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Molecular classification of geriatric breast
cancer displays distinct senescent subgroups
of prognostic significance
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Breast cancer in the elderly presents distinct biological charac-
teristics and clinical treatment responses compared with cancer
in younger patients. Comprehensive Geriatric Assessment is rec-
ommended for evaluating treatment efficacy in elderly cancer
patients based on physiological classification. However, research
on molecular classification in older cancer patients remains
insufficient. In this study, we identified two subgroups with
distinct senescent clusters among geriatric breast cancer patients
through multi-omics analysis. Using various machine learning
algorithms, we developed a comprehensive scoring model called
“Sene_Signature,” which more accurately distinguished elderly
breast cancer patients compared with existing methods and bet-
ter predicted their prognosis. The Sene_Signature was correlated
with tumor immune cell infiltration, as supported by single-
cell transcriptomics, RNA sequencing, and pathological data.
Furthermore, we observed increased drug responsiveness in
patients with a high Sene_Signature to treatments targeting
the epidermal growth factor receptor and cell-cycle pathways.
We also established a user-friendly web platform to assist inves-
tigators in assessing Sene_Signature scores and predicting treat-
ment responses for elderly breast cancer patients. In conclusion,
we developed a novel model for evaluating prognosis and thera-
peutic responses, providing a potential molecular classification
that assists in the pre-treatment assessment of geriatric breast
cancer.

INTRODUCTION
With an aging population and increased life expectancy, cancer prev-
alence among the elderly has increased significantly. Elderly patients
often exhibit distinct biological characteristics and treatment re-
sponses compared with younger patients,1 as well as a diminished
tolerance to cancer therapies with age.2 To address the historic failure
in recognizing the impact of these differences on treatment decisions,
M
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prognosis, and tolerance, the National Comprehensive Cancer
Network and the International Society of Geriatric Oncology have
emphasized the importance of Comprehensive Geriatric Assessment
(CGA) and other screening tools for elderly cancer patients,3–5 which
have greatly enhanced clinical treatment outcomes.6,7 However, while
CGA can effectively evaluate various physiological and physical
healthmetrics, such as bodymass index and the Groningen Frailty In-
dicator, it provides limited insights into molecular and cellular char-
acteristics, which are crucial for predicting prognosis and drug re-
sponses in elderly cancer patients.

Breast cancer is among the prevalent malignancies in women. Signif-
icant advancements in treatments such as surgery, radiation therapy,
chemotherapy, hormone therapy, and targeted therapy have greatly
enhanced overall prognosis for breast cancer patients. Given the ex-
panding cohort of elderly breast cancer patients, developing more
precise classification criteria is essential for effective clinical treat-
ment. Nevertheless, physiological age should not be the sole factor
determining treatment protocols for geriatric breast cancer.8,9

Cellular senescence, which reflects “age” at the molecular and cellular
levels, is related to physiological age but also exhibits important dif-
ferences.10,11 Thus, using senescence as a molecular characteristic to
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classify elderly breast cancer patients may improve the accuracy of
prognosis evaluation and drug sensitivity.

Understanding the molecular characteristics of elderly breast cancer
patients is essential for making informed clinical treatment decisions.
In this study, we developed the Sene_Signature model using large-
scale databases, including the Cancer Genome Atlas (TCGA) and
Molecular Taxonomy of Breast Cancer International Consortium
(METABRIC), applying advanced machine learning techniques.
Notably, the Sene_Signature model demonstrated superior perfor-
mance compared with existing methods, providing robust prognosis
predictions for geriatric breast cancer, as validated by multiple pub-
lished datasets. Moreover, Sene_Signature proved to be a reliable in-
dicator of therapeutic response, offering valuable theoretical guidance
for personalized treatment strategies in elderly breast cancer patients
(Figure S1). To enhance its practical application, we developed an
accessible web platform (http://zhaoliminlab.cn:8080/GBC/index.
jsp) that enables users to evaluate survival prognosis and drug re-
sponses for elderly breast cancer patients using their transcrip-
tomic data.

RESULTS
Unsupervised clustering analysis reveals two distinct senescent

subgroups in elderly breast cancer patients

To investigate the molecular characteristics of senescence in elderly
breast cancer patients, we first identified key genes associated with
cellular senescence. By analyzing their frequency of occurrence across
various databases,12–16 we identified 25 essential senescence-related
genes (see methods for details). We analyzed the expression patterns
and mutations of these 25 genes (Figures S2A–S2E) and found that
most exhibited marked changes in geriatric breast cancer (Fig-
ure S2B). These findings suggest that these senescence-related genes
may play crucial roles in the progression of geriatric breast cancer.

