCODE 466 
Klickmer, Immudex). Briefly, SCT pMHC monomer was mixed with barcoded dCODE-467 
PE-dextramer at a ratio of 20 ligands per dextran and incubated for at least 1h on ice 468 
before adding biotin (100 µM) to block free binding sites. Dextramer cocktails were 469 
prepared by mixing 31-65 unique SARS-CoV-2 SCT dextramers and CMV (NLVPMVATV) 470 
SCT dextramers freshly before cell staining. PBMCs from 62 participants were thawed 471 
for CD8 T cell enrichment (Human CD8 T cell Isolation Kit, Miltenyi Biotec) according to 472 
the manufacturer’s protocol then incubated with Human TruStain FcX blocking reagent 473 
(422302, BioLegend) for 10 min at 4 °C before wash. Cells were then divided into tubes 474 
and processed simultaneously on ice. Each tube of CD8 T cells were stained with a 475 
cocktail of dextramers for 25 min on ice in the presence of herring sperm DNA according 476 
to the manufacturer’s instructions, with individual dextramer concentration at 1.1 nM. 477 
Cells were washed three times before surface antibody staining. BV421 anti-human CD8 478 
Antibody (BioLegend, 344748, clone SK1) and Apotracker™ Green viability dye 479 
(Biolegend, 427403) was added into each tube, in addition to one unique TotalSeq-C anti-480 
human hashtag antibody (BioLegend) to identify each tube. Samples were incubated for 481 
30 min on ice and washed 3 times before sorting.  482 
 483 
10X genomics single cell sequencing 484 
Single, live, CD8, dextramer-positive T cells were sorted into FACS buffer (PBS, 2%FBS, 485 
2mM EDTA and 10mM HEPES) using a BD FACSAriaII cell sorter. Sorted cells were 486 
immediately were pelleted, resuspended and loaded into a 10X Chromium reaction for 487 
single cell RNA sequencing (scRNA-seq). GEX, VDJ and Surface Protein libraries were 488 
generated using Chromium Next GEM Single-Cell 5′ kits v2 (10X Genomics) according 489 
to the manufacturer’s protocol. Libraries were sequenced on an Illumina NovaSeq at a 490 
read length of 26x90 bp.  491 
 492 
Whole genome sequencing 493 
DNA extraction from whole blood was performed via bead-based enrichment on an 494 
automated extraction platform (Qiagen Qiasymphony and/or Promega Maxwell). The 495 
resultant extracts were quantified by Nanodrop. WGS library preparation was performed 496 
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using Illumina DNA Prep kits and the final barcoded libraries were quantified by 497 
fluorometer. Libraries were multiplexed and loaded onto an Illumina flow cell for 498 
sequencing at 30x or higher coverage on a NovaSeq 6000 instrument. Raw sequencing 499 
data was analyzed for sequence variants using the Illumina DRAGEN field-programmable 500 
gate array (FPGA) platform. Briefly this platform performs the following automated steps: 501 
conversion of raw sequencing image data into demultiplexed fastq files, alignment to the 502 
reference human genome (hg19), analysis of single nucleotide variants, indels and copy 503 
number/structural variants using variant calling algorithms as well as assessment of 504 
sequencing data quality. Analyses with hg38 were computed after a liftover was done 505 
using the UCSC browser46. WGS information was de-identified. 506 
 507 
Single-cell sequencing data processing  508 
Transcriptome, TCR, surface protein levels and antigen specificity were simultaneously 509 
analyzed for each cell. Raw data were processed via Cell Ranger Single-Cell Software 510 
Suite (v3.1.0, 10X Genomics) using GRCh38 as a reference. Cells that fit any of the 511 
following filters were excluded due to low quality: n-counts <1000 or >10,000, n-genes 512 
<250 or >2500, mitochondrial percentage >10%. Gene counts for each cell were 513 
normalized by total expression, multiplied by a scale factor of 10,000 and transformed to 514 
log scale. 515 
 516 
Single CD8 T cell phenotype assignment  517 
Single cells were assigned phenotypes by clusters determined through the leiden 518 
algorithm. Phenotype associated transcripts were acquired from literature as 519 
follows16,26,39,47. Naïve/memory: LEF1, TCF7, CCR7. Memory: IL7R. Effector Memory: 520 
GZMK. Cytotoxic: PRF1, GZMB. Exhaustion: TIGIT, PDCD1. Proliferation: MKI67.  521 
 522 
Transcriptomics data validation via scCITE-seq 523 
To validate the transcriptomics data, we leverage our previously reported scCITE-seq 524 
data that simultaneously measured transcriptomic and surface protein levels and TCRα/β 525 
from the same single cell. We extracted each cell’s scCITE-seq data by TCR-based 526 
inquiry (illustrated in manuscript Fig. 7a, and methods). This leads to single cells with 527 
