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Migraine is a common, little understood, and debilitating disease. It is much more promi-
nent in women than in men (~2/3 are women) but the reasons for female preponderance 
are not clear. Migraineurs frequently experience severe comorbidities, such as allergies, 
depression, irritable bowel syndrome, and others; many of the comorbidities are more 
common in females. Current treatments for migraine are not gender specific, and rarely 
are migraine and its comorbidities considered and treated by the same specialist. Thus, 
migraine treatments represent a huge unmet medical need, which will only be addressed 
with greater understanding of its underlying pathophysiology. We discuss the current 
knowledge about sex differences in migraine and its comorbidities, and focus on the 
potential role of mast cells (MCs) in both. Sex-based differences in pain recognition 
and drug responses, fluid balance, and the blood–brain barrier are recognized but their 
impact on migraine is not well studied. Furthermore, MCs are well recognized for their 
prominent role in allergies but much less is known about their contributions to pain 
pathways in general and migraine specifically. MC-neuron bidirectional communication 
uniquely positions these cells as potential initiators and/or perpetuators of pain. MCs 
can secrete nociceptor sensitizing and activating agents, such as serotonin, prosta-
glandins, histamine, and proteolytic enzymes that can also activate the pain-mediating 
transient receptor potential vanilloid channels. MCs express receptors for both estrogen 
and progesterone that induce degranulation upon binding. Furthermore, environmental 
estrogens, such as Bisphenol A, activate MCs in preclinical models but their impact on 
pain pathways or migraine is understudied. We hope that this discussion will encourage 
scientists and physicians alike to bridge the knowledge gaps linking sex, MCs, and 
migraine to develop better, more comprehensive treatments for migraine patients.

Keywords: angiotensin, asthma, blood–brain barrier, estrogen, mast cells, progesterone, sodium–potassium 
ATPase, testosterone

iNTRODUCTiON

Migraine is the most common neurological disorder, affecting 18% of females and 6% of males, with 
prevalence peaking at age 30–40 years. Since migraine triggers include stress, alcohol, menstrual 
cycling, missing meals, or sleep, it is not surprising that migraine prevalence peaks when other 
significant personal, family, professional, and financial responsibilities are also pressing. The female 
preponderance of migraine suggests that factors increasing female vulnerability and/or protecting 
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FiGURe 1 | Migraine is messy! Migraine (and pain) triggers are numerous and highly variable. The initiating stimulus depends on context (environmental or 
learned), location (eye strain, neck strain, and GI), type (chemical and mechanical), duration (short, long, or repeated exposure), and prior sensitization (extended 
drug use, allergies, autoimmune reactions, etc.). Modulators of stimuli, such as genetic predisposition, environmental factors, societal influences, and sensitizations, 
such as xenoestrogens, and endogenous sex hormones alter physiological responses to migraine and pain. Both the stimuli and modulators input to evoke both a 
physiological response (nociception) and interpretation of that response, pain perception. Pharmacologic treatment of (migraine) pain can modulate either or both 
the physiological response and pain perception. Additionally, pharmacological agents and lifestyle changes are also subject to the same modulators as the triggers.
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males deserve greater consideration as contributors to migraine 
pathology.

The incapacitating features of migraine include episodic severe 
headache, accompanied by pain or severe discomfort in response 
to normal light, sounds, smells, touch, and often associated with 
nausea, vomiting, or vertigo. Symptoms are typically worse on 
movement and may last from 4 to 72  h, though a substantial 
number of sufferers (three million in the US) develop chronic 
daily headache (CDH). Only about 25% of migraineurs have a 
warning pre-headache aura, usually a short-lived, migrating 
visual hallucination. Common migraine comorbidities affect 
multiple organ systems in addition to the CNS (1). These include 
Raynaud’s phenomenon, hypertension, interstitial cystitis/blad-
der pain syndrome (IC/BPS), allergy and asthma, irritable bowel 
syndrome (IBS), osteo- and rheumatoid arthritis, anxiety, tremor, 
and depression (2–7). The molecular underpinnings common to 
and connecting these disorders are not known, but may include 
shared genetic risk factors (1, 8), regulation of brain cations (9, 
10), or common receptor signaling events that activate pain (11), 
inflammation (12), or oxidative (13) pathways.

Treatment of migraine is multimodal, including lifestyle 
modifications, relaxation, yoga, physical therapy, massage, acu-
puncture, biofeedback, and cognitive-behavioral therapy, as well 
as prescription medications and over-the-counter supplements. 
Medications are directed at prophylaxis or rescue (14–17). A 
recent review describes rescue and prevention of menstrual 
migraine (18).

QUANTiFiCATiON OF PAiN

One barrier to effectively dealing with migraine, common to 
all chronic pain states, is quantifying the severity of “real” pain. 

Subjective metrics are difficult to translate across studies and 
objective measures fail to capture the true significance of pain. 
The best clinical practices require intensive patient–doctor dialog 
and individual patient education, also not easily translatable 
across studies. Useful clinical tools include FACES (developed for 
children), numeric (0–10), visual analog, and verbal pain scales. 
Descriptive terms (hot/cold, dull/sharp, and superficial/deep) can 
help classify pain (somatic, visceral, or neuropathic), and locations 
provide sensory discrimination often useful for diagnosis and treat-
ment. There is a real unmet need for objective measures of pain. 
For example, electromyography (EMG) is used to measure ocular 
photic discomfort and facial grimace scores (an observation-based 
version of the FACES pain scale) (19, 20) [Kardon and Poolman, 
University of Iowa, VA Center of Excellence Iowa City, personal 
communication]. Brain mapping can identify brain regions 
activated in specific pain conditions, including migraine (21–24) 
and photophobia from corneal damage (25), but resolution is poor 
and not standardized for clinical use (26). The posterior insular-
opercular, prefrontal cortex, and anterior cingulate cortex were 
identified as regions of interest for migraine in a meta-analysis 
of 22 migraine patients and controls using voxel-based morpho-
metry. Notably, more women than men showed decreased gray 
matter in the dorsolateral prefrontal cortex (27). Ideal objective 
pain measures must be validated against clinical pain scales and 
must also reflect affective and motivational aspects of pain.