We next conducted nonnegative matrix factorization analysis on data
from 513 elderly breast cancer patients in the TCGA database,
focusing on the 25 senescence-related genes identified earlier, which
divided the patients into 2 distinct senescent clusters via unsupervised
clustering (Figures S3A–S3K; Table S1). Principal-component anal-
ysis further confirmed the differentiation of these clusters based on
the expression patterns of the senescence-related genes (Figure S3L).
Analysis showed that the expression of most senescence-related genes
was higher in cluster 2 compared with cluster 1 (Figure S3M). A heat-
Figure 1. Unsupervised clustering analysis identified two distinct senescent c

(A) Complex heatmap showing expression levels of 25 genes for two senescent cluste

(*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001). (B) Kaplan-Meier survival curves for two

of hallmark pathways in clusters 1 and 2. T values are from a linear model, corrected for

(NES < 0, p < 0.05). (E) Expression levels of immune-inhibitory factors, interferons, chem

**p < 0.01, ***p < 0.001, ****p < 0.0001). (F) Differential expression levels of MHC class

(*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001). (G) H&E stainingwas obtained for two d

A14O, TCGA-AN-A0FW, TCGA-AR-A1AX, TCGA-E2-A14P. (H) Tumor-infiltrating lymph

Heatmap showing predicted proportions of immune cells using various immune infiltration

immune-related gene sets, mismatch repair, and stromal scores between two senescen
map based on these genes demonstrated two distinct clusters, with
higher gene expression in cluster 2, consistent with the violin plot
results (Figure 1A). In terms of clinical breast cancer subtypes, cluster
1 predominantly included luminal subtype patients, while cluster 2
contained a higher proportion of triple-negative breast cancer
(TNBC) and HER2-postive patients. Furthermore, the incidence
of distant metastasis was higher in cluster 2 patients than in cluster
1 patients (Figure 1A). Survival analysis indicated poorer prognosis
outcomes in cluster 2 patients (Figure 1B), as confirmed through
univariate and multivariate Cox analyses (Figures S4A and S4B). In
summary, we identified two distinct patterns of senescence in elderly
breast cancer patients, highlighting significant differences in gene
expression, clinical subtypes, and survival outcomes between the
clusters.

Two senescent clusters exhibit distinct gene enrichment and

immune landscapes

To investigate the disparities between the two senescent clusters, we
performed gene set variation analysis (GSVA) using hallmark gene
sets. Results revealed that cluster 2 was enriched in cell-cycle-related
pathways, including G2M checkpoint, E2F targets, as well as in the
NF-kB signaling pathway, TGF-b signaling pathway, and JAK-
STAT signaling pathway (Figures 1C and S4C–S4E). In addition,
the cellular senescence pathway was upregulated in cluster 2 (Fig-
ure 1D), consistent with the previously observed high expression of
senescence-related genes in this cluster (Figure 1A). Cluster 2 was
also enriched in immune-related pathways, such as the PD-L1 and
PD-1 immune checkpoint pathways, and the T cell receptor signaling
pathway (Figure 1D). Further examination of immune-related genes
indicated higher expression of chemokines (e.g., CXCL10, CXCL11,
and CXCL9) as well as interleukins and their receptors (e.g., IL-
21R, IL-9R, and IL-10) in cluster 2 compared with cluster 1 (Fig-
ure 1E). In terms of tumor antigen presentation capacity, cluster 2 ex-
hibited higher expression of MHC class I, MHC class II, and
other MHC-related antigen presentation molecules (Figure 1F). He-
matoxylin and eosin (H&E) staining of samples from elderly
breast cancer patients (n = 440) in the TCGA cohort (Figure 1G)
confirmed these findings, showing significantly higher levels of tu-
mor-infiltrating lymphocytes in cluster 2 compared with cluster 1
(Figure 1H).

Using the deconvolution algorithm, we assessed the level of immune
infiltration in elderly breast cancer patients based on TCGA
lusters with different gene enrichment pathways in elderly breast cancer

rs. Clinical information corresponding to the top of the heatmap is also presented

distinct senescent clusters, with dashed lines indicating confidence intervals. (C) GSVA

effects from patient origin. (D) Differential enrichment GSEA between clusters 1 and 2

okines and their receptors, and other cytokines in two senescent clusters (*p < 0.05,

I, MHC class II, and other MHC-related antigens in two distinct senescent clusters

istinct senescent clusters, corresponding to the following patient TCGA IDs: TCGA-E2-

ocytes between two distinct senescence clusters revealed significant differences. (I)

algorithms (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). (J) Differential scores of

t clusters using ssGSEA (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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transcriptome data. Results indicated that cluster 2 was enriched in
infiltrating immune cells associated with immune exhaustion or sup-
pression, including M2 macrophages, regulatory T (Treg) cells,
resting natural killer cells, and resting memory T cells (Figure 1I).
We also compared immune-related gene set scores, mismatch repair
scores, and stromal scores between the two senescent clusters.17

Consistent with previous findings, cluster 2 exhibited higher immune
checkpoint features, mismatch repair, and tumor microenvironment
(TME) scores (Figure 1J). These results indicate that two senescent
clusters in elderly breast cancer display distinct patterns of gene
enrichment and immune landscape, with cluster 2 showing a more
pronounced immune response and higher expression of senes-
cence-related pathways.
Development of the Sene_Signature model based on machine

learning

To construct a scoring model to assess the degree of senescence
in elderly breast cancer, DESeq2 was applied to identify differentially
expressed genes (DEGs) (|logFC| > 1 and false discovery rate
(FDR) < 0.05) associated with the two distinct senescent clusters
(Figure 2A), which are crucial for distinguishing between the two
different senescence patterns. To avoid overfitting, accelerate training,
and improve model interpretability, we performed feature selection
using random forest, variance threshold, select from model,
SelectKBest, and sequential forward selection.We also applied different
machine learning algorithms, including GradientBoostingRegressor,
RandomForestRegressor, OneClassDetection, LinearRegressor,
KNeighborsRegressor, and SupportVectorRegressor, to determine
the optimal model for evaluating molecular senescence in elderly can-
cer patients.