matching transcriptomics and surface protein data (which is the data for plotting main Fig. 528 
7a-c, Supplementary Fig.6c, Supplementary Fig.9d). Our phenotype assignment based 529 
on transcriptomics (as the reviewer mentioned for Main Figs. 4 and 5) can be validated 530 
by surface protein expression (measured by scCITE-seq). These pairs including CCR7 531 
and CD197-CCR7-CITEseq, IL7R and CD127-IL-7RA-CITEseq. In addition, well-532 
established surface protein markers were supported by our transcriptomics data, such as 533 
CD45RO for memory phenotype, CD45RA for naïve phenotype, CD25 for central 534 
memory48.  535 
 536 
Demultiplexing using genetic variants 537 
We wrote a Snakemake workflow (https://github.com/racng/snakemake-merge-wgs) for 538 
processing GVCF files from WGS to generate a multi-sample VCF file of exon variants. 539 
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GVCFs are combined for specified genomics region (autosomes and sex 540 
chromosomes) using GATK (v4.1.9.0) GenomicsDBImport to generate a GenomicsDB 541 
datastore, which is then used by GenotypeGVCFs for joint calling of variants. After 542 
removing indels using vcftools (v0.1.16)49 and excluding intron variants via bcftools 543 
(v1.8)50 the remaining exon variants were lifted to GRCh38 (hg38) using CrossMap 544 
(v0.5.2)51 and filtered again to remove KI27 contigs and duplicated variants. For each 545 
10x library, BAM alignment files from cellranger were filtered for reads from autosomes 546 
and sex chromosomes. Using the processed VCF file (929,678 SNPs), single cell 547 
variants were extracted from the filtered BAM files via 10x Genomics VarTrix 548 
(https://github.com/10XGenomics/vartrix) with the coverage scoring method. To reduce 549 
memory usage, single cell variants were kept if both ALT and REF alleles are detected 550 
in the dataset. We then used vireo (v0.5.0)52 to assign donor identity and doublets 551 
based on the processed single-cell and WGS variants. Doublets were removed. Cells 552 
that unassigned with donor identity were removed. 553 
 554 
Antigen assignment based on dextramers and hashtags 555 
Raw reads for each Hashtags and Dextramers were normalized. Cells were assigned to 556 
their maximally expressed Hashtag. Cells that expressed multiple Hashtags at a high 557 
level were removed as potential doublets. Hashtag identities were then used to identify 558 
cells’ SCT-dextramer cocktail. For each cell, we calculated the number of unique 559 
molecular identifiers (UMIs) for each dextramer, and the percentage of each dextramer. 560 
We assigned each cell an antigen only if their UMI count was >25 and the UMIs specific 561 
for that dextramer occupied >25% of that cells’ dextramer reads. Antigens were then 562 
assigned by the maximally mapped dextramer for each cell. Ambiguous cells that didn’t 563 
assigned with any dextramer were removed.  564 
 565 
Peptide physicochemical property assignment and Pep-UMAP 566 
We first transform peptide sequences into a numerical peptide matrix, where each row 567 
represents a residue position, and each column represents a feature characterizing amino 568 
acids, including amino acid identity, charge, hydrophobicity, weight, bulkiness, polarity, 569 
sulfur presence, aromaticity (Supplementary Table 3: Amino acid property scales used 570 
for peptide and TCR residues)12. The numeric values were scaled to ensure consistency 571 
range of values. For quantitative comparison of peptides in Figure 2, we calculated the 572 
average value for each property for anchor residues and TCR-exposing residues. 573 
Specifically, position 2 and 9 (and occasionally 6) tend to serve as anchors for HLA-574 
A*0201 binding, while other exposed residues potentially contact the TCR (CITE). Logo 575 
plot in Figure 2 was generated by Seq2Logo - 2.053 using default settings. In figure 3, to 576 
visualize peptide features and similarities, we applied UMAP followed by an autoencoder 577 
for dimensional reduction. In detail, since peptides have varying lengths, the residue 578 
positions are mapped to a normalized scale of 0 to 100. Each amino acid’s features are 579 
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replicated across the corresponding positions in the matrix. We then implemented an 580 
autoencoder using an MLPRegressor from scikit-learn to reduce the dimensionality of the 581 
peptide matrix. Finally, we computed a two dimensional peptide UMAP (Pep-UMAP) 582 
using scanpy.tl.umap to visualize peptide features and similarities. 583 
 584 
TCR physicochemical property assignment  585 