THe PATHOPHYSiOLOGY OF MiGRAiNe

In spite of the commonness of migraine, its burden on society, 
and WHO recognition of migraine in the world’s top 20 most 
disabling conditions (26), its pathophysiology is incompletely 
understood (Figure  1) (28). We do not know if a common 
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pathway, component, or event is disrupted in migraineurs gen-
erally vs. in non-migraineurs, or whether migraine is really sev-
eral diseases. Candidate mechanisms include cortical spreading 
depression (CSD) (29–31); dysregulation of neuropeptides (32); 
sterile meningeal neuroinflammation (33, 34) with triggering of 
dural mast cells (MCs) (35); altered central excitatory/inhibi-
tory homeostasis (glutamate/gamma-aminobutyric acid) (36, 
37); cortical neuromodulation (serotoninergic, noradrenergic, 
cholinergic, or dopaminergic) (37–40); channelopathy (41); or 
disturbed sodium homeostasis (42). Sterile meningeal neuroin-
flammation activates trigeminal primary afferents innervating 
the meningeal vasculature, providing a direct link to nocicep-
tive circuits. Meningeal MCs are implicated in this mechanism, 
and dural MCs are directly activated in an animal model of 
migraine (35).

These candidate mechanisms also likely interact. For example, 
CSD is a slow, self-propagating transient wave of depolarization 
that suppresses activity in the cortex and is thought to underlie 
aura. CSD also increases meningeal blood flow and causes release 
of calcitonin gene-related peptide (CGRP), which may activate 
trigeminal nociception via the trigeminovascular system. CGRP, 
the main trigeminal pain mediator, is elevated in jugular blood 
during migraine (43). Antagonism of CGRP receptor (with 
olcegepant) and humanized antibodies against CGRP or its 
receptor are promising candidate migraine treatments.

Central Sensitization in Migraine 
Pathology
Central sensitization (CS) represents enhanced signaling through 
nociceptive pathways (caused by increases in membrane excit-
ability and synaptic efficacy as well as reduced inhibition). CS 
also implies loss of the normal remarkable plasticity of the soma-
tosensory nervous system in response to activity, inflammation, 
and neural injury (44). CS presents clinically as allodynia (45, 
46), can persist long after an insult (47), and can be visualized by 
functional magnetic resonance imaging (fMRI) (48, 49).

Not surprisingly, CS is also accompanied by changes in neuro-
transmitters. For example, serotonin and endocannabinoids are 
implicated in both depression and migraine (50, 51). Decreased 
urinary melatonin levels are reportedly associated with chronic 
migraine, depression, anxiety, and fatigue (52). Migraine and 
many of its comorbidities share alterations in serotonin (53), 
noradrenaline (54–56), estrogen (57), cannabinoids (58, 59), 
phosphocholine-specific phospholipase C (60), and glutamate 
(61, 62). Medications that modulate the G-protein-coupled 
receptors (GPCRs) for these ligands can sometimes alleviate 
symptoms of both migraine and comorbidities (63, 64).

Channelopathy and Sodium Homeostasis 
Disturbance in Migraine
Channelopathies that alter ion homeostasis are implicated in 
familial hemiplegic migraine (FHM) (but not in migraine gener-
ally) as autosomal dominant mutations affecting calcium and 
sodium ion channels and the Na,K-ATPase transporter (65).

Ion fluctuation in CNS is exaggerated during migraine, with 
increased sodium concentration in the rat brain interstitial fluid 

during CSD (66), in cerebrospinal fluid (CSF) but not blood 
during migraine in humans (10), and in the brain and eyes after 
nitroglycerine (NTG)-triggered CS (42). These various models 
suggest that increased extracellular sodium, well known in CSD 
(66), is important in migraine and CS.

The primary control over sodium homeostasis in the nervous 
system is Na,K-ATPase (67, 68) that catalyzes transport of Na 
and K across cell membranes. Na,K-ATPase dysregulation at the 
neuronal and axonal plasma membrane generates abnormal local 
extracellular [K+] and intracellular [Na+] resulting in abnormal 
resting membrane potentials, axonal conduction properties (69, 
70), and neuronal excitability (71). A knock-in mouse model 
with the FHM type 2 mutation of one Na,K-ATPase isoform 
has a decreased induction threshold for CSD (72). These mice 
do not demonstrate sexual dimorphism with regard to CSD 
propagation.

Dietary sodium intake, however, differs by sex in rodents, 
with females drinking more 3% NaCl than males. This pattern 
is established neonatally and can be suppressed in adult rats 
by testosterone (73). Neonatally androgenized females display 
low male-like salt intake and neonatally gonadectomized males 
display female-like high sodium intake (74, 75).

PAiN AND SeX

Fundamental differences in pain perception from person to per-
son make objective pain measurement difficult, but it is generally 
accepted that males and females experience pain differently. A 
general impression is that women have lower pain thresholds 
but higher tolerance, they seek treatment and discuss pain more 
than men, take fewer medications, and have a higher level of 
daily functioning and adaptation to pain (73, 76), though this 
impression is not universally accepted. Importantly, differences 
in pain response are both biological and psychosocial, and 
clinical studies are not often designed to capture sex differences 
(76). Sex hormones are certainly involved, but other genes, for 
example, SRY on the Y chromosome also underlie differences in 
pain experience (77). Obviously, pain studies only performed in 
men will not necessarily translate to women, if pain is influenced 
by sex hormones. It is also difficult to determine if women take 
less opioids because of greater analgesic sensitivity or decreased 
tolerance of negative side effects? Considering that women 
predominate in chronic pain conditions [reviewed in Ref. (78)], 
female-focused studies should be emphasized more. Though 
appropriate study populations may naturally follow from patient 
enrollment, the theoretical and practical design of research 
should be sensitive to sex differences.

All Pain is Not Created equally
The source or location of pain is important in sexual dimorphism 
of pain. In a prospective interventional study using needle EMG, 
women rated pain higher than men, although both reported only 
“moderate” pain. Different muscles were associated with different 
pain levels, although the authors did not report if reported pain 
was higher in all or some muscle groups for women (79). A study of 
thermal pain showed the same sensitivity thresholds for men and 
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women, but greater tolerance in men (80). Meta-analyses of pain 
studies are limited by small numbers of subjects, but can identify 
relevant features of pain: for example, in a meta-analysis of pain 
and analgesic requirements after ophthalmic surgery, three of 
four studies showed that no difference in pain by sex but a single 
study, including more participants than the other three, found 
females experienced more pain (81). Sex-based differences are 
not surprising given widespread expression of estrogen, proges-
terone, and androgen receptors in the eye (82) and brain. Notably, 
several ocular diseases show sex hormone-dependent changes in 
frequency, including glaucomas, dry eye, and central vein occlu-
sion, but ocular pain itself is understudied in this regard (82). A 
study of over 15,000 patients having spinal surgery for lumbar 
disk herniation found more women consumed analgesics than 
men, reported higher levels of leg pain, lower quality of life, and 
higher disability (83). A meta-analysis of chronic widespread pain 
also showed higher incidence in women, particularly in peri- or 
post-menopausal women (84). Unfortunately, then, the literature 
contains no clear message about sex and pain, likely because of 
design issues, inadequate study size, retrospective design, types 
of surgeries analyzed, and pre-existing conditions, and difficulty 
quantifying pain. Clearly, we have work to do in studying pain in 
as standardized, objective, and controlled a way as possible (85). 
Even the attractiveness of the examiner can influence the pain 
rating by subjects (86).