Based on various evaluation metrics, including area under curve,
Matthews correlation coefficient, F1 score, positive predictive value,
mean-square error, root mean-square error, mean absolute error,
R-squared and adjusted R-squared (Table S2), the OneClassDetection
senescence scoring model, Sene_Signature exhibited outstanding per-
formance (Figures 2B and 2C). To evaluate the performance of the
Sene_Signature model in predicting outcome in elderly cancer patients,
univariateCox analysis was conducted to compare themodelwith other
currently published models, including SERPINE1_Signature,18 13_Ep-
igenetic_Signature,19 ASF1B_Signature,20 SKP2/ORC6_Signature,21

8_DNA_Repair Signature,22 and Immune_Score23 (Figures 2D and
S5). Notably, Sene_Signature demonstrated superior performance for
elderly breast cancer patients. To further verify the feasibility of using
senescence as a predictivemeasure for geriatric breast cancer prognosis,
the scores of the Sene_Signature model derived from the senescence
clusterwere comparedwith thoseobtained frommodels basedon estab-
lished tumor hallmarks (angiogenesis, WNT target, CD8 T effector,
DNA damage repair, cell cycle, and immune checkpoint),17,24 confirm-
ing the marked impact of senescence on geriatric breast cancer prog-
nosis (Figure 2D). Furthermore, the Sene_Signature model outper-
formed other models related to the senescence pathway12–16 in
predicting survival outcomes for elderly breast cancer patients (Fig-
4 Molecular Therapy: Nucleic Acids Vol. 35 December 2024
ure 2D). A similar high performance of the Sene_Signature model
was observed for the METABRIC database (Figure 2E).

In summary, we developed a machine learning-based model to assess
senescence levels in elderly breast cancer patients. This model demon-
strated superior prognostic performance, highlighting its robust
applicability for this specific patient population.
Sene_Signature score correlates with clinical features

Comparing the Sene_Signature levels between the two distinct sub-
types indicated that patients in cluster 2 had a significantly higher
Sene_Signature score than those in cluster 1 (Figure 3A), consistent
with the enrichment of senescence pathways in cluster 2 (Figure 1D).
Further analysis revealed that 14 of the 25 senescence-related genes
were positively correlated with the Sene_Signature in the TCGA
database (Figure S6A), as also observed in the METABRIC dataset
(Figure S6B). These results suggest that the Sene_Signature score
is an effective measure of the two distinct molecular senescent
clusters.

To further assess the clinical relevance of Sene_Signature in elderly
breast cancer patients, the R package “survminer”was utilized to eval-
uate survival differences between high and low Sene_Signature
groups. Results showed that patients with high scores had signifi-
cantly worse survival outcomes than those with low scores (Fig-
ure 3B). This finding was confirmed in elderly cancer patients from
the METABRIC and GSE2990 datasets (Figures 3C, 3D, and S6C).
In addition, we found that high Sene_Signature scores were associated
with more complex tumor subtypes (Figure 3E). Specifically, patients
with higher scores tended to have a TNBC subtype characterized by
increased heterogeneity (Figures 3E, 3F, S6D, and S6E). In addition,
the high-scoring group had a higher proportion of patients in
advanced T and M stages (Figures 3F and S6D). Overall, these find-
ings indicate that the Sene_Signature score has clinical significance
for elderly breast cancer patients.
Sene_Signature is positively correlated with TME infiltration

To explore the correlation between Sene_Signature and immuno-
therapy prediction, we analyzed differences in tumor mutational
burden (TMB), which are indicative of immunotherapy effective-
ness.25–27 Results indicated that elderly breast cancer patients with
a high Sene_Signature score exhibited a high TMB in both the
TCGA and METABRIC datasets (Figures 3G and S7A). Further
analysis indicated that Sene_Signature was significantly positively
correlated with TMB (Figure 3H). Analysis of single-nucleotide
site mutations in elderly breast cancer patients showed that
those with higher scores displayed greater mutational diversity
(Figures S7B and S7C). We utilized GISTIC2.0 to calculate the
G-score and frequency in elderly breast cancer and found that pa-
tients with high scores exhibited a higher frequency of copy-number
variation (CNV) mutations compared with those with low scores
(Figure 3I).
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Figure 2. Construction of Sene_Signature model based on various machine learning methods

(A) Feature selection and model training flowchart. (B) Area under curve (AUC) curves were utilized to assess performance of various machine learning models. (C) Matthews

correlation coefficient (MCC) was employed to evaluate model performance. (D and E) Sene_Signature model was compared with signature scores, risk assessment criteria,

and senescence signature scores to assess impact on survival in the TCGA (D) and METABRIC (E) datasets.
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Figure 3. Sene_Signature score correlated with clinical features