TCR-related physicochemical properties were computed for each cell based on its TCR 586 
CDR3 sequence of the beta chain. These properties, including charge, hydrophobicity, 587 
weight, bulkiness, polarity, sulfur presence, aromaticity, were calculated based on 588 
Supplementary Table 3 (Amino acid property scales used for peptide and TCR residues). 589 
Charge is absolute value unless specifically indicated. Specifically, we categorized 590 
CDR3β	residues into V, J, and CDR3bmer regions. The V/J region comprise the first four, 591 
and last five amino acids, respectively, while the central CDR3bmer contains the amino 592 
acids in between. We evaluated TCR CDR3 hydrophobicity numerically by the average 593 
hydrophobicity of the CDR3bmer region. Additionally, we introduced a categorical score 594 
called HPhobic%. HPhobic% represents the percentage of strongly hydrophobic residues 595 
(A, V, L, I, F, M) in the CDR3β, excluding the first and last four amino acids. 596 
 597 
TCR physicochemical property analysis 598 
We calculated 45 properties for each cell’s TCR sequences, including charge, 599 
hydrophobicity, weight, bulkiness, polarity, for three regions of CDR3β (V, J, CDR3βmer), 600 
as well as full CDR3α chain. The Mann-Whitney U test is applied to compare the 601 
distribution of each property between effector (Cytotoxic, Effector Memory, Hybrid) and 602 
non-effector (Naïve and Central Memory) cell phenotypes. Log2 fold change (log2fc) for 603 
each property was calculated between the mean values of effector cell types and non-604 
effector cell types. Top selected properties are based on the criteria of log2fc absolute 605 
value > 0.05, and p value <0.05. (Supplementary Table 7 and 8). For Supplementary Fig. 606 
8b, Dominant TCRs were removed to test whether our result is biased by large clones. In 607 
detail, we performed additional analysis by removing T cell clonotypes and then evaluated 608 
the relationship between TCR Groups and phenotypes without these dominant clones. 609 
Dominant clones were defined as clone size >= 50 based on 10X VDJ library readout 610 
(which counted all cells in the pre-filtered dataset).  We also defined phenotype scores 611 
as: Cytotoxic score (GZMB, GZMA, GNLY, PRF1) and Naïve-Memory score (TCF7, 612 
CCR7, SELL, LEF1, GZMK, IL7R). These were calculated by Scanpy.tl.score to represent 613 
the average expression of the given set of genes. 614 
 615 
Peptide and TCR groups density analysis 616 
Densities for peptide groups were projected onto GEX-UMAP by matching the antigen 617 
specificity of each single CD8 T cell to the peptide group that antigen peptide belongs to. 618 
Embedding density was first calculated via sc.tl.embedding_density then a 5 n-neighbor 619 
kNN graph was used to diffuse the values via five iterations to create a whole UMAP 620 
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score for the density scores, as reported previously8,54. TCR group density calculations 621 
were implemented this same methodology. The UMAP densities in the original Fig. 4d 622 
and Fig. 5f were calculated as an odds ratio. In the area of low cell frequency of certain 623 
PG/TCR groups, the density has a low value – but not necessarily zero.  624 
 625 
Differential gene expression and signature analysis 626 
Differentially expressed genes were called via scanpy.tl.rank_genes_groups through the 627 
Scanpy package using the Wilcoxon method which implements the Mann-Whitney U 628 
test55. Differentially expressed genes (DEGs) between peptide groups (PG2 vs PG3) 629 
were filtered for p values < 0.05 (Supplementary Table 5). Enriched pathways through 630 
filtered DEGs were computed via Enrichr56 and provided in Supplementary Table 6. Top 631 
enriched pathways in PG3 than PG2 were reported in Fig. 4e. DEGs between TCR groups 632 
(HPhobic-High vs HPhobic-Low) were called similarly to generate list of DEGs 633 
(Supplementary Table 9) and enriched pathways (Supplementary Table 10). Top 634 
enriched pathways in HPhobic-High than HPhobic-Low were reported in Fig. 5g. 635 
 636 
Longitudinal T cell inquiry by GLIPH2 analysis for SARS-CoV-2 specific TCRs  637 
We utilized a reference dataset - our previously reported longitudinal dataset on 209 638 
COVID-19 participants contained both scRNA-seq and scTCR-seq data from the same 639 
single cell along with assigned donors25. We perform GLIPH2 analysis on SARS-CoV-2 640 
specific TCRs identified in this study that assigned with antigen specificity, and TCRs from 641 
the longitudinal dataset with unknown antigen specificity. GLIPH2 was run on 642 
http://50.255.35.37:8080/ using the GLIPH2 algorithm57, version 1.0 reference for CD8, 643 