Pain in Animal Studies
Useful metrics of pain for animal studies are indirect and require 
inference from observed actions, and cannot capture motivation 
behind behaviors. Behaviors that reflect pain include avoid-
ance responses (tail withdrawal, foot removal from thermal or 
mechanical stimuli, blinking, and light aversion), or tending 
to  the site of pain (licking, foot shaking after formalin injec-
tion, head grooming in migraine models, and rubbing eyes for 
dry eye).

Fortunately, animal studies are generally consistent with 
human studies. Lower thresholds for pain and increased opioid 
requirements for analgesic effect (behaviors) have been shown 
in females vs. males. Opioid efficacy also varies by genetic 
background in mice (87), which can reflect alterations in mu 
opioid receptor (μOR) binding and signaling, μOR SNPs (single 
nucleotide polymorphisms) or alternative molecular pathways 
(88). Sodium affects the stability of antagonist conformation 
of GPCRs, including opioid receptors (89). These observations 
point to studies that can lead to improved and appropriately 
targeted therapies.

eSTROGeN AND TeSTOSTeRONe 
eFFeCTS iN HUMAN MiGRAiNe  
ANiMAL MODeLS

One-third to one-half of female migraineurs report worse 
migraines peri-menstrually, and ovulation can be a trigger. 
Migraine tends to lessen during pregnancy and lactation, and 
after menopause strongly implicating female hormone fluctua-
tions as triggers. These observations have led to the use of both 

rescue and prophylaxis with all migraine-approved medications 
around the time of menses. Hormone therapy to reduce estrogen 
fluctuations may help migraine suffering, but are used cau-
tiously because of the small increased risk of stroke in patients 
with migraine and aura (90). Anecdotally, changes from one 
birth control pill formulation to another can worsen or improve 
migraine. Animal experiments also support a role for sex hor-
mones in migraine pathogenesis: female mice were more easily 
centrally sensitized than males, oophorectomy rendered the 
sexes comparable, and estrogen replacement to oopherectomized 
animals partially restored pain over-sensitivity (91). In male 
mice, orchiectomy increased CS, which was partially reversed 
with testosterone replacement (92). The target cells for these 
sex hormone actions are not clear, but imaging (93) and animal 
biochemistry studies (94) suggest that estrogens generally have 
excitatory actions on the brain while progesterone is inhibitory. 
(And of course the balance between them will be important.) 
Estrogen and progesterone increase CSD in rat cortical slices 
(95), possibly through modulation of excitatory glutamate release 
(96). Estrogen receptors are expressed in a wide variety of CNS 
neurons and in astrocytes; estrogen plays important and complex 
roles in synaptic function and neuroplasticity (97). Immune cells 
mediate differential mechanical pain hypersensitivity in male vs. 
female mice (98). Olfactory exposure to male investigators, their 
shirts, or to androgens and similar chemicals volatilized on sterile 
gauze, influences analgesia (99), and further emphasizes sexually 
dimorphic responses relevant to migraine.

SeX-BASeD DiFFeReNCeS iN DRUG 
ReSPONSiveNeSS

A U.S.-wide survey showed that more women than men used 
over-the-counter and prescription medications (100). A national 
Italian survey found no difference in the use of NSAIDS or 
ergot derivatives but increased use of triptans in women (101) 
for migraine. In a Finnish population, women were prescribed 
more drugs of all categories to treat migraine (73). But females 
were at greater risk of migraine headache recurrence than men 
(102). Whether these drug use patterns represent differences 
in migraine severity, requests by patients, or perceptions of the 
attending clinician is unclear but the literature suggests that gen-
der is a factor in how migraine is diagnosed and treated [reviewed 
in Ref. (78, 86)].

Migraine pain medications prescribed in emergency 
departments (ED) do not differ between men and women, 
with 35% treated with opioids and 1.5% treated with triptans 
(103). These data represent from 58,000 civilian and 9.9 million 
military records, but the data are not rich enough to parse out 
sex differences in the quality of pain or efficacy of treatment. 
Nonetheless, they highlight a real problem with ER treatment 
of migraine. Opioids may reduce migraine pain acutely, but 
should be avoided as they can cause episodic migraine to 
become chronic (104).

Opioid therapy is a notable example of sex-based differences 
in drug responses at many different levels. Imaging studies show 
differences in the response of females to μOR agonists in ligand 
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internalization, receptor distribution, and hormonal influence. 
Though morphine pharmacokinetics are similar in men and 
women (105), PET scans show brain-region-specific differences 
in the magnitude of endogenous μOR activation: men have 
increased activation in anterior thalamus, ventral basal ganglia, 
and amygdala; women have reduced activation in the nucleus 
accumbens (106), and many studies show that females require 
more morphine for analgesia than males, regardless of the type 
or source of pain [reviewed in Ref. (107)].

Structural and Molecular Basis of Opioid 
Sexual Dimorphism
The mechanisms by which opioids cause transition from episodic 
to chronic migraine are important to understand for getting to the 
heart of migraine pathology. These mechanisms include increases 
in brainstem and cortical hyperexcitability (104). Chronic opi-
oid administration leads to downregulation of the glutamate 
transporter on astrocytes, increasing the residence time of the 
neurotransmitter in the synaptic cleft, effectively increasing the 
duration of receptor activation and potentiating signaling. In 
cultured microglia, morphine upregulates brain-derived neu-
rotrophic factor (BDNF), which is known to act on the NMDA 
receptors and influences mood disorders (108). Estrogen may 
play a role in this process since it mediates alterations in gluta-
mate signaling (and glutamate modulation of CSD), uncouples 
μOR from downstream signaling, and estrogen metabolites are 
TLR4 agonists (109).

Imaging in rodents using markers of neuronal activation to 
either morphine or inflammatory pain show more periaqueductal 
gray neurons are activated in females, but fewer activated neurons 
project to the rostral ventromedial medulla, a circuit important 
for endogenous and exogenous opioid analgesia (86, 107, 110). 
Like CSD, this is a sex-hormone-specific effect since males femin-
ized at birth show reduced response to morphine (111).