(A) Boxplots of Sene_Signature for clusters 1 (red) and 2 (blue), indicating significant differences between both groups (p < 0.05). (B–D) Survival differences between high and

low evaluation groups in the TCGA (B), METABRIC (C), and GSE2990 (D) datasets. Solid lines indicate median survival curves, while dashed lines represent 95% confidence

intervals for these estimates, providing a measure of the precision around survival probability at any given time point. (E) Heatmap displays clinical information of patients with

different Sene_Signature. Top is the numerical variable of Sene_Signature, which increases from left to right. Bottom is the heatmap of clinical data, including age subtype,

stage subtype, IHC subtype, PAM50 subtype, triple-negative breast cancer (or not), and senescent clusters. (F) Clinical information differences between high- and low-score

groups following division of TCGA patients based on median score. (G) Boxplot of TMB in the high- (red) and low-score (blue) groups in the TCGA dataset (p < 0.05). (H)

Correlation between Sene_Signature and tumor mutational burden (TMB) (p < 0.05). (I) Analysis of copy-number variation (CNV) in high- and low-score groups of elderly

breast cancer patients in TCGA dataset. The y axis represents frequency of CNVs and GISTIC score, the x axis represents genomic positions. Amplifications are denoted in

red, and deletions are denoted in blue.
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To further clarify the relationship between Sene_Signature and
TME, the xCell algorithm28,29 was applied to determine the propor-
tions of immune cells in elderly breast cancer patients from the
TCGA and METABRIC datasets. A positive correlation was
observed between Sene_Signature score and immune cell infiltra-
tion, including immunosuppressive Treg cells (Figures 4A and
6 Molecular Therapy: Nucleic Acids Vol. 35 December 2024
4B). To validate this observation, single-sample gene set enrichment
analysis (ssGSEA) was performed to calculate enrichment scores
for various pathways in patients.17,24 Results demonstrated that
Sene_Signature exhibited a positive correlation with TMEscore
and with the enrichment score of immune checkpoint genes
(Figures 4C and 4D). In addition, immune infiltration status of



A

D

E

F

G

I
H

CB

Figure 4. Sene_Signature positively correlated with TME infiltration

(A and B) Lollipop plot showing correlation between Sene_Signature and number of immune infiltrating cells in the TCGA (A) and METABRIC (B) datasets. Values greater

than 0 indicate positive correlation, values less than 0 indicate negative correlation. Circle size represents correlation coefficient (R2), and color represents significance (p

value) of correlation. (C and D) Correlation between Sene_Signature and scores related to immune-related gene sets, mismatch repair, and stromal scores in the TCGA

(C) and METABRIC (D) datasets. Upper-right part represents correlations between pathways, lower-left part represents correlations between Sene_Signature and

pathways. Red indicates positive correlation, blue indicates negative correlation, and line thickness reflects Pearson correlation significance (p value). (E) Representative

patients (TCGA-AC-A3QP, TCGA-D8-A1JG) were selected based on H&E staining results corresponding to Sene_Signature in elderly patients in the TCGA dataset. (F)

Degree of immune infiltration in patients was categorized as inflamed, excluded, or deserted (p < 0.05). (G) Elderly patient breast cancer samples (n = 12) were collected

for H&E staining and RNA-seq. (H) H&E-stained pathological slides were collected from eligible elderly breast cancer patients. (I) Pathology experts evaluated the

H&E-stained pathological slides to quantify extent of immune infiltration. Correlation between Sene_Signature and immune infiltration was calculated by Spearman’s

correlation (p < 0.05).
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patients was examined using H&E staining results from the
TCGA, which showed that patients with a high Sene_Signature
had more tumor-infiltrating lymphocytes than those with low scores
(Figures 4E and 4F).

To confirm these findings, tumor tissues of elderly breast
cancer patients (Figure 4G) were collected for RNA extraction and
transcriptome sequencing to calculate the Sene_Signature for each
patient. The corresponding samples were also preserved with 4%
paraformaldehyde for histological staining to measure immune infil-
tration (Figure 4G). Results demonstrated that patients with a high
Sene_Signature exhibited higher immune infiltration than patients
with a low Sene_Signature (Figures 4H and 4I).

In summary, results indicated that Sene_Signature is closely related to
the tumor immune microenvironment in elderly breast cancer
patients.

Correlation between Sene_Signature and immune infiltration in

scRNA-seq data

In addition to using the deconvolution method based on bulk-RNA
sequencing (RNA-seq) results, we collected 78 single-cell transcrip-
tome samples (totaling 352,450 cells) from the GEO database to
determine immune cell distribution. These data were integrated using
the “harmony” package and cell annotation was performed using the
“Seurat” package to identify six cell types from breast cancer tumor
tissues (Figures 5A, 5B, S8A, and S9A). Focusing on breast cancer
samples from patients over the age of 60 years (30 patients),
Sene_Signature subgroups were categorized based on gene expression
(Table S3). Uniform Manifold Approximation and Projection
(UMAP) dimensionality reduction enabled clear visualization of
cell data distribution from patients in different score subgroups (Fig-
ure 5C). We further analyzed the distribution of cell subtypes in each
patient (Figure 5D) and found that the high-score group had a higher
percentage of immune cells and an increased proportion of T cells
compared with the low-score group (Figure 5E), consistent with pre-
vious findings (Figures 4A and 4B). We further classified T cell sub-
types using UMAP dimensionality reduction, segregating the data
into 12 clusters (Figures S9B and S9C) and identifying nine distinct
T cell subtypes based on gene expression profiles, including naive,
Treg, effector/memory, tissue-resident memory, exhausted (Tex),
and proliferating T cells (Figures 5F and 5G). Results showed that pa-
tients in the high-score group had a higher proportion of Tex and
Figure 5. Single-cell transcriptomic analysis of immune infiltration variations i

