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Abstract
Microbial communities of activated sludge (AS) play a key role in the performance of waste-

water treatment processes. However, seasonal variability of microbial population in varying

AS-based processes has been poorly correlated with operation of full-scale wastewater

treatment systems (WWTSs). In this paper, significant seasonal variability of AS microbial

communities in eight WWTSs located in the city of Guangzhou were revealed in terms of

16S rRNA-based Miseq sequencing. Furthermore, variation redundancy analysis (RDA)

demonstrated that the microbial community compositions closely correlated with WWTS

operation parameters such as temperature, BOD, NH4
+-N and TN. Consequently, support

vector regression models which reasonably predicted effluent BOD, SS and TN in WWTSs

were established based on microbial community compositions. This work provided an alter-

native tool for rapid assessment on performance of full-scale wastewater treatment plants.

Introduction
Activated sludge (AS) process has been most widely used to treat domestic sewage for a century
due to its high treatment efficiency and low cost. Biological wastewater treatment, as the largest
application area of biotechnology, accelerates the beneficial activities of naturally occurring
microorganisms, removing organic pollutants and nutrients via metabolism [1]. Thus, micro-
bial communities in AS ecosystems are crucial for well-performing bioreactors. However,
maintaining municipal wastewater treatment systems (WWTSs) is still based on empirical rela-
tionships between physicochemical and operational parameters and reactor performance,
which is not reliable enough for stable performance [2]. A systematic understanding of bacte-
rial communities as a function of environmental factors and how they influence the perfor-
mance is vital to improve process performance stability and provide important guidance in
diagnosis and prognosis.
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In recent years, the microbial communities of AS in full-scale and lab-scale bioreactors were
shown to be highly diverse and variable. Numerous studies were conducted to investigate AS
microbial community compositions varied across bioreactors and time. A wide range of dis-
cernible temporal patterns of AS microbial communities were proposed, particularly within
specific microbial subpopulations such as nitrifiers [3], denitrifiers [4] and phosphorus-accu-
mulating organisms [5]. In a full-scale WWTS, Kim et al. [6] found the significantly different
temporal patterns between the rare taxa and the general taxa of AS, in which the rare taxa
showed a higher diversity and a more fluctuating pattern than the general taxa. Variability of
AS microbial communities across different bioreactors was investigated at scales ranged from
single wastewater treatment plant to globally distributed wastewater treatment plants. For sin-
gle wastewater treatment plant which had two disparate treatment systems operating in paral-
lel, distinction between the microbial community compositions of the two systems was
detected [7]. Clear geographical disparity was also showed among the AS samples from Asia
and North America [8]. Other studies showed that the variance of bacterial communities
explained by geographic location is smaller than other factors in 14 WWTSs located in 4 cities
in China [1]. This also implied that variability of AS microbial communities across bioreactors
and time might be worthy of more attention in wastewater treatment processes.

Biological treatment is an extremely complex system with deeply diverse microbial commu-
nities and exhibits highly nonlinear characteristics [9,10]. To predict the performance of biore-
actor, artificial intelligence approaches, such as artificial neural networks, adaptive neuro
fuzzy-fuzzy interference system and fuzzy logic, have proved to be useful tools due to their
high accuracy in dealing with complicated systems [9–11]. As a kind of data-based machine
learning model, support vector regression (SVR) model is a method with the pattern of super-
vised learning, and based on statistical theory, VC dimension theory and structural risk mini-
mum principle. SVR model exhibits many unique advantages in solving small-sample,
nonlinear and high-dimensional recognizing problems [12]. It has been used to predict the
removal efficiency of settling basins and the results are found to be better than the neural net-
work approach [11]. Additionally, SVR model also shows a higher prediction accuracy in the
training stage and the validation stage to predict effluent concentration in a full-scale WWTS
[13]. However, most models predict the effluent quality in terms of environmental factors
rather than microbial community information which may have greater influence on the perfor-
mance of wastewater treatment. Recently, high-throughput sequencing has been widely applied
for characterizing AS microbial community compositions both in lab-scale systems and full-
scale plants [8], which could obtain more precise inventories of microorganisms.

In this study, AS samples were quarterly collected from eight full-scale WWTSs in Guang-
zhou, China from July 2013 to April 2014. 16S rRNA-based Miseq sequencing was used to
characterize microbial communities of AS samples. The aim of this study was to seek an alter-
native for rapid assessment on performance of full-scale wastewater treatments facilities via
seasonal variability of AS microbial community structures with the help of high-throughput
sequencing.