The estrous cycle influences both morphine-induced analgesia 
(greatest potency when estradiol is low) and release of CGRP 
(107). Estrogen can uncouple μOR from its downstream GPCR 
kinases and induce internalization (112). Understanding the 
molecular underpinnings of estrogen effects on opioid responses 
is important, but despite all these data and the extensive experi-
ence with morphine, it is still not possible to make general sex-
based clinical recommendations for morphine administration 
(86, 107) in non-migraine pain states.

A surprising interaction occurs between morphine and TLR4, 
a receptor that recognizes bacterial lipopolysaccharide (LPS) 
and is localized on CNS microglia. Microglia secrete various 
cytokines, including IL-1, TNFα, and IFNγ, to not only neutral-
ize bacteria but also influence pain patterns, including allodynia 
and hyperalgesia (113). Minocycline is a broadly used antibiotic 
that reduces microglia activation, indicated by reduced cytokine 
release (e.g., IFNγ, TNFα, and IL-1β). Minocycline potentiates 
morphine analgesia (113, 114), decreases p38 MAPK activation in 
spinal microglia (115), suppresses morphine-induced respiratory 
depression (114), and attenuates a morphine-dependent increase 
in cyclooxygenase-1 expression in cultured microglia (114). 
Morphine activation of TLR4 is blocked by naloxone, the μOR 

antagonist (116). Morphine-3-glucoronide (M3G) is a morphine 
metabolite that does not bind the μOR but opposes analgesic 
effects and enhances pain. The pain-enhancing effects of M3G 
can be blocked by minocycline, and IL-1 receptor antagonist and 
both isomers of naloxone, showing that μOR was not the direct 
target of minocycline (116).

Other sexually dimorphic effects related to morphine–TLR4 
interactions link sex and the immune system. Intrathecal injec-
tion of LPS generates pain responses only in male mice. Removal 
of male sex hormones by castration reduced pain levels to those of 
saline controls and females, but testosterone replacement therapy 
in males and oophorectomy in females restored “normal” pain 
responses (117). Furthermore, male mice with a loss of TLR4 
function display reduced pain responses typical of females. 
Importantly, sexually dimorphic pain responses were specific 
to the inducing agent and site of delivery (117). Spared nerve 
injury, and intrathecal injection of LPS or CFA resulted in simi-
lar sexually dimorphic responses whereas intrathecal zymosan, 
intracerebroventricular (ICV), or intraplantar injections of LPS 
elicited equivalent pain responses in males and females (117).

THe ROLe OF MAST CeLLS iN PAiN

Mast cells, a critical component of the innate immune system, 
are large phagocytic cells from the hematopoietic lineage. They 
circulate as immature cells, then mature after they settle in a tis-
sue. In the developing brain, they localize along meningeal blood 
vessels (BVs) (118) and contain the vast majority of brain hista-
mine (119). In adult life, MCs are capable of migrating across an 
intact blood–brain barrier (BBB) (120). In the periphery, MCs are 
located in various tissues, and relocate in response to inflamma-
tory cues. They are physically associated with nerves in animals 
and man (121–123). In bladder, for example, ~75% of MCs are 
in proximity to nerve fibers facilitating nerve-immune cell com-
munication (124). MCs are a critical component of migraine as 
well as migraine comorbidities (Figure 1). The initiating factors 
for CNS-immune system co-activation are not known, but their 
interactions appear to perpetuate disease (pain) in a feed-forward 
fashion.

Mutual Activation of the Nervous System 
and Mast Cells
Upon activation, MCs secrete vasoactive mediators and cytokines, 
including nitric oxide (NO), TNFα, vasoactive intestinal peptide 
(VIP), and histamine (125–129) (Figures  2 and 3). In turn, 
MCs react to various neuronal stimuli, such as substance P (SP), 
CGRP, corticotropin-releasing hormone (CRH), histamine, 
many of which are also associated with migraine pathophysiology 
(119, 130).

The physical interaction and communication between nerves 
and MCs is mediated by adhesion molecules, such as cell adhesion 
molecule (CADM1) or N-cadherin (134–136). Communication 
between MCs and distant neurons occurs via transgranulation 
or release of exosomes (137) with granule-filled pseudopods cast 
off on the surface of the adjacent cell. Exosomes, secreted from 
multivesicular bodies and fusion with the plasma membrane, 
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P from terminal nerve endings (colored circles near terminals), resulting in meningeal BV vasodilatation, and local activation of dural mast cells (MC). Mast cell 
estrogen receptors ERα and ERβ, and progesterone receptors A (PR-A) and B (PR-B) are located at the plasma membrane or in the nucleus, and mediate mast cell 
responsiveness to these sex steroids. Following mast cell degranulation by either meningeal nociceptor activation, [or experimental nitroglycerine (NTG) injections], 
mast cells secrete vasoactive factors (VAF) and cytokines, such as nitric oxide, TNFα, vasoactive intestinal peptide, and histamine (depicted by colored circles) in 
meninges and brain. Mast cells can also react to neuronal stimuli, including substance P, CGRP, corticotropin-releasing hormone, and histamine. Mast cell 
degranulation can also lead to disruption of the brain–brain barrier (BBB), which is depicted by astrocytic end feet (blue) and pericytes (green) that directly appose 
brain capillaries.
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released by MCs can then target more distant cells with their 
protein and RNA cargos (138–140).

Mast Cells and Pain Pathways
Mast cells interface in different locations outside of the CNS with 
nociceptors, predominantly with C-fibers. C-fibers are small, 
non-myelinated peripheral nerve fibers that detect noxious 
stimuli acid or chemical irritants (141). Once activated, C-fiber 
signaling is processed in the CNS to generate perceptions, such as 

pain, itch, urge to cough or sneeze, or subconscious activation of 
preganglionic autonomic neurons. For example, nociceptor acti-
vation in the gut can lead to secretion, diarrhea, and visceral pain 
(142–144). Additionally, local, autonomous afferent–efferent 
synapses independent of CNS control (“peripheral reflexes”) can 
transmit signals detected by a sensory nerve directly to nearby 
efferent enteric neurons, in gut, gallbladder, and airways (145). 
Neuropeptide-containing afferent C-fibers also directly regulate 
organ function via “axon reflexes” (146). “Axon reflexes” require 
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the action potential of a peripheral nerve to travel until it reaches 
a bifurcation of the same nerve, then travel antidromically to 
endings of the same nerve. Once the action potential arrives, 
sensory neuropeptides, such as SP, neurokinin A, and CGRP, 
are released and can induce edema, vasodilation, smooth muscle 
contraction, and immune cell recruitment and activation. Thus, 
activation of a peripheral nerve can result in immune activation 
at the endings of the same nerve in a process termed “neurogenic 
inflammation” (146).