(A) Integration of single-cell RNA-seq data from 78 breast cancer patients, followed by U

subtypes, with violin plots showing expression of marker genes for each cell type. (C) Pat

score model andmapped onto the UMAP results. (D) Bar chart depicting proportion of d

information, while columns represent proportion of different cell types in total cells of ea

groups. Specific ratios are indicated on bar chart. (F) Annotation of cell subtypes, with

expression tends toward red, while lower expression tends toward blue. (G) UMAP sc

classes. (H) Bar chart illustrating proportion of different T cell subclasses in each patient.

representing relative abundance of each T cell subclass. (I) Bar chart showing cell prop

represent patient grouping information, while columns represent proportion of different T

values.
Treg cells compared with those in the low-score group (Figures 5H
and 5I). Overall, the single-cell transcriptome data suggest that pa-
tients with a higher Sene_Signature are associated with a greater per-
centage of immune-infiltrating cells, including immunosuppressive
T cells.

Sene_Signature predicts drug sensitivity of elderly breast

cancer

To investigate the impact of different senescence patterns on drug
treatment, we analyzed the relationship between drug sensitivity
and the expression of 25 senescence-related genes using Genomics
of Drug Sensitivity in Cancer (GDSC) data. Results indicated that
high expression of senescence-related genes was correlated with
sensitivity to cell-cycle inhibitors and kinase inhibitors (Figure S10A;
Table S4).

We next analyzed how the Sene_Signature model could guide drug
treatment in elderly breast cancer patients. Patients were categorized
into high and low Sene_Signature groups, and the “oncoPredict”
package was used to predict the half-maximal inhibitory concentra-
tions (IC50). Differences in drug sensitivity between the high- and
low-score groups were then assessed using limma. Results demon-
strated that the high Sene_Signature group had lower IC50 values
for cell-cycle and epidermal growth factor receptor (EGFR) inhibi-
tors, suggesting greater sensitivity in the TCGA geriatric breast cancer
patients to cell-cycle and EGFR pathway-targeted drugs (Figures 6A
and 6B). In contrast, the low-score group exhibited lower IC50 values
for ERK/MAPK inhibitors, indicating stronger responsiveness toward
these inhibitors (Figures 6C, 6D, and S11A). Similar trends were
observed in the METABRIC dataset (Figures 6E–6H and S11B). To
further explore the relationship between Sene_Signature and drug
sensitivity, we analyzed the correlation between predicted IC50 values
and Sene_Signature scores, finding a significant negative correlation
for cell-cycle inhibitors (AT7519 and THZ-2-49) (Figure 6I) and
EGFR inhibitors (gefitinib and afatinib) (Figure 6J), implying higher
responsiveness in the Sene_Signature group to treatments targeting
the cell-cycle and EGFR pathways. Conversely, we found a significant
positive correlation with ERK/MAPK inhibitors (AZ628 and selume-
tinib) (Figures 6K and S11C). These findings were consistent in the
METABRIC dataset (Figures 6L–6N and S11D). To validate the clin-
ical efficacy of drug treatments, we analyzed GEO data (GSE33658)
from eight breast cancer patients over 60 years treated with the
EGFR inhibitor gefitinib. We calculated the Sene_Signature for
n patients with different Sene_Signature scores

MAP dimensionality reduction to obtain cell clustering results. (B) Annotation of cell

ients were grouped into high- and low-scoring categories based on Sene_Signature

ifferent cell types in each patient. Rows represent patient abbreviations and grouping

ch patient. (E) Bar chart showing cell proportions for different Sene_Signature score

a heatmap displaying mean expression of marker genes for each cell type. Higher

atterplot displaying T cell subtypes, with distinct colors indicating various cell sub-

Patient identifiers and their respective groupings are shown as rows, with bar lengths

ortions for different Sene_Signature score groups among T cell subclasses. Rows

cell subclasses in total cells of each patient. Bar chart is annotated with specific ratio
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Figure 6. Sene_Signature predicted drug sensitivity in elderly breast cancer

(A–C) Differential analysis of IC50 values between high and lowSene_Signature groups in elderly breast cancer patients from the TCGA dataset. The x axis represents the delta

in IC50 values, the y axis represents –log10(p value). Specifically marked points represent cell cycle inhibitors (A), EGFR inhibitors (B), and ERK/MAPK inhibitors (C) with (abs

(delta in IC50) > 1 and p value < 0.05). (D) Enrichment analysis of drug target pathways in high and low Sene_Signature groups in elderly breast cancer patients from the TCGA

dataset. Drugs sensitive in the high-score group are shown in red, drugs sensitive in the low-score group are shown in blue, and non-significant enrichment results are shown

(legend continued on next page)
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these patients and observed their response to the drug. Results
showed that all patients in the high Sene_Signature group
responded to EGFR inhibitor treatment, while only half of the low
Sene_Signature group showed a response (Figure S12A). In conclu-
sion, the Sene_Signature model has significant potential for guiding
drug treatment in elderly breast cancer patients.
Development and use of the Sene_Signature website