with all_aa_interchangeable set to YES. Antigen specific CD8 T cells were identified as 644 
those that belonged to the same GLIPH group of the SARS-CoV-2 specific TCRs 645 
identified in this study. Longitudinal SARS-CoV-2 specific CD8 T cells were then subset 646 
from the reference dataset for analysis in Figure 7. Cell count for each PG-TCR groups 647 
at Acute and Post-Acute timepoints were provided in Supplementary Table 11. 648 
 649 
Statistical analysis 650 
Microarray like datasets were analyzed using SCANpy  and statistical comparisons were 651 
generated using scanpy.tl.rank_genes_groups using the wilcoxon method. All 652 
correlations were calculated using Pearson correlation. All p values were calculated using 653 
Mann-Whitney U test unless otherwise specified. Bar charts were provided with error bars 654 
when multiple values were present, and these bars represented standard errors. Bar level 655 
represented the mean variable value. 656 
 657 
Data Availability 658 
The single cell sequencing data generated in this study have been deposited in the 659 
ArrayExpress database under accession number: E-MTAB-14002, or using the URL: 660 
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https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-14002?key=3ae4f467-661 
fe01-4d03-b2fe-8a6a522e1cabA. 662 
Source data in this study are provided in the Supplementary Information/Source Data file. 663 
Any additional information required to reanalyze the data reported in this work paper is 664 
available from the Lead Contact upon request.  665 
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Figure Legends  846 

 847 

Main Figures 848 
Fig. 1: Schematic overview of antigen-TCR pairing and multiomic analysis of T-cells 849 
(APMAT) in COVID-19 participants 850 
a. Participants in the study, broken down by COVID-19 severity.  b. Experimental and 851 
computational flow of APMAT. i. Construction of the large SCT-pMHC library representing 852 
HLA-A*02:01 peptide-MHC complexes covering antigens from across the full SARS-CoV-853 
2 proteome. ii. Antigen-specific T cells are captured from pooled patient PBMCs with 854 
barcoded SCT multimers for scRNAseq analysis.  iii. Patient i.d.’s are assigned to each 855 
single cell by matching SNP analysis from whole genome with scRNAseq data. iv-vii. For 856 
each T cell, the physicochemical properties of the peptide antigen and the CDR3β domain 857 
of the TCRs are analyzed to identify statistical associations between the CDR3β-peptide 858 
antigen interface with T cell phenotype.  viii. T cell clonotype persistence from acute 859 
disease to convalescence is similarly associated with the physicochemical properties of 860 
the TCR:antigen.  861 
 862 
Fig. 2: APMAT enables high-throughput representation of whole SARS-CoV-2 genome 863 
a. Graphic relating the SARS-CoV-2 proteome to putative HLA A*02:01 restricted 864 
antigens (top row), to those SCT constructs that were expressed in usable yield (middle 865 
row), and those that captured antigen-specific CD8 T cells from COVID-19 participants 866 
(bottom row). For the SCT Expression row, darker red lines correspond to higher SCT 867 
expression, while grey means low/no expression. For the Cell Capture row, darker red 868 
lines mean more cells captured.  869 
b. Bar plot showing the distribution of expressed SCTs for each SARS-COV-2 protein. 870 
SCTs that successfully captured CD8 T cells are shown in colored bars. The color code 871 
of the captured cells is that used in SARS-CoV-2 proteome of panel a.  872 
c. Antigen sequence motif of expressed (top left) vs non-expressed (bottom left) SCT 873 
constructs; and those expressed SCTs that did (top right) or did not capture CD8 T cells 874 
(bottom right). 875 
d. For each peptide, conventional anchor positions (R2, R9) and non-anchor residues are 876 
assigned. The physicochemical properties are tabulated for each residue.  877 
e. Bar plots comparing expressed (N = 560) vs non-expressed (N = 391) SCT constructs. 878 
X-axis: SCT expression status. Note that two of the expressed SCT constructs were not 879 
included for 10X experiment due to low sample volume. Y-axis: NetMHC prediction rank 880 
(left) and average hydrophobicity of exposed residues (right).  881 
f. Bar plots comparing expressed SCTs that captured CD8 T cells (N = 102) vs those that 882 
did not (N = 456). X-axis: Cell capture status. Y-axis: NetMHC prediction rank (left) and 883 
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average charge of exposed residues (right). Charge values represent the average of 884 