Mast cells are involved in pain in two ways: they secrete sub-
stances that directly activate or sensitize nociceptors (Figures 2 
and 3). MCs release algogenic substances that activate nociceptors 
contributing to neuropathic pain (147), including trigeminocer-
vical and lumbosacral tactile hypersensitivity (148). Sensitization 
of nociceptors can be mediated by MCs via histamine binding to 
nociceptors or nerve growth factor that binds the high-affinity 

nerve growth factor tropomyosin receptor kinase A (trkA) 
receptor (149). TrkA signaling is central to neuroprotection 
and neuroplasticity. Additionally, MCs secrete chemoattractants 
that recruit other immune cells to the site that can release pro-
nociceptive factors (150).

The Role of Mast Cells in Cerebral Pain
Several lines of evidence indicate mast cell involvement in 
cerebral pain (Figure  2). In electrophysiological studies, 
MC-derived serotonin, prostaglandin I2, and to a lesser extent, 
histamine were identified as sensitizing agents of meningeal noci-
ceptors (Figure 4) (133). Interestingly, the usually inflammatory 
eicosanoid PGD2 and leukotriene C4 did not sensitize meningeal 
nociceptors (133). Nerve stimulation of rat trigeminal nerve (TN) 
resulted in increased vascular permeability, MC activation and 
degranulation in the orofacial area innervated by the trigeminal 
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nucleus (131). Neonatal rats treated with capsaicin to deplete 
SP have the same MC activation, degranulation, and vascular 
leakage upon TN stimulation as untreated animals, suggesting 
that SP-mediated pain signals do not work via MCs (131). On 
the other hand, NO donor drugs cause enhanced CGRP release in 
trigeminal pathways, resulting in meningeal arterial vasodilata-
tion and MC degranulation (32).

A subset of chemosensitive afferent nerves of the meninges 
express the protease-activated receptor-2 (PAR-2 receptor), 
and its activation also causes vasodilatation (Figure 4) (153). 
Proteolytic enzymes, such as tryptase released from MCs, can 
activate PAR-2 receptors inducing sensitization of the tran-
sient receptor potential vanilloid 1 (TRPV1) channel (153). 
TRPV1 is expressed in small nociceptive neurons, including 
in brain dura and trigeminal ganglia. Sumatriptan inhibits 
TRPV1 (154). Collectively, these observations suggest that MC 
activation and sensitization of chemosensitive meningeal and 
trigeminal ganglion (TG) C-fiber nociceptors may contribute 
to headaches (155).

Stress is a common trigger for migraines. Stress activation of 
brain MCs in rats is mediated, in part, by corticotropin-releasing 
factor (CRF) (130). Stress also selectively increases BBB per-
meability in rodents in brain regions rich in mast cells (156). 
Increased serum histamine levels in patients with migraines 
or cluster headaches further suggest MC degranulation during 
headache (157).

Primary MC disease (systemic mastocytosis or MC activation 
syndrome) is associated with symptoms of “brain fog”: loss of 
attention, focus, short-term memory, and ability to multitask 
(158, 159), underlining the connection between the innate 
immune system and the CNS.

Mast Cells and Sex Hormones
Both estrogen and progesterone can activate MCs (160). Human 
and mouse brain MCs express estrogen receptors ERα and 
ERβ and/or the progesterone receptors A (PR-A) and B (PR-B) 
[reviewed in Ref. (160), Figure 2]. Steroid receptors are located 
at the plasma membrane or the nucleus (160). Upon binding hor-
mone, nuclear steroid receptors form multiprotein complexes that 
determine whether the complex acts as a transcriptional repressor 
or enhancer (161). Steroid receptors located at the plasma mem-
brane or on organelle membranes, by contrast, induce immediate 
signaling. Receptor location thereby determines the temporal 
relationship between hormone exposure and hormone-triggered 
effects. Nuclear receptor-mediated effects take minutes to hours, 
while plasma membrane and organelle-receptor mediated effects 
take seconds to minutes (160, 161).

Mast cell degranulation is a rapid response to estrogen or 
progesterone. Importantly, though androgen receptors are 
expressed in human MCs, testosterone does not mediate MC 
degranulation (162). In rats, MC densities in dura correlate 
with the availability of estrogen: males and ovariectomized 
females display the lowest density, while estrogen treatment of 
ovariectomized females increases dural MC density to that in 
intact females (163). MC numbers are modified by splenectomy, 
indicating that MCs migrate from spleen or that spleen promotes 

mobilization and migration of MCs (163). Though not well 
studied, it is also possible that MC phenotype is altered by the 
splenic environment as in other immune cells. Experimentally, 
MC degranulation is not impacted by either the estrus cycle of 
intact females or estrogen administration of oophorectomized 
females (163).

Other immune cells are also equipped with receptors for 
estrogen, progesterone, and other sex steroids but sex steroid 
effect on these cells is largely unstudied (164). So how other 
immune cells impact migraine is an open question, but their 
role in some migraine comorbidities is prominent. In allergies 
and asthma, allergen binding antibodies are a key component of 
the disease and all cells involved in the generation of antibodies 
(T cells, antigen-presenting cells, B cells, and regulatory T cells) 
express sex steroid receptors and can be modulated by these fac-
tors (164). Both the xenoestrogen bisphenol A (an environmental 
estrogen-like compound) and estradiol enhance differentiation of 
antigen-presenting cells that preferentially promote activation of 
T cells into the Th2 phenotype involved in antibody production 
(165, 166).

environmental estrogens and Mast  
Cell Function
Mast cells have been extensively studied in the context of asthma, 
allergies, and anaphylaxis, largely with the help of well-defined 
rodent models. In those models, xenoestrogens promote MC 
degranulation and activation (167). Xenoestrogens are present in 
water and food in low concentration, concentrating up the food-
chain and retaining bioactivity for long periods (167). In human, 
MC lines, xenoestrogens can induce MC degranulation, and their 
effects are additive with other xenoestrogens or estrogens (167, 
168). Importantly, estrogen enhancement of degranulation was 
also observed in the setting of IgE-triggered MC degranulation 
characteristic of allergic reactions (167, 168). Xenoestrogen 
modulation of MC function in the context of diseases, such as 
migraine, has not been studied, but in a rat model, migraine 
behaviors were exacerbated by exposure to bisphenol A (169). 
Some researchers suspect that migraine incidence is increasing 
(170), and others have reported associations between air pol-
lution and migraine (171) as well as urticaria reactions (172), 
raising questions about environmental pollutants generally in 
migraine triggering.