Materials and Methods

WWTSs description and sampling
AS samples were taken from the aeration tanks of eight WWTSs (S1 Table) in Guangzhou,
China. Names of these WWTSs were designated as random letters as part of the sample confi-
dentiality agreement. These WWTSs treat mainly municipal wastewater except S1 with twenty
percent influent of industrial wastewater.
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AS samples were collected quarterly from these eight systems from June 2013 to April 2014
with water temperature ranged from 15 to 30°C. Samples were taken in June, October, January
and April, representing summer, fall, winter and spring, respectively. For archiving, 50 ml
sludge sample was taken in each system, and immediately placed in an ice box and transferred
to the laboratory for DNA extraction. Sampling time, influents, effluent and operational
parameters for the eight systems are listed in S2 Table.

DNA extraction, PCR amplification and MiSeq sequencing
The samples from L4 taken in June 2013 and D1 in January 2014 were divided into two aliquots
named as L4-Summer1, L4-Summer2, D1-Winter1 and D1-Winter2, respectively. The dupli-
cate samples were treated as independent samples to evaluate the reproducibility of the meth-
ods applied. Total genomic DNA was isolated from each sample in duplicate using the
FastDNA1 SPIN Kit for Soil (MP Biotechnology, Solon, OH, USA) that was regarded as supe-
rior to many others [14] according to the manufacturer's protocol.

DNA was PCR-amplified using barcoded primers targeting bacterial V4 region of 16S
rRNA genes. Primer pair 515F (5’-GTGCCAGCMGCCGCGGTAA-3’)—806R (5’-GGAC-
TACHVGGGTWTCTAAT-3’) was selected due to accurate taxonomic information and few
biases for various bacterial taxa [15]. These PCR products of the V4 region of 16S rRNA genes
were mixed in equimolar amounts and paired-end sequenced (2×150) using the Illumina
MiSeq platform according to the manufacturer's instructions. All 16S rRNA sequences from
Miseq sequencing have been deposited into the NCBI short-reads archive database with acces-
sion number SRR2153416-SRR2153448.

Sequence processing and statistical analysis
The raw sequencing data from Miseq sequencing was processed by QIIME v.1.7.0 [16] and
UPARSE pipeline [17]. Sequences either containing Ns, or with lengths shorter than 200 bp,
or average quality score less than 25, were filtered. Sequences were de-replicated and single-
ton was removed from consideration. The remaining sequences were clustered into opera-
tional taxonomic units (OTUs) at 97% pairwise identity using UPARSE [17]. Chimera was
checked against a reference Gold database (http://drive5.com/uchime/gold.fa) [17] by
UCHIME. The representative sequence for each OTU was aligned to the Greengenes data-
base (version 13.5) of high-quality sequences with the default confidence threshold (0.5)
[18]. All the filtered reads including singletons and duplicate sequences were mapped back
to the OTUs.

Alpha-diversity indices, including Shannon, Simpson, Chao1 and PD whole tree, were cal-
culated by QIIME 1.7.0 for each sample. Relative abundance of OTUs was calculated in each
sample, and then was used to calculate pairwise similarities among samples using the Bray-
Curtis similarity coefficient. The cluster analysis was conducted to group the microbial com-
munities based on the Bray-Curtis similarity coefficient and was visualized using principal
coordinates analysis (PCoA). Analysis of Similarity Statistics (ANOSIM) was calculated to test
the significance of differences among a priori grouping strategy based on the result of PCoA.
Redundancy analysis (RDA) was used to assess the contribution of environmental variances to
the variances of bacterial communities. Function envfit within the R package vegan which fits
environmental vectors onto ordination was applied to assess the influence of environmental
variables on the microbial community structures [19]. Similarity matrices, PCoA, ANOSIM
and RDA were carried out using R (3.1.1).
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SVRmodels construction
Libsvm package [20] with R (3.1.1) was used for building SVR models to predict effluent BOD,
SS, NH4

+-N, TN and TP. The total 33 samples were divided into two different groups: 27 as
training data set and 6 remaining as validation data set. The OTUs data was chosen as the
model input data. The OTUs data had more than 5000 variables, so principal component anal-
ysis (PCA) was applied to reduce dimensionality firstly. The effluent data was normalized to
range from 0 to 1. After that, the dimensions reduced data was used as input data to train the
SVR models, to obtain the best model parameters and make the model have the ability to pre-
dict reactor process performance. The optimal parameters of the model were determined by
grid search method, that all the possible combinations of parameter values are evaluated and
the best combination is retained. After determining the model parameters, the effluent BOD,
SS, NH4