positive and negative charges rather than the absolute value. 885 
For bar plots, data are presented as mean values +/- SEM, with corresponding individual 886 
data points overlayed as hollow dots when possible. Dots outside of the range of y-axis 887 
are not shown. The Statistical significance was determined using the two-sided Mann-888 
Whitney U test, and p values are annotated on all relevant plots with exact p-values 889 
provided unless p < 0.0001.  890 
 891 
Fig. 3: Three peptide groups distinguished by sequence physicochemical properties 892 
a. All 951 putative SARS-CoV-2 peptides for HLA-A*02:01 are encoded by the 893 
physicochemical properties of amino acids at each position for unsupervised clustering.  894 
b. UMAP embedding of all peptides (Pep-UMAP) based on their physicochemical 895 
properties with peptide clusters colored (legend on the right), each dot represents a 896 
unique SARS-CoV-2 peptide. 897 
c. Pep-UMAP colored with selected physicochemical properties, including average (Avg) 898 
hydrophobicity (HPhobic), average polarity, whether the SCT expressed, and whether the 899 
SCT captured CD8 T cells. Average values were calculated for all residues, including 900 
anchor and exposed residues. 901 
d. Left: Clustermap of the 951 peptide antigens by their normalized physicochemical 902 
properties, revealing 3 major peptide groups (Pep-Groups). The key signatures that 903 
distinguish the individual Pep-Groups are highlighted in red boxes. Right: Clustermap of 904 
the Pep-Groups including only those peptides that captured T cells.  905 
e. Pep-UMAP with densities of PG1-3 depicted, legend on the bottom.  906 
f. Left: Violin plot of peptide hydrophobicity for Pep-Groups, sorted by mean value. Middle: 907 
SCT protein expression efficiency for the Pep-Groups. Right: SCT cell capture efficiency 908 
for Pep-Groups. Mean values +/- SEM are utilized for violin plots. The Statistical 909 
significance was determined using the two-sided Mann-Whitney U test, and p values are 910 
annotated on all relevant plots with exact p-values provided unless p < 0.0001. 911 
 912 
Fig. 4: Pep-groups associate with different T cell phenotypes.  913 
a. Illustration of the mapping of peptide physicochemical properties on to T cell gene 914 
expression profiles. CD8 T cells were captured by SCT-dextramers from 62 HLA-matched 915 
COVID-19 participants for scRNAseq and TCR sequencing. Gene expression UMAP 916 
(GEX-UMAP) was generated based on scRNAseq. We used the SCT identity to connect 917 
Pep-Groups with gene expression.  918 
b. GEX-UMAP of Sars-CoV-2-specific CD8 T cells with different phenotypes color-919 
encoded (legend on the top), and then color-coded by expression levels of selected 920 
mRNA transcripts. 921 
c. GEX-UMAP, color-coded by (left) the polarity of exposed peptide antigen residues; 922 
(middle) all T cells specific to a given antigen; and (right) SARS-CoV-2 specific T cells 923 
from two study participants. 924 
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d. Top: GEX-UMAP color encoded with T cell densities specific for antigens from each 925 
Pep-Group. Bottom: Bar plot of the relative abundance of phenotypes for T cells 926 
associated with each Pep-Group. Note that the UMAP densities in the original were 927 
calculated as an odds ratio. 928 
e. Top enriched biological pathways of genes significantly elevated in cells captured by 929 
PG3 relative to PG2. Adjusted p-values are generated by EnrichR 930 
 931 
Fig. 5: TCR hydrophobicity is an important factor for effector function.  932 
a. Each TCR beta chain was split into V, CDR3βmer, and J regions, and then encoded 933 
by the physicochemical properties of amino acids at each residue position for overlay on 934 
the GEX-UMAP.  935 
b. GEX-UMAP, color-coded by phenotypes (top) and overlayed with the percentage of 936 
hydrophobic residues within CDR3βmer (HPhobic %) (bottom). 937 
c. The top differential TCR physicochemical properties for effector (Cytotoxic, EM and 938 
Hybrid) phenotypes, relative to non-effector (CM and naïve) phenotypes. The Statistical 939 
significance was determined using the two-sided Mann-Whitney U test, p-values < 0.0001 940 
were marked with ****. See color key inset. Source data are provided as a Source Data 941 
file. 942 
d. Bar plots showing the variation of selected TCR physicochemical properties across T 943 
cell phenotypes. Number of cells: Naïve (n = 68), CM (n = 133), Hybrid (n = 43), EM (n = 944 
93), Cytotoxic (n = 384). For bar plots, data are presented as mean values +/- SEM. p 945 