FLUiD BALANCe AND SeXUAL 
DiMORPHiSM iN MiGRAiNe

Over-hydration or dehydration is common migraine triggers. 
Fluid homeostasis is influenced significantly by fluctuating 
gonadal steroids that change through the menstrual cycle or with 
hormone replacement therapy. Estrogen receptor expression is 
prominent in brain nuclei critical for maintaining fluid balance. 
The estrogen receptor ERβ is present in the vasopressin mag-
nocellular neuroendocrine cells (MNCs) of the hypothalamus, 
while estrogen receptor ERα is present in the sensory circum-
ventricular organs (CVO) (173). In hyponatremia, AVP release 
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is strongly inhibited in the MNCs, while ERβ expression is 
increased (174, 175). ERβ expression is reduced in hyperosmolar 
states, in response to neuronal activation (175).

The renin–angiotensin–aldosterone system (RAS) plays a 
pivotal role in regulating blood pressure and fluid balance, tar-
geting capillary endothelium and neurons throughout the brain 
(176) to regulate cerebral blood flow and stress responses (177). 
The angiotensin2 (AT2) receptor gene is regulated by estrogen 
and plays a critical role in blood pressure regulation in females 
(178). The RAS acts through the CVOs and the area postrema to 
activate pathways that elevate blood pressure, release vasopressin 
and aldosterone, and increase ingestion of water and sodium. The 
sensory CVOs, the subfornical organ, and organum vasculosum 
of the lamina terminalis (OVLT) lack a BBB and so are particu-
larly sensitive to humoral signals, including plasma and CSF 
sodium, osmolarity, and AT2 levels (see below). Drugs that act 
on the RAS can help some migraineurs (179), but more extensive 
trials are needed to generalize these observations. High plasma 
ACE activity has been reported in the blood of migraineurs (180), 
suggesting that the RAS is disturbed. Nonetheless, ACE genotype 
polymorphisms have not been extensively studied for migraine 
therapeutic implications (181, 182). Activation of AT1 increases 
CGRP release from the dorsal root ganglia sensory neurons of 
spontaneously hypertensive rats (183), indicating another link 
between RAS modulation and migraine. Elevated plasma levels 
of CGRP found in migraineurs have led to development of CGRP 
antagonists and monoclonal antibody therapies with potential to 
rescue migraine (32).

THe BLOOD–BRAiN BARRieR, 
SeX, AND MiGRAiNe

The BBB is a highly selective unit that maintains brain homeostasis 
by limiting peripheral circulatory substances from entering the 
CNS (184). The functional neurovascular unit of the BBB is made 
of endothelial cells, pericytes, and astrocytes (185). Disruption in 
BBB function can lead to various neurological problems and has 
recently been implicated in pain disorders (186). The specialized 
tight and gap junctions between BBB endothelial cells prevent 
entry of toxins, and allow only small and lipophilic molecules into 
the CNS (185). The vascular theory of migraine, first articulated 
by Wolff (1948) implicates vasodilation of cranial arteries as the 
cause of the migraine pain (187). The role of the neurovascular 
unit has been heavily studied in relation to migraine but is still a 
source of debate (188–190).

The meninges are an interface between the systemic immune 
system and the CNS (Figure 2) with the relative immune privi-
lege of the CNS maintained by the BBB. Traditionally, absence 
of a lymphatic system was also considered a key component of 
immune privilege. However, lymphatic systems in the immune 
privileged posterior eye, blind-ended were recently detected in 
humans (191). Additionally, a murine CNS lymphatic system was 
recently identified (192). This network is likely involved in CSF 
drainage, carries immune cells, and drains to the deep cervical 
lymph nodes. These recent advances in neuroimmunology are 
likely very relevant to migraine pathophysiology.

The BBB and Migraine
Blood–brain barrier alteration in migraine is an area of intense 
study (193). In FHM type II, BBB disruption can be demonstrated 
using contrast-enhanced MRI (194). Other direct evidence of BBB 
dysfunction during migraine was observed in CSD rodent mod-
els. Increased cerebral cortex levels of metalloprotein 9 (MMP-9), 
a protease marker of BBB, were observed with associated edema 
and plasma protein leakage into brain (195). Increased plasma 
MMP-9 has also been implicated in migraine pathogenesis (196, 
197). Women migraineurs have increased plasma MMP-9 con-
centrations during headache vs. interictal phases, and a particular 
MMP-9 haplotype (198). In order to compensate for a sudden 
substantial increase in CBF during migraine attacks, MMPs are 
thought to compensate by loosening TJs and expanding the BBB 
extracellular matrix (199), resulting in an inflammatory environ-
ment contributing to migraine (195).

Calcitonin gene-related peptide, a major player in migraine, 
causes dilation of the middle meningeal artery (MMA) in healthy 
volunteers, and sumatriptan reverses this dilation (22). Of note, 
pharmacokinetic parameters of triptans vary according to gen-
der, with generally higher bioavailability in women and higher 
clearance rate in men (200). Gender-dependent dermal blood 
flow differences from capsaicin-induced release of CGRP (201) 
points to a specific mechanism underlying sexual dimorphism of 
migraine incidence.

MiGRAiNe COMORBiDiTieS AND SeX

Many of the extensive range of known migraine comorbidities 
and their overlapping genetic, molecular, and drug responses 
are reportedly more frequent in females (202), though not 
uniformly. One study showed that males tended to have 
more physical comorbid disorders, whereas females had 
more psychiatric comorbidities (8). Stress-related disorders 
are especially more common in females, including migraine, 
depression, and anxiety. Two groups of diseases with strong 
immunological components are also more prominent in 
women migraineurs: allergies and some autoimmune disorders. 
While environmental allergies are significantly higher in both 
men and women migraineurs compared to non-migraineurs, 
asthma is more frequent only in women migraineurs (202). 
Both osteoarthritis (driven by inflammation) and autoim-
mune rheumatoid arthritis are more prominent in women 
migraineurs. Similarly, different forms of autoimmune thyroid 
diseases are more prominent in women migraineurs than non-
migraineurs, while male migraineurs are similar in this regard 
to male non-migraineurs.

