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Abstract: Understanding cell/material interactions is essential
to design functional cell-responsive materials. While the
scientific literature abounds with formulations of biomimetic
materials, only a fraction of them focused on mechanisms of
the molecular interactions between cells and material. To
provide new knowledge on the strategies for materials/cell
recognition and binding, supramolecular benzene-1,3,5-tricar-
boxamide copolymers bearing benzoxaborole moieties are
anchored on the surface of human erythrocytes via benzox-
aborole/sialic-acid binding. This interaction based on both
dynamic covalent and non-covalent chemistries is visualized in
real time by means of total internal reflection fluorescence
microscopy. Exploiting this imaging method, we observe that
the functional copolymers specifically interact with the cell
surface. An optimal fiber affinity towards the cells as a function
of benzoxaborole concentration demonstrates the crucial role
of multivalency in these cell/material interactions.

In a superb way, nature exploits multivalent non-covalent
interactions to build complex, dynamic, and functional
structures.[1, 2] Mimicking the sophistication of natural systems
represents an extremely challenging task for researchers,
especially in the design of biomaterials. Utilizing the dynam-
ics and modularity offered by supramolecular and dynamic
covalent chemistry,[3–5] it has been possible to introduce
fascinating functionalities in artificial systems.[6–11] In partic-
ular, supramolecular polymers assembling into 1D fibers in

water have been extensively investigated for their similarity
with natural fibrillar structures[12] and even applied as
biomaterials.[13] Peptide amphiphiles[14] are successfully used
for neural regeneration,[15, 16] angiogenesis enhancement,[17]

and atherosclerosis treatment,[18] while ureido-pyrimidino-
ne (Upy)-based materials have been exploited as constituent
of elastomeric valve implants for tissue engineering.[19] Water-
compatible supramolecular benzene-1,3,5-tricarboxamide
(BTA) polymers are still in their infancy in terms of
bioapplications, but they have been comprehensively studied
from the fundamental point of view.[20–22] They assemble into
1D fibers via three-fold hydrogen bonding among the amides
and hydrophobic interactions[20] and they can be made
functional through copolymerization.[23] Carbohydrates,[24–26]

DNA,[27] charges,[28, 29] and peptides[30] were introduced into
the assembled fiber by inducing fiber formation in the
presence of selected functionalized monomers. In this way,
specific properties were obtained in these supramolecular
copolymers. Introducing DNA, for example, paved the way to
protein recruitment,[27] while BTA fibers decorated with
charges were able to bind siRNA and allow intracellular
delivery in human kidney (HK-2) cells without showing any
cytotoxicity.[28]

In this work, we make a step towards understanding the
molecular aspects of cell/material interactions by combining
dynamic covalent and non-covalent chemistries. The well-
known dynamic covalent bond between boronic acid and
carbohydrates[31] is used to induce an interaction between
BTA fibers and human red blood cells (hRBCs). In particular,
BTA fibers were decorated with different amounts of
benzoxaborole moieties at the periphery (BTA-Ba) and
incubated with hRBCs. The latter was chosen for its biological
importance and for the presence of a large and varied palette
of carbohydrates, including sialic acids, on its membrane.[32]

Benzoxaborole (Ba) was selected as a promising candidate to
study the interactions between BTA-Ba and hRBCs due to its
affinity for sialic acid at physiological pH.[33] This peculiarity is
unique for Ba as all known boronic acids dynamically bind
carbohydrates in a pH-dependent fashion.[34] In order to
better understand cell/material interactions, BTA-Ba/hRBC
binding was imaged by means of high-resolution fluorescence
microscopy.

Since accessibility and orientation of the reactive group
are essential to enhance binding efficiency, three different
BTA-Ba were synthesized to screen their ability (Scheme 1).
BTA-Ba1 and BTA-Ba2 each feature only one Ba group
either directly connected to the external tetraethylene glycol
(BTA-Ba2) or separated by an additional triethylene glycol
(BTA-Ba1). BTA-Ba3 instead has three Ba groups. In order
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to obtain multivalent supramolecular polymers, different
percentages of BTA-Ba monomers (0 %, 10%, and 25%)
were copolymerized with BTA monomers bearing no Ba
(BTA-3OH) (Figure 1a,b).