values are annotated on all relevant plots with exact p-values provided unless p < 0.0001. 946 
Source data are provided as a Source Data file.  947 
e. Top: Binary TCR-Groups (HPhobic-Low and HPhobic-High) are defined based on the 948 
median value of hydrophobic residue percentages for all SARS-CoV-2 cells. Bottom: 949 
Stacked bar plot of clonal size distribution for each TCR-Groups with legend on the right.  950 
f. GEX-UMAP with densities of the TCR-Groups projected. The relative abundance of 951 
phenotypes in HPhobic-High cells is plotted at bottom. The UMAP densities were 952 
calculated as an odds ratio. 953 
g. Top enriched biological pathways of genes significantly elevated in cells with HPhobic-954 
High vs HPhobic-Low TCRs. Adjusted p-values are generated by EnrichR. 955 
 956 
Fig. 6: Combination of peptide-TCR features associated with cell phenotypes 957 
a. We investigated the combination of peptide and TCR properties for antigen-TCR paired 958 
SARS-CoV-2 CD8 T cells. The plotted peptides are those that captured cells. 959 
b. Cell distribution between peptide groups (Left) and TCR groups. 960 
c. Radar graphs of physicochemical properties for representative PG-TCR groups. Blue 961 
and grey shaded areas of the outer rings indicate Pep-Group, and TCRβ properties, 962 
respectively. Each axis displays the normalized average value for each property, with 963 
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lowest value in the center. The shaded polygons reflect the property space occupied by 964 
the peptide-TCRβ groupings. Legend on the bottom.  965 
d. Top: Cell percentage of Cytotoxic, EM and Naïve phenotypes for each PG-TCR group. 966 
Bottom: Heatmap showing selected mRNA levels for each PG-TCR group. Underlined 967 
PG-TCR groups are those from panel c.  968 
e. Heatmap showing average value of peptide and TCR physicochemical properties for 969 
each phenotype.  970 
 971 
Fig. 7: Longitudinal analysis for PG-TCR groups 972 
a. Tracking SARS-CoV-2 CD8 T cells from acute to post-acute timepoint based on TCR-973 
GLIPH query from a previously reported longitudinal dataset. 974 
b. Cell abundancy changes from post-acute to acute timepoint for each PG-TCR grouping. 975 
Red or blue means higher abundancy at acute or post-acute timepoint, respectively. 976 
c. Selected gene expression changes from the acute to post-acute timepoints for each 977 
PG-TCR groups. Gene annotations on the bottom. 978 
d. Summary: The association between distinct peptide-TCR properties and cell fates for 979 
antigen-specific CD8 T cells. 980 
 981 
 982 

Supplementary Figures 983 
Supplementary Fig. 1: Technical validation and methods for antigen and patient 984 
assignment 985 
a. Heatmap where each row is a Hashtag used for each SCT-dextramer pool and each 986 
column is a single cell. Legend at bottom. 987 
b. Scatter plots of antigen assignment for representative CMV and SARS-CoV-2 antigens. 988 
X-axis is the SCT intensity, defined by numbers of UMIs mapped to the SCT-dextramer. 989 
Y-axis is the SCT dominance, defined by percent of the cell’s SCT-dextramer associated 990 
UMIs that mapped to this antigen’s SCT-dextramer. Cells assigned with the antigen are 991 
shown in red positive zone, and have SCT intensity >25, and SCT dominance >25%. 992 
c. Patient assignment by comparison of the WGS SNPs and derived de novo SNPs 993 
derived from scRNA-seq data, exampled by Donor-58 and Donor-194. Each panel 994 
represents the comparison for each chromosome. Allele frequency and nucleotide identity 995 
of reference and alternate are shown in lower right legend. 996 
d. Heatmap with rows as sex specific genes (RPS4Y1 for male, XIST for female), columns 997 
are assigned participants. Upper row indicates patient sex from clinical records with blue 998 
as male and pink as female. Legend on upper right. 999 
 1000 
Supplementary Fig. 2: SARS-CoV-2 SCT expression  1001 
a. Left: Number of constructed SCT plasmids for putative peptides. Middle: Expressed 1002 
SCT constructs with useable protein expression yield that were constructed as DNA-1003 
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barcoded SCT dextramers during 10X Chromium experiment. Note that two of the 1004 
expressed SCTs were not included due to low sample volume. Right: SCTs that captured 1005 
SARS-CoV-2 CD8 T cells from COVID-19 participants.  1006 
b. Immunodominant A*02:01 epitopes among individuals detected by SCT. Left: CD8+ T 1007 
cell distribution for each antigen specificity (rows) identified from individual COVID-19 1008 
infected participants (each color represents a different participant). Right: total cell counts 1009 