We also developed a website (http://zhaoliminlab.cn:8080/GBC/
index.jsp) to facilitate the application of Sene_Signature across
different patient groups (Figure 7). The core feature of the site is
the “Sene_Signature” module, which provides an input interface for
external datasets. This module calculates the Sene_Signature for pa-
tients, allowing for analysis of immune infiltration, mutations, and
clinical characteristics of patients based on model predictions. In
addition, the site includes a “Drug” module that predicts drug sensi-
tivity in elderly patients based on uploaded transcriptomic data,
providing a potential basis for personalized treatment in older breast
cancer patients. Overall, this platform offers a practical tool for re-
searchers and clinicians to assess geriatric scores and explore poten-
tial treatment options.
DISCUSSION
In our study, we determined that genes associated with senescence
can differentiate elderly breast cancer patients into two distinct
senescent clusters through unsupervised clustering. Based on the
characteristic genes of these subgroups, we constructed a regression
model using machine learning, resulting in the creation of the
Sene_Signature for these patients. We found a consistent correlation
between the unsupervised clustering results and the high or low
Sene_Signature scores (Figure 3A). Notably, patients in the high-
score group exhibited a poorer survival prognosis, a higher tendency
toward malignant subtypes, and a higher TMB compared with those
in the low-score group. We also evaluated the relationship between
Sene_Signature scores and immune infiltration in elderly breast can-
cer patients. Using the robust xCell method to deconvolute immune
cell proportions from bulk RNA-seq,28,29 elderly breast cancer pa-
tients with higher scores demonstrated a higher degree of immune
infiltration, particularly of immunosuppressive cells (Figures 4A
and 4B). These findings were corroborated by subsequent single-
cell data analysis (Figure 5I), which revealed an increase in Tex and
Treg cells in high-score patients. The higher presence of these cells
likely contributes to an immunosuppressive TME, creating a senes-
cence barrier around tumor cells and resulting in a worse prognosis
for these patients.

In recent years, machine learning has emerged as a powerful
tool, increasingly utilized for analyzing and predicting clinical
in gray. (E–G) Differential analysis of IC50 values of cell-cycle inhibitors (E), EGFR inhibitor

elderly breast cancer patients from the METABRIC dataset. (H) Enrichment analysis of d

patients fromMETABRIC. (I–N) Correlation analysis was conducted between drug sensi

datasets. Datasets were categorized into three major classes: cell cycle inhibitors (I an
disease data across a wide range of conditions,30 including various
cancers, chronic illnesses such as rheumatoid arthritis31 and Alz-
heimer’s disease,32 and rare diseases such as shoulder dystocia.33

OneClassDetection, a machine learningmethod based on data sample
pairing,34 has been used to construct a stemness feature that effec-
tively assesses the dedifferentiated oncogenic state in tumor samples,
revealing a novel correlation between cancer stemness and the
TME.35 In our study, we compared multiple machine learning ap-
proaches to evaluate prognosis of elderly cancer patients, ultimately
finding that single-class logistic regression provided themost accurate
results (Figure 2).

Based on drug response analysis, we found that elderly breast cancer
patients with a high Sene_Signature may benefit from EGFR and cell-
cycle inhibitors. Conversely, patients with a low Sene_Signature score
may respond better to ERK/MAPK inhibitors. Although our study
supported the potential application of EGFR inhibitors (Figure S12A),
it is important to note that we lack validation data for other types of
drugs. This limitation is primarily because drug response data often
come from clinical trials, and much of this information is not publicly
available. Many researchers are emphasizing the need for data sharing
from clinical trials,36,37 advocating for the development of standard-
ized procedures and collaborative efforts to facilitate data sharing and
acquisition. This would substantially accelerate research progress that
relies on large data sources. Further studies and clinical data analysis
are required to provide more robust guidance for drug therapy in
elderly breast cancer patients.

In this study, we assessed mRNA expression features to construct a
molecular predictor for elderly breast cancer. Other factors, such as
immune TME,38 mutations,39 proteomics,40,41 and pathology,42 are
also valuable for a more comprehensive understanding of cancer
biology. Future research will focus on incorporating both clinical
and genomic features to create a more precise classification system
for elderly breast cancer.

In summary, we developed a scoring model that predicts prognosis
and drug response in elderly breast cancer patients based on molec-
ular senescence patterns, providing valuable insights into clinical
treatment decisions in this demographic.
METHODS
Elderly breast cancer sample collection

Formaldehyde-fixed, paraffin-embedded BRCA tissue samples were
obtained from the Ganzhou People’s Hospital (Jiangxi, China) in
2023 from elderly breast cancer patients who had not received any
therapy at the hospital. Based on previous studies,43–45 tumor samples
were collected from breast cancer patients aged 60 years and above.
s (F), and ERK/MAPK inhibitors (G) between high and low Sene_Signature groups in

rug target pathways in high and low Sene_Signature groups in elderly breast cancer

tivity predictions and Sene_Signature scores in the TCGA (I–K) and METABRIC (L–N)

d L), EGFR inhibitors (J and M), and ERK/MAPK inhibitors (K and N) (p < 0.05).
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Figure 7. Development of our Sene_Signature website

(A) Themain interface of our website related to Sene_Signature for elderly cancer patients. (B) The connection between the datamodules of each interface, including immune

infiltration, mutations, clinical characteristics and drug prediction.
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The use of clinical samples was approved by the Ethics Committee of
the Ganzhou People’s Hospital (TY-ZKY2024-064-01).