The formation of 1D fibers upon co-assembly of the
different four monomers (Figure 1c) was assessed by means
of UV/Vis spectroscopy, static light scattering (SLS), cryo-
TEM, and total internal reflection fluorescence (TIRF)
microscopy. At all the percentages of BTA-Ba tested, UV/
Vis spectra showed the typical maxima (at 211 nm and

226 nm) of the well-studied BTA-3OH (Figures 1 c and
Figures S17a,S19a in the Supporting Information),[20] indicat-
ing the formation of 1D fibers of the copolymers. SLS further
confirmed the assembly into structures with similar morphol-
ogy and size as BTA-3OH (Figures 1d, S17b, and S19b). In
particular, the best match with BTA-3OH was achieved by
BTA-Ba1, showing almost overlapping SLS plots. Cryo-TEM
and TIRF microscopy corroborated these results, visualizing
fiber-like conformations for all the different copolymers
(Figures 2, S18, and S20). Remarkably, increasing the BTA-
Ba percentage to 25% induced the coexistence of fibers and
smaller aggregates (Figure 2b), presumably suggesting that
1:4 BTA-Ba:BTA-3OH ratio is close to the maximum
incorporation of any of the BTA-Ba into 1D fibers. This
assumption was further confirmed by temperature-induced
disassembly studies, monitored by UV/Vis spectroscopy
(Figures S21–S26). For all the copolymers, the presence of
25% of BTA-Ba resulted in a decrease of the disassembly
temperature, indicating a reduced stability of these 1D fibers
(Figures S22, S24, and S26). Interestingly, the presence of
BTA-Ba3 as comonomer further enhanced this phenomenon,
showing disassembly at lower temperature not only for the
25% BTA-Ba3 copolymer but also for the 10 % BTA-Ba3
(Figures S25 and S26). Based on these UV/Vis and SLS data,
we conclude that the copolymers made of BTA-Ba1 and
BTA-3OH comonomers are the most useful both in terms of
morphology and stability. Thus, having only one benzoxabor-
ole per monomer and separating it from the core by an extra
spacer showed the least interference with the fiber assembly.

The binding between BTA supramolecular copolymers
bearing 1%, 5% and 10 % BTA-Ba1 and carbohydrates, that
is, sialic acid, was further assessed by means of the Alizarin
red S (ARS) assay. ARS is a catechol-bearing dye, which upon
binding to boronic acids becomes fluorescent (Keq = 940m�1

at pH 7.4).[35] The addition of carbohydrates that compete

Scheme 1. Chemical structures of the four BTA monomers applied in
this work.

Figure 1. Schematic and chemical representation of BTA-3OH and
BTA-Ba1 monomers (a) and their assembly into 1D fibers (b). UV/Vis
spectra (c) and SLS plots (d) of BTA-Ba1:BTA-3OH copolymers in
MilliQ water bearing 10% or 25% of BTA-Ba1 compared to those of
BTA-3OH homopolymer.

Figure 2. a) Cryo-TEM images in phosphate buffer saline (PBS)
(pH 7.4) of BTA-Ba1:BTA-3OH (10:90) and c) of BTA-Ba1:BTA-3OH
(25:75); scale bar 50 nm. b) TIRF images in PBS (pH 7.4) of BTA-
Ba1:BTA-3OH (10:90) and d) BTA-Ba1:BTA-3OH (25:75); scale bar
10 mm.
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with ARS induces fluorescence quenching due to the
dissociation of the fluorescent ARS-boronic acid complex.[36]

All the three copolymers were reacted with ARS in phos-
phate buffer saline (PBS) to mimic the physiological environ-
ment, resulting in intense fluorescence emission proportional
to the Ba content (Figures 3a, S27, and S28).

Since ARS is highly soluble in water, this first result
remarkably showed the accessibility of Ba moieties to the
surrounding solvent, explicitly confirming the assumption
that they are located at the fiber periphery. The fluorescence
was then recorded upon titration with sialic acid and its
quenching proved the formation of a complex between BTA-
Ba1:BTA-3OH fibers and the carbohydrate (Figure 3a).
Interestingly, complete fluorescence quenching was achieved
at a 200:1 ratio sialic acid:BTA-Ba1, in line with the higher
Keq for ARS to BTA-Ba1 than sialic acid.

In previous studies, it has been demonstrated that BTA
supramolecular fibers are highly dynamic, thus they contin-
uously exchange monomers with the surrounding sol-
vent.[21, 22, 37] In order to exclude an interaction between ARS
and free BTA-Ba1 monomers in solution and to further
confirm that BTA-Ba1 monomers are copolymerized with
BTA-3OH, fluorescence anisotropy experiments were per-
formed. Since BTA-Ba1 monomers are not soluble in water,
a hydrophilic surrogate (OEG3-Ba) was synthesized and

reacted with ARS. The fluorescence anisotropy of this
complex was measured and compared with that generated
by ARS/BTA-Ba1:BTA-3OH fiber interaction, showing
a clear difference between the two situations (Figure 3 b).
Binding of ARS with OEG3-Ba resulted in a constant
fluorescence anisotropy for all the tested Ba-concentrations,
while the reaction between ARS and the fiber induced an
increase in the fluorescence anisotropy at Ba-concentrations
higher than 800 nm. An identical outcome from these two
situations would have suggested an interaction between ARS
and free BTA-Ba1 monomers in solution, but the results
obtained remarkably indicate that ARS binds to the supra-
molecular fiber.