In search of the basis for the sexual dimorphism of psychiatric 
disorders in women migraineurs, the locus coeruleus (LC)–nor-
epinephrine (NE) neurons display more extensive dendritic arbo-
rization in female rats vs. male rats (203). Clinically, hormone 
fluctuations are clearly involved in peri-menstrual, menopausal, 
and postpartum depression. IC/BPS, IBS, and asthma are more 
common in females. Vestibular migraine is surprisingly com-
mon affecting about 1% of the population, and also has a female 
preponderance (204).
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The neurovascular theory of migraine is in part supported by a 
positive correlation between Raynaud’s phenomenon and migraine 
(205). Systemic sclerosis is more common in females (206), as 
is hypothyroidism (207), and SLE, with potential sex-specific 
differences mediated by estrogen and its metabolites, decreased 
androgen levels, hyperprolactinemia, and gonadotrophic-release 
hormones (208). Prolactin, important in pregnancy and lactation, 
also affects angiogenesis, immune function, and osmoregulation 
in both sexes (209) and hyperprolactinemia has been linked to 
headache (210).

interstitial Cystitis/Bladder Pain Syndrome
Migraine is common in patients with IC/BPS. About 11% of 
women and 5% of men suffer from IC/BPS (211, 212) and, like 
migraine, it is more common in people with other pain condi-
tions, including IBS and fibromyalgia, both more common in 
females (213, 214). Imaging has shown overlapping areas of 
involvement of brain regions of the salience, emotional response, 
and sensorimotor networks, and the prefrontal cortex in IC/BPS 
and other chronic visceral pain conditions (215, 216) IC is often 
diagnosed when urinary frequency, nocturia, and suprapubic 
pain are exacerbated by ovulation and under stress. Bladder MCs 
are activated in IC (217).

Bladder nerves include sensory afferents and autonomic 
efferents, and peptidergic, P2X-, and TRPV1 fibers from the 
lumbosacral dorsal root ganglion (DRG), along with adrenergic 
and cholinergic fibers. Numerous mechano- and nociceptive 
receptors have been described that respond to a variety of inputs, 
including EGF, SP, CGRP, CRF, acetylcholine, noradrenaline, 
adenosine, and inflammatory cells. Urothelial cells secrete many 
transmitters and mediators, including ATP (218), acetylcholine, 
prostaglandins, NO, and cytokines. Importantly, the bladder 
expresses both ERα and ERβ receptors and preclinical models 
show that E2 modulation of stress-activated kinase p38 MAPK 
varies during the menstrual cycle (219).

ALLeRGY AND ASTHMA

Asthma and other allergic airway diseases are a prominent exam-
ple of MC-driven diseases with higher propensity in females: 
similar to migraine, women are approximately three times more 
affected than men (220–222). Thirty to forty percent of women 
experience exacerbation of asthma symptoms peri-menstrually 
(223). Similar to cerebral pain sensitization patterns as a function 
of estrogen (91), oophorectomized animals have reduced airway 
inflammation (224) and tamoxifen (ER antagonist) treatment of 
intact females also reduced airway inflammation (224).

Mast cells activated by binding of allergen–antibody IgE 
complexes directly stimulate C-fibers that express receptors for 
many mediators present in the context of allergic disorders. 
This direct connection has been shown for airways, skin, gas-
trointestinal tract, and bladder (196, 197, 225, 226). Similarly, 
intestinal MC activation can sensitize spinal nerves such that a 
short-lived mechanical gut distension results in prolonged affer-
ent nerve activation (227). This allergen activation of MCs can 
result in C-fibers hyperexcitability, lasting for several hours (228). 
Importantly, allergies, which trigger symptoms in the periphery, 

can also modulate CNS neurons, and contribute to CS (229). 
There is currently no evidence that CNS MCs are activated by 
peripheral allergen exposure and, thus, it is more likely that the 
strong peripheral nociceptor activity modulates CNS neurons via 
the release of peptides and transmitters at the central terminals of 
the afferent nerves. Thus, migraine and its prominent comorbid-
ity, allergy, have a common denominator in MCs and triggering 
of one disease may exacerbate the other.

irritable Bowel Syndrome
GI inflammation is painful and leads to profound changes in CNS 
(230). Conversely migraine is more prevalent in patients with 
celiac or IBD than in the general population (231). GI inflamma-
tion invariably leads to disordered motility. With inflammation, 
neurons involved in peristalsis become hyperexcitable, and 
inhibitory neurotransmission is blunted (232). These changes can 
persist (in the spinal cord dorsal horn) even after GI inflammation 
has subsided. Abdominal migraine is distinct from inflammatory 
bowel diseases (or celiac disease or sickle cell disease that present 
in similar ways). Abdominal migraine pain is episodic and severe 
enough to prompt ER visits, most commonly in children. A case 
report suggests that pregnancy can interrupt the progression of 
abdominal migraine (233).

Mast cells contribute to IBS, a common comorbidity of 
migraine (234–236). Increases in intestinal neuron excitability, 
mesenteric sensory nerve activity, and visceral or somatic sensi-
tivity possibly caused by intestinal mucosa serotonin, histamine, 
and MC tryptase contribute to IBS pathology (237) In the long 
term, the bowel nervous system responds by increasing expression 
of SP and TRPV1 and, therefore, bowel pain perception (132, 225, 
238–240). MC infiltration of the colonic mucosa in IBS patients 
also correlates with the amount of released NGF, neuronal sprout-
ing, and expression of the NGF receptor NTRK1 (241).

Other gastrointestinal motility disorders that share their 
comorbidity and a sexual proclivity for females with migraine 
include gastroparesis (242), cyclic vomiting syndrome (243), and 
infant colic (244). Colic is more common in offspring of mothers 
with migraine (245).

Osteoarthritis and Rheumatoid Arthritis
Synovial inflammation is as an important feature of osteoarthri-
tis and pain is its main symptom. Both peripheral and central 
neurological mechanisms are involved and, hence, osteoarthritis 
is considered a chronic nociceptive pain condition (246). In 
rheumatoid arthritis, joint pain is also the main symptom (247). 
Synovial inflammation in osteoarthritis presents with infiltration 
of macrophages, T cells, and MCs but the overall level of infiltra-
tion and cytokine production is lower than that in rheumatoid 
arthritis (248). The common denominator of osteoarthritis and 
migraine is nociceptive sensitization.

The pathogenesis of rheumatoid arthritis is not fully 
understood but involves both the innate and adaptive arms of 
the immune system eventually resulting in the breakdown of 
immune tolerance, autoantigen presentation, and both T and B 
cell activation (249). Interestingly, MMP-9 is a genetic marker 
of RA susceptibility and contributes to joint damage (250).  
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As noted above, MMP-9 plays a role in migraine, and serum levels 
are generally elevated in migraineurs.