RNA extraction and RNA-seq

Total RNA from tumor tissues was extracted using TRIzol reagent
(TaKaRa), then converted to cDNA using a PrimeScript RT Reagent
Kit (TaKaRa, containing gDNA Eraser). RNA integrity and purity
were checked prior to library preparations. A NEBNext Ultra RNA
Library Prep Kit for Illumina was used according to the manufac-
turer’s recommendations to create sequencing libraries, which were
then sequenced in 150-bp paired-end reads using the Illumina
NovaSeq 6000 platform. The cleaned reads of each sample were
aligned to their respective reference genomes (human: GRCh38) us-
ing HISAT2 software with default parameters.

H&E staining

Breast cancer tissue was fixed in formalin and embedded in paraffin.
Tissue blocks were then sectioned (5 mm thickness) and stained with
H&E. For immunostaining, sections were dehydrated using graded
alcohol and subjected to antigen retrieval by boiling in 10mM sodium
citrate for 20 min, referring to previous research.46 A microscope was
used to observe the distribution of immune infiltration in patients at
5� and 20� magnification.

Data sources

In total, 1,094 samples were obtained from the Genomic Data Com-
mons (GDC) portal (https://portal.gdc.cancer.gov/) and sorted accord-
ing to the respective sample information sheet. According to published
studies,43–45 breast cancer patients older than 60 years were categorized
as elderly, yielding 513 elderly breast cancer samples. Transcriptomic
data (including counts and TPM values), clinical information, and
pathological image data were downloaded using the R package
“TCGAbiolinks.” Furthermore, we obtained transcriptomic data and
related clinical information from 1,105 elderly breast cancer patients
from the METABRIC database (https://www.mercuriolab.umassmed.
edu/metabric) for validation purposes. We also downloaded data
from 75 elderly breast cancer patients in the GSE2990 dataset to vali-
date model reliability. Single-cell transcriptomic data were collected
from the GEO database, including GSE176078, GSE161529,
GSE180286, GSE158399, and E-MTAB-8107 from the ArrayExpress
database (https://www.ebi.ac.uk/biostudies/arrayexpress). After inte-
grating the data and excluding metastatic tumor samples, we obtained
single-cell transcriptomic data from 78 breast cancer patients, 30 of
whom were over the age of 60 years. Data integration was performed
using the R package “harmony.” Transcriptional data from the
GSE33658 cohort in the GEO database were used to validate drug re-
sponses. Various analyses were performed using the GSCA website
(http://bioinfo.life.hust.edu.cn/GSCA/#/). All mentioned databases
are publicly available and open source, and this study adhered to the
access policies of each database.

Identification of 25 senescence-related genes

Genes related to senescence were compiled and analyzed from various
gene set databases, including MSigDB,12 HAGR,13 GeneCards,14
PathCards,15 and Biocarta,16 with their frequency of occurrence
then assessed and ranked to select the top 25 most frequently appear-
ing genes. The final gene list included TP53, CDKN1A, CDKN2A,
SIRT1, RB1, TERT, CDK4, CDKN2B, MAPK1, MAPK14, MTOR,
TERF2, UBC, CDK6, HMGA2, E2F1, CCNA2, MDM2, CXCL8,
HSPA8, LMNB1, MAPK3, MAPKAPK5, ATM, and CDKN1B.

Construction of senescence patterns

The expression levels of the 25 key genes were assessed to determine
their impact on breast cancer in elderly individuals. Unsupervised
clustering analysis based on the expression levels of these senescence
genes was performed using the R package “ConsensusClusterPlus”
(reps = 50, pItem = 0.8, pFeature = 1, clusterAlg = “km”, distance =
“Euclidean”) to determine the optimal clustering solution for pa-
tients, resulting in the identification of two distinct senescence
clusters.

Immune infiltration analysis in elderly breast cancer patients

Information on immune modulators, including MHC, chemokines
and their receptors, interferons and their receptors, interleukins
and their receptors, and other cytokines, was obtained from various
studies.47–49 Enrichment scores for characteristic genes of the tumor
immune microenvironment and tumor immune phenotype were
calculated using ssGSEA (http://biocc.hrbmu.edu.cn/TIP/index.jsp).
Estimations of immune cell quantities from transcriptomic data
were performed using the R package “immunedeconv” through
deconvolution.

GSEA

To gain a deeper understanding of the biological characteristics of
elderly patients, gene enrichment analysis was conducted. Initially,
the “msigdbr” R package was used to obtain hallmark gene sets and
perform GSVA enrichment analysis on the expression matrix of
elderly patients, obtaining gene enrichment scores for 50 pathways.
Limma was then used to analyze differences between clusters 1 and
2, considering pathways with p < 0.05 as differentially enriched. To
further explore differences between the two unsupervised clusters,
GSEA was conducted for Kyoto Encyclopedia of Genes and Genomes
pathways using the “clusterProfiler” package, providing information
for subsequent functional interpretation.