Once the functionality of BTA-Ba1:BTA-3OH fibers
towards sialic acid was determined, fibers bearing different
amounts of BTA-Ba1 were Cy3-labeled and incubated with
hRBCs for 1 h in PBS solution (pH 7.4). Cell–copolymer
interactions were then visualized by means of TIRF micros-
copy (Figure 4b,c). Interestingly, even at low percentages of
incorporated BTA-Ba1 monomers, that is, 0.1%, fibers were
able to anchor to the cell membrane (Figure S30). Unspecific
binding was excluded by performing the incubation of labeled
BTA-3OH fibers with hRBCs, which showed no interaction.
(Figure S29) The driving force for the binding of supramolec-
ular polymers on the cell membrane was thus the formation of
the dynamic reaction between Ba at the periphery of the fiber
and sialic acid at the membrane of the hRBC. By increasing
the percentage of BTA-Ba1, a higher number of cells
interacting with fibers was observed (Figures S31–S33),
reaching a maximum at 1–5% of BTA-Ba1 copolymerized
to the inert BTA-3OH (Figure 4d).

Remarkably, in many cases the fiber binding is inhomo-
geneous along the length with bound portions alternating with
unbound areas (Figures 4c, S31a,e, S33d, and S35). This
corroborates the assumption that the interaction occurs only
via the presence of a significant density of Ba/sialic acid
binding. In-situ time lapses (Movies S1,S2 in the Supporting
Information) further substantiated this anchoring mechanism,
showing BTA-Ba1:BTA3OH fibers attached only with one
extremity onto the hRBC surface and still moving in solution
with the other extremity. These results may indicate a cluster-
ing of BTA-Ba1 units within the fiber due to the multivalent
interactions with the highly clustered sialic acids at the surface
of the hRBCs.[38] Increasing the percentage of Ba incorpo-
rated into the fiber to 10 % surprisingly resulted into less
interaction between supramolecular polymers and hRBCs
(Figure S34). As mentioned above, increasing the percentage
of BTA-Ba above 10% resulted in a decrease stability of the
fibers, inducing the formation of small aggregates. This
destabilization could be enhanced due to binding to the to
the clustered sialic acids on hRBCs and the subsequent phase
separation of the BTA-Ba1 from the BTA-3OH.

Finally, in order to assess whether these cell/fiber inter-
actions were occurring in a multivalent fashion, a competition
assay was performed. In particular, BTA-Ba1:BTA3OH
(1:99) fibers were incubated for 1 h in PBS with hRBCs.
The fibers detachment from the cell surface upon addition of
increasing amounts of free sialic acid in solution was
monitored by TIRF microscopy. At low concentrations of

Figure 3. a) Fluorescence emission spectra of a ARS/BTA-Ba1:BTA-
3OH 1:99 complex upon titration with sialic acid (ARS 20 nm and Ba
5 mm) and b) fluorescence anisotropy of ARS/BTA-Ba1:BTA-3OH 1:99
complex compared with that of ARS/OEG3-Ba complex.
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free sialic acid, the supramolecular polymers remained
attached to the cell membrane (Figures S35,S36), whereas
concentrations above 1000-fold of the total Ba content,
almost all the fibers detached from the cells and adsorbed
onto the glass surface surrounding the cells (Figures 4 e, S37,
and S38). Since the Keq of the reaction between Ba and sialic
acid is low (160m�1),[39] the need for a high amount of free
sialic acid to dissociate the Ba/sialic acid complex on the cell
membrane is a strong indication of the multivalent binding,[40]

which definitely resulted in overall higher affinity. Compared
to the ARS assay, the amount of sialic acid needed to detach
the fiber from the cell surface is 5 times higher. This
discrepancy is, next to the differences in Keq, proposed to be
correlated to the high density of clustered sialic acid on the
hRBCs.

In conclusion, supramolecular polymers were successfully
anchored onto the surface of human red blood cells by
boronic acid/carbohydrates dynamic covalent chemistry.
TIRF microscopy was used for the first time to enable real-
time imaging of these interactions, remarkably demonstrating
the role of dynamic multivalency in this binding. The
approach presented in this work could be further extended
to other cells, providing that they bear carbohydrates on the
membrane. Thus, our work opens avenues in the fabrication
of biomaterials in which the dynamics and multivalency can
be tuned to achieve a more selective and effective interaction

with the target cell, with broad impli-
cations for drug delivery and regener-
ative medicine. Furthermore, it repre-
sents an enrichment in the field of
supramolecular biomaterials, paving
the way towards the design of cell/
material reciprocity.
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