for each antigen (log10 scale). Only antigens assigned with more than 5 cells were plotted. 1010 
 1011 
Supplementary Fig. 3: TCR Validation via in-vitro Lenti-virus transduction  1012 
a. Flow cytometry gating strategy.  1013 
b. Selected SCT pMHC tetramer assay on untransduced or TCR-transduced Jurkat cells. 1014 
TCR#1, previously published by Chour et.al., provides a positive control. We further 1015 
validate TCR#2 and #3, which are identified from this dataset. 1016 
 1017 
Supplementary Fig. 4: Agreement between SCT expression and NetMHCPan prediction 1018 
a. Bar plots comparing expressed vs non-expressed SCT constructs. X-axis: SCT 1019 
expression status. Y-axis: Normalized SCT expression yield (left) and NetMHCpan 1020 
predicted binding affinity between peptide and HLA-A*02:01 (right).  1021 
b. Scatter plot for normalized SCT expression yield (Y-axis) and predicted binding affinity 1022 
(X-axis) for all expressed SCTs, each dot represents a SCT construct.  1023 
c. Bar plots comparing three groups of peptides based on NetMHCPan prediction output. 1024 
Y-axis: average hydrophobicity and polarity of peptides within each prediction group.  1025 
d. For predicted strong binders, a comparison of the average hydrophobicity and polarity 1026 
for the ones that showed no/low SCT expression, and the ones showed successful SCT 1027 
expression.  1028 
e. Pie chart showing the SCT expression percentage for peptides in each prediction group. 1029 
Total peptide number were shown in the top. 1030 
For bar plots, data are presented as mean values +/- SEM. The Statistical significance 1031 
was determined using the two-sided Mann-Whitney U test, and p values are annotated 1032 
on all relevant plots with exact p-values provided unless p < 0.0001. 1033 
 1034 
Supplementary Fig. 5: Characteristics of Pep-UMAP and Pep-Groups 1035 
a. Pep-UMAP colored with selected physicochemical properties, including anchor 1036 
hydrophobicity, hydrophobicity of the 6th residue, average hydrophobicity, bulkiness, 1037 
polarity, and absolute charge of exposed (Exp) residues. 1038 
b. UMAP embedding of Pep-Groups. 1039 
 1040 
Supplementary Fig. 6: Characteristics of GEX-UMAP  1041 
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a. UMAP embedding of gene expression (GEX-UMAP) for SARS-CoV-2 specific CD8 T 1042 
cells color-coded by expression levels of selected mRNA transcripts, and UMAP leiden 1043 
groups.  1044 
b. Dot plot showing normalized expression levels of selected marker genes in each T cell 1045 
phenotype. The size and color of each dot represent the fraction of expressing cells and 1046 
the mean of normalized expression levels in each phenotype. 1047 
c. Cluster map of phenotype-related genes and surface protein measured via scCITE-seq 1048 
from Su et. al (2022)25. Values are row-normalized, legend on the right. Proteins were 1049 
marked as red triangle next to surface marker’s name while mRNAs were unlabeled. 1050 
d. Stacked bar plot of clone size distribution for T cells captured by threes PG-group with 1051 
legend on the right. 1052 
 1053 
Supplementary Fig. 7: Characteristics of TCR Groups 1054 
a. GEX-UMAP colored with selected physicochemical properties of the TCRβ	sequences.  1055 
b. Stacked bar plot of clone size distribution for each of the T cell phenotypes with legend 1056 
on the right. 1057 
c. Distribution of CDR3βmer hydrophobicity (top), CDR3β	 length (middle), CDR3βmer 1058 
absolute charge (bottom) for each of the TCR-Groups. Bar plots for the respective 1059 
property are on the right.  1060 
d. Bar plots for the mRNA levels of LAG3 and TIGIT.  1061 
For bar plots, data are presented as mean values +/- SEM. The Statistical significance 1062 
was determined using the two-sided Mann-Whitney U test, and p values are annotated 1063 
on all relevant plots with exact p-values provided unless p < 0.0001. 1064 
 1065 
Supplementary Fig. 8: Validation after removal of dominant TCR clones  1066 
a. CD8+ T Cell clonotype distribution for each antigen specificity (rows) (for each antigen, 1067 
each color represents cells expressing a unique TCR). Only top 15 were plotted.  1068 
b. Bar plots evaluating TCR-Groups after removal of large clones. Y-axis: average 1069 
expression level of representative genes and scores related with Cytotoxicity (top) and 1070 
Naïve-Memory (bottom). Red (HPhobic-High) and black (HPhobic-Low) bars represent 1071 
cells within each TCR-Group. Legend on the right. For bar plots, data are presented as 1072 
mean values +/- SEM. The Statistical significance was determined using the two-sided 1073 