Anxiety
Anxiety, including panic attacks, affects nearly one in five adults 
in the U.S. (251), but is even more frequent in migraineurs. 
Women are significantly more likely than men to develop an 
anxiety disorder (252). The National Comorbidity Survey (NCS, 
conducted from 1990 to 1992) found that lifetime prevalence 
rates for any anxiety disorder were 30.5% for women and 19.2% 
for men (253). Prevalence rates were also higher in women than 
men for each anxiety disorder examined (253, 254).

Anxiety is associated with an exaggerated sympathetic nervous 
system response, beginning with the hypothalamic–pituitary–
adrenal (HPA) axis (255), with CRF secretion. The end products 
of this cascade are cortisol, epinephrine, and NE (256). Anxiety 
also results in glucocorticoid receptor resistance. Without appro-
priate cortisol regulation of the local cytokine response, there is 
greater susceptibility to compromised immune defenses (257).

Depression is a Common Migraine 
Comorbidity
Population-based and clinical studies have demonstrated the high 
prevalence of migraine and depression as comorbid disorders. 
Migraineurs are 2.2–4 times more likely to suffer from depres-
sion (258), and 28% of migraineurs experience major depressive 
disorder (MDD) (259), more common in migraineurs with aura 
(260). Rates of suicide attempt are also increased in migraineurs 
(261) and migraineurs with fibromyalgia. MDD patients with 
active migraine are particularly difficult to treat (262).

Moreover, migraine and depression are two to three times 
more common in women than men (254, 263). The relationship 
between migraine and depression appears to be bidirectional, 
suggesting a common neurobiology (264). Women with CDH are 
more likely to suffer from MDD than those with episodic head-
aches (265). Furthermore, episodic migraineurs with depression 
are at increased risk of developing chronic migraine (266). A few 
pathophysiological mechanisms linking the two disorders have 
been suggested: hormonal influences (58), serotonergic dysfunc-
tion, CS, and Na+,K+-ATPase dysregulation (9, 267, 268), all of 
which are controlled in part by estrogen or show gender-specific 
differences.

Women’s increased migraine attacks and mood disturbances 
have been linked with fluctuations in estrogen during menses, 
postpartum, and premenopausal periods (269). Anecdotally, 
estrogen augmentation can have potential positive therapeutic 
effects on depression (57). Physiological effects of estrogen 
span both disorders, including the modulation of neuropeptide 
Y, CRH, and the neurotransmitters serotonin, dopamine, and 
glutamate (57).

A serotonergic dysfunction associated with migraine has been 
linked with polymorphisms in the serotonin transporter 5-HT 
(270). An allele of 5-HT that slows serotonin synthesis is associ-
ated with increased susceptibility to depression and increased 
sensitivity to anxiety and stress (271). Chronically low serotonin 
is also implicated in CSD and heightened sensitivity of the 

trigeminovascular pathways of migraine (272). Depression and 
anxiety, associated with reduced serotonin are commonly treated 
with pharmaceuticals that increase central serotonin levels, some 
of which have also been used in treatment of migraine (273), 
thought SSRIs are not universally effective in migraine (15, 272, 
274). Low-dose TCAs can also treat migraine, both rescue and 
prophylaxis in some patients (275) and other pain syndromes. 
Women tend to respond better to treatment with SSRIs due 
to hormone-dependent pharmacokinetics (276). Thus, anti- 
depressants, triptans, and anticonvulsants are often used in com-
bination in treatment of both disorders (277, 278). Behavioral 
therapy also has a place in treating both migraine and depression 
(279) but despite these options, treatment of these two disorders 
is still challenging (280).

Allodynia, a clinical marker of CS, is correlated with increased 
risk of depression among migraineurs (281), and increased sui-
cidal ideation (282). Pain perception is abnormal in patients with 
MDD, who display lowered pain threshold and tolerance (283).

As mentioned earlier, in some cases, migraine and depression 
progress into chronic states more refractory to treatment (262, 
265, 266), suggesting a common CS syndrome, involving both 
emotional and sensory pathways (284, 285). Women have been 
shown to be more susceptible to stress and negative experiences, 
a well-known risk factor for depression and migraine (286). 
Chronic stress induces neuroinflammation (287). Activation or 
dysregulation of the HPA has also been implicated in migraine 
and depression (288, 289). Furthermore, estrogen receptors are 
abundant and localized in the hypothalamus. Animal studies have 
shown that females with high estrogen activity had a greater HPA 
axis response to stress compared to low-estrogen counterparts 
and males (290).

Inflammation is possibly the mechanistic link between depres-
sion and migraine, potentially due to proinflammatory cytokine 
alteration of tryptophan (TRP) metabolism, reducing 5-HT syn-
thesis and activating the HPA axis (291). ER-β signaling increases 
5-HT synthesis in murine brain (292). Clinically, depression 
symptomatology is linked to depletion of 5-HT and production 
of TRP metabolites by inflammatory cytokines (293). The role 
of CGRP in migraine, inflammation, and sexual dimorphism as 
noted above is also observed in patients with MDD (294).

Na+,K+-ATPase dysfunction in migraine has been discussed 
above. Reduced Na+,K+-ATPase activity contributes to both 
mania and depression (267, 295–297), likely through increased 
neuronal excitability and decreased neurotransmitter release 
(297). Mice lacking the Na+,K+-ATPase subunit FXDY2 have 
altered renal sodium handling and increased thermal instability 
(298). FXDY2 activity has also been proposed as a modulator of 
hypersensitivity to pain induced by inflammation (298).

CONCLUSiON

Common threads in migraine and comorbid conditions are 
sexual dimorphism, MC effectors, and neuronal hyperexcitabil-
ity. We note these common features in hopes that immunologists, 
endocrinologists, and other domain experts in experimental 
and clinical neurosciences can inform each other. For example, 
the detailed understanding of MC dysregulation in asthma 
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and allergy may help inform the pathogenesis of migraine. 
Awareness of the altered sodium homeostasis found in migraine 
may encourage studies of sodium homeostasis underlying 
some of the more common migraine morbidities that are often 
viewed within their clinical specialties as unrelated to migraine. 
Awareness of the prevalence of migraine, especially in women, 
should help inform the way histories are taken outside of neurol-
ogy and headache clinics. Most importantly, understanding the 
common drivers of disease may help re-define the subtypes of 
migraine and its comorbidities: are MC-mediated migraines fun-
damentally different than those in which sodium dysregulation 

is a major driver? Current therapies are crude, non-specific, and 
must be highly individualized. Design of more rational therapies 
likely involves better phenotyping of migraine by gender-specific 
and other pathophysiological drivers of disease, and will cer-
tainly involve multidisciplinary input from psychiatry and pain 
specialists, allergists, and gastroenterologists, in dialog with 
neuroscientists.
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