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ABSTRACT Verticillium nonalfalfae, a cosmopolitan soil-borne phytopathogen, causes
vascular wilt in agricultural crops and perennial woody plants. Select strains of V.
nonalfalfae can cause lethal disease in the invasive tree Ailanthus altissima and sev-
eral have since been utilized as a biological control (biocontrol) against this wide-
spread invader. Here, we report the genome sequence and annotation of V. nonal-
falfae strain VnAa140/NRRL 66861.

Since 2005, Verticillium nonalfalfae has been recovered from symptomatic Ailanthus
altissima (“tree-of-heaven”) across nine forested locations in the eastern United

States. (1–4). These disease epicenters represent natural infections in mixed hardwood
stands newly invaded by A. altissima (5). More recently, V. nonalfalfae has been
recovered from dying Ailanthus trees in Austria, the first confirmed occurrence on this
host outside the United States. (6, 7). This disease is characterized by acute wilting and
defoliation followed by epicormic sprouting and mortality, typically within a single
growing season (1, 2) (Fig. 1). Several studies using various V. nonalfalfae strains
recovered from Ailanthus trees have helped elucidate phylogenetic relationships (2),
biocontrol efficacy (2–4, 8), host range (2, 9–11), and transmission (12) in an attempt to
understand if and how they differ from strains impacting agronomic crops. Given the
ongoing investigations of V. nonalfalfae isolates from hops in Europe (13) coupled with
the recent discoveries of V. nonalfalfae in Austria, we anticipate that genome-wide
comparisons among Ailanthus trees and hop-origin strains will provide additional
insight into host specificity. There also is a renewed interest in utilizing V. nonalfalfae
as a biocontrol against Ailanthus altissima in the United States to help combat a newly
established invasive insect, Lycorma delicatula, a planthopper that preferentially feeds
on this host (14). The generation of genomic resources, including for biocontrol strains,
is fundamental to these efforts.

Verticillium nonalfalfae (strain VnAa140/PSU140/NRRL 66861) was isolated from a
dying A. altissima in Pennsylvania in 2005 (1, 2). Mycelial fragments and conidia from a
1-week-old culture were transferred to potato dextrose broth and incubated for 2
weeks. Genomic DNA was extracted from the mycelium using a Qiagen DNeasy plant
mini kit, and �5 �g of input genomic DNA was used to construct sequencing libraries.
Illumina HiSeq 2000 sequencing generated 29.3 M paired sequence reads or 3.4 Gb
(100� coverage), and 454 sequencing produced 1.3 M singleton reads totaling 523 Mb
(16� coverage) at the Pennsylvania State University Huck Institutes Genomics Core. The
Illumina sequence reads were assembled with Velvet (v0.7.61) (kmer, 31; -cov_cutoff
auto; -ins_length 300; -min_contig_lgth 100; -exp_cov auto) (15). Newbler (v2.3) was
used to quality trim the 454 reads by default parameters and generate a hybrid 31.7-Mb
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assembly (n � 630; N50, 172 kb; max contig, 678 kb; G�C content, 55%) from the Velvet
contigs and 454 reads (16). This assembly was cleaned of vector contamination and
redundant contigs by Automatic Assembly for the Fungi (AAFTF; v0.2.1) (17) and was
further corrected by 5 rounds of polishing with Pilon (v1.22) using the Illumina reads.
Genome annotation was performed with funannotate (v1.5.0-760de7c) (18) utilizing avail-
able Verticillium dahliae and V. alfalfae transcripts and proteins as evidence (13, 19). The ab
initio gene predictor GeneMark.hmm ES was self-trained using the default protocol and
Augustus parameters trained from alignments of the BUSCO protein set sordariomyceta-
_odb9 (20–22), and parameters were archived in a public repository (23). The final genome
annotation included a total of 9,627 protein-coding genes and 196 tRNAs. AntiSMASH
(v4.1.0) predicted 22 putative secondary metabolite clusters (24). This annotation is com-
parable with that of V. nonalfalfae isolate T2, a lethal xylem-invading hop strain, which had
9,269 protein-coding genes and a total assembly size of 34.2 Mb (13).

Data availability. This whole-genome shotgun project has been deposited at
DDBJ/ENA/GenBank under the accession number RBVV00000000. The version de-
scribed in this paper is the first version, RBVV01000000. Sequence reads were deposited
under SRA project accession number SRP162963 and BioProject accession number
PRJNA493511.
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FIG 1 Wilt symptoms in Ailanthus trees following artificial inoculation with Verticillium nonalfalfae strain VnAa140/NRRL 66861, including, stand dieback and
mortality (A); acute wilt and defoliation (B); wilted epicormic sprouts that emerged following dieback of the main stem (C); and conspicuous yellow vascular
discoloration and streaking (D).
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