Sene_Signature

To effectively measure distinct senescence patterns, we constructed a
senescence scoring model to obtain a Sene_Signature, using machine
learning to quantitatively assess the senescence status of elderly pa-
tients with breast cancer.

Initially, differences between the two senescent clusters were
analyzed. The transcriptomic data of elderly patients with breast
cancer were analyzed based on these clusters, using “limma” for
differential analysis. DEGs were identified with a filtering parameter
of |logFC| > 1 and FDR < 0.05, resulting in the identification of
two DEGs crucial for distinguishing between the two senescence
clusters.
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Random forest50 was applied to calculate the mean decrease Gini
(MDG) for the identified DEGs. Key genes with MDG > 151,52 were
analyzed using the importance function, resulting in 120 feature genes
(Table S5) that distinguished between the two senescent clusters. Sub-
sequently, TCGA elderly breast cancer patients were divided
into training and test sets at a 6:4 ratio. Regression models were
then constructed using various machine learning methods, including
GradientBoostingRegressor, RandomForestRegressor, OneClass
Detection, LinearRegressor, KNeighborsRegressor, and SupportVector
Regression. Among these, the senescence scoring model constructed
by OneClassDetection was determined to be the best.

Finally, a senescence scoring model was created using the
OneClassDetection machine learning algorithms. A logistic regres-
sion model was created using the gelnet function in the R package
“Gelnet”.

RðwÞ = l1
X

j

dj
��wj

�� + l2

2
ðw � mÞTPðw � mÞ

The weight of each gene was obtained and the Sene_Signature model
was created.
CNV and single-nucleotide polymorphism analysis

The Sene_Signature model categorized elderly breast cancer patients
into high and low groups. “Maftools” was used to create mutation
waterfall plots for elderly breast cancer patients to visualize their
mutation profiles. CNV analysis utilized GISTIC2 to identify
amplified and deleted genomic sequences. GISTIC2.0 from
MATLAB was downloaded and installed (ftp://ftp.broadinstitute.
org/pub/GISTIC2.0/) using the human hg38 genome sequence as a
reference (https://gdc.cancer.gov/about-data/gdc-data-processing/gdc-
reference-files).
Single-cell transcriptome analysis

Single-cell transcriptomic data were imported into the R package
“Seurat” (v.4.1.1) for quality control and filtering. Low-quality cells
(<400 genes/cell, <3 cells/gene, >25%mitochondrial genes, >3% blood
cell genes) were filtered, with “DoubletFinder” used to remove dou-
blets. The “harmony” package was used for data integration across
multiple single-cell datasets. Cell types identified through unsuper-
vised clustering with UMAP were annotated using known marker
genes: LYZ, CD68, TYROBP (myeloid cells), CD3D, CD3E, CD2 (T
cell), CD24, KRT19, SCGB2A2 (epithelial cells), CD79A, MS4A1,
MZB1 (B cells), COL1A1, DCN, C1R (fibroblasts), CLDN5, FLT1,
and RAMP2 (endothelial cells). T cell subtype annotation was used,
as proposed in previous research.53
Drug sensitivity analysis

Drug sensitivity analysis was conducted using publicly available drug
databases, specifically referencing the GDSC, to predict drug sensi-
tivity in elderly breast cancer patients. Subsequently, the “oncoPre-
dict” R package was applied to predict IC50 values for elderly breast
14 Molecular Therapy: Nucleic Acids Vol. 35 December 2024
cancer patients. In addition, the limma method was employed to
determine differential drug sensitivity between the high and low
Sene_Signature groups. The enriched compound target pathways in
GDSC were identified using the provided target pathway annotations
for the differential drugs obtained through limma (|delta in IC50| > 1
and p < 0.05).
Statistical analysis

Various statistical analyses were employed to assess associations
within the data. The chi-squared test was applied to examine associ-
ations between categorical variables, while the Wilcoxon test or Stu-
dent’s t test was applied to evaluate significant differences in categor-
ical variables. Pearson correlation coefficients were calculated to
measure correlations between variables. Significance levels were
defined as *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. Sur-
vival differences were determined using the “survminer” R package,
including univariate Cox regression analysis to assess the impact of
gene expression on survival prognosis. Both univariate and multivar-
iate analyses were performed to study the combined effects of vari-
ables on prognosis. All statistical and bioinformatics analyses were
carried out using R (v.4.2.0).
Highly visual interactive web application

Based on the analysis data used in this study, an interactive web appli-
cation (http://zhaoliminlab.cn:8080/GBC/index.jsp) was developed
using “Tomcat” to allow researchers to explore the potential mecha-
nisms of Sene_Signature at the multi-omics level. The web application
includes several Sene_Signature analysis modules, including the
signature expression module, calculation of external dataset
Sene_Signature module, somatic mutation module, clinical prognosis
module, microRNA module, methylation module, and drug sensi-
tivity module. The source codes generated to build the web applica-
tion are available at the GitHub repository (https://github.com/
HARI-Zhaolab/GBC).
DATA AND CODE AVAILABILITY
The datasets presented in this study can be found in various online repositories. All raw
RNA seq data generated from this study can be accessed in the NGDC database under
accession number HRA006220. Codes used during analysis are available at https://
github.com/HARI-Zhaolab/Sene_Signature. Additional data related to this paper can
be requested from the authors.
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