Mann-Whitney U test, and p values are annotated on all relevant plots with exact p-values 1074 
provided unless p < 0.0001. 1075 
 1076 
 1077 
Supplementary Fig. 9: Characteristics of PG-TCR groups 1078 
a. Radar graphs of physicochemical properties for example PG-TCR groups. Blue and 1079 
grey shaded areas of the outer rings indicate Pep-Group, and TCRβ properties, 1080 
respectively. Each axis displays the normalized average value for each property, with 1081 
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lowest value in the center. The shaded polygons reflect the property space occupied by 1082 
the peptide-TCRβ groupings. Legend on the bottom. 1083 
b. GEX-UMAP color encoded with densities of PG-TCR groups based on each cell’s 1084 
antigen specificity and TCR sequence. 1085 
c. Stacked bar plot of phenotype distribution for each of the PG-TCR groups with legend 1086 
on the right. 1087 
d. Surface protein validation with respect to findings in Main Fig. 6. Heatmap with X-axis 1088 
as PG-TCR group assignment and Y-axis as level of a given protein normalized per row 1089 
and column, see legend on right. 1090 
e. Stacked bar plot of PG-TCR group distribution for acute and post-acute timepoint with 1091 
legend on the right. 1092 
f. Clustermap of cells by expression levels of selected mRNA transcripts for each 1093 
timepoint. Legend on the right. 1094 
g. Bar plots comparing expression levels of selected mRNA transcripts for cells at acute 1095 
and post-acute timepoint. Number of cells for each group: PG3:High Acute (n=448), Post-1096 
Acute (n=35); PG1: Acute (n=116), Post-Acute (n=156). For bar plots, data are presented 1097 
as mean values +/- SEM. The Statistical significance was determined using the two-sided 1098 
Mann-Whitney U test, and p values are annotated on all relevant plots with exact p-values 1099 
provided unless p < 0.0001. 1100 
 1101 
Supplementary Fig. 10: TCR alpha chain analysis 1102 
a. Analysis of which physicochemical characteristics of the TCR alpha chain exhibit 1103 
significant associations with T cell phenotype. The top differential TCR CDR3α 1104 
physicochemical properties for effector (Cytotoxic, EM and Hybrid) phenotypes, relative 1105 
to non-effector (CM and naïve) phenotypes. The Statistical significance was determined 1106 
using the two-sided Mann-Whitney U test, and p values are annotated on all relevant plots 1107 
with exact p-values provided unless p < 0.0001. 1108 

 1109 
Supplementary Fig. 11: External dataset validation 1110 
a. Bar plots comparing expression levels of selected mRNA for cells within each TCR-1111 
Groups. Number of cells in each group: HPhobic-High (n = 1841), HPhobic-Low (n = 1112 
1988). Original dataset from Fischer et. al (2021)58. For bar plots, data are presented as 1113 
mean values +/- SEM. The Statistical significance was determined using the two-sided 1114 
Mann-Whitney U test, and p values are annotated on all relevant plots with exact p-values 1115 
provided unless p < 0.0001.  1116 
b. Pearson correlation coefficients between selected mRNA levels and TCR CDR3β 1117 
properties for CMV-NLVP (left) and Influenza-GILG (right) specific CD8 T cells. Original 1118 
dataset from Chen et. al (2023)8. 1119 
 1120 
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Supplementary Tables 1121 
Table S1: Clinical characteristics, medical history of INCOV sub cohort in this study 1122 
Table S2.1: List of putative SARS-CoV-2 peptide antigens for SCT-pMHC expression 1123 
Table S2.2: Vireo output for SNP demultiplexing 1124 
Table S2.3: TCR gene usage for top 5 SARS-CoC-2 epitopes 1125 
Table S2.4: List of TCRs used for validation (via lenti-virus transduction and SCT-tetramer 1126 
binding assay) 1127 
Table S3: Amino acid property scales used for peptide and TCR residues 1128 
Table S4: Pep-UMAP characteristics 1129 
Table S5: Filtered DEGs in cells assigned to PG3 compared to PG2 antigen 1130 
Table S6: Enriched pathways (Reactome 2022) for upregulated genes in PG3 vs PG2 1131 
Table S7: Log2 fold change of TCR physicochemical properties, effector phenotypes vs 1132 
non-effector phenotypes 1133 
Table S8: Mann-Whitney U test of TCR physicochemical properties, effector phenotypes 1134 
vs non-effector phenotypes 1135 
Table S9: DEGs in cells in HPhobic-High compared to HPhobic-Low 1136 
Table S10: Enriched pathways (Reactome 2022 and GO Biological Process 2023) for 1137 
upregulated genes in HPhobic-High vs HPhobic-Low 1138 
Table S11: Cell count at Acute and Post-Acute time points 1139 
 1140 
 1141 
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Main Fig. 1
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