+-N, TN and TP concentration of 6 validation samples would be predicted by the SVR
model, the values were compared to the measured values to evaluate the prediction accuracy.
Robust estimation of model was tested by changing the training dataset and validation dataset
for 5 times. Sensitivity analysis was performed to quantify the relative importance of each
input to the effluent prediction by One-factor-at-a-time. Briefly, one input varied ±10%, others
kept invariant, then the dataset was applied to these models to assess the effect of the input on
effluent prediction. The other inputs were repeated in the same way.

Results and Discussion

Compositions of microbial communities in AS
High-throughput sequencing technology offers aid to uncover greatly diverse microbial com-
munities. After filtering the low quality sequences, a total of 2,197,507 effective sequences were
yielded for the 33 samples, and clustered to 5,409 OTUs with 3% of nucleotide cutoff. Individ-
ual sample contained much smaller number of OTUs from 715 to 1003. The multiple alpha-
diversity indices are shown in S3 Table.

Taxa distribution at the phylum level
A total of 58 phyla were detected in the 33 samples from 8WWTSs. As shown in Fig 1, Proteo-
bacteria is the most abundant phylum in all samples, accounting for 38–70% (average 56.3%)
of total effective bacterial sequences, followed by Bacteroidetes corresponding to 15–32% (aver-
age 23.0%). These two phyla represented approximately 65–88%. Within Proteobacteria, β-Pro-
teobacteria was the predominant group (33–54%), followed by δ-Proteobacteria (22–41%), γ-
Proteobacteria (9–26%) and α-Proteobacteria (3–10%). Within the β-Proteobacteria, twelve
orders were identified. Rhodocyclales was the dominant group within a range of 32–95% (aver-
age 52%), followed by Burkholderiales, Neisseriales and Thiobacterales, representing 20–49%,
1–24% and 1–11%. Within Bacteroidetes, all samples showed a similar composition at the class
level, with Saprospirae as the major subdivision, followed by Sphingobacteriia, Flavobacteria,
Bacteroidia, and Cytophagia. The subdominant phyla (average abundance>1%) included
Chloroflexi (2.0%), Acidobacteria (2.0%), Planctomycetes (2.0%), Verrucomicrobia (2.0%), Spi-
rochaetes (1.3%), Gemmatimonadetes (1.3%), Firmicutes (1.2%), Actinobacteria (1.2%) and
Nitrospirae (1.1%), which was also considered as the important part in AS.

The microbial community compositions of the eight WWTSs showed typical AS communi-
ties [7,8]. Among all samples, Proteobacteria is the most abundant phylum. It is similar to the
analytical results of bacterial communities in AS ecosystems from 14 sewage wastewater treat-
ment plants, located in Canada, USA, Singapore, and China using 454 pyrosequencing [8].
Within Proteobacteria, in this study, the β-Proteobacteria is the dominant for most samples,
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which was consistent with most WWTSs based on other reports [1,8]. However, it is different
from some studies using microarray [21], which showed that α-Proteobacteria was the most
abundant subdivision. Bacteroidetes, Actinobacteria, and Firmicutes also played important role
in microbial communities of 33 samples in this study, which is similar to a few previous studies
on AS using microarray [21] and Pyrosequencing [8].

Proteobacteria, as the most important phylum in all samples, varied with seasons. Fig 2
shows the seasonal variation of Proteobacteria in the 33 AS samples clearly. The lowest content
(39.5–48.8%) took place in summer samples for all systems. The highest content (56–70%)
occurred in winter samples, except for D2 and L3. For the Proteobacteria, the highest average
content occurred in winter samples, which might be caused by some subdivisions of Proteobac-
teria belonged to cold-adapted microorganisms which exhibited rich diversity in cold environ-
ment, and formed a set of cold resistant mechanisms [22].

Core and shared genera in all samples
At the genus level, 303 genera (S4 Table) have been identified in this study, in which 51 genera
were shared by all 33 AS samples, accounting for 83% of the classified sequences, which showed
a core microbial community across the 33 AS samples. Among all the samples, Dechloromonas

Fig 1. Abundances of different phyla in the 33 activated sludge (AS) samples. The abundance is presented in terms of percentage in total effective
bacterial sequences in a sample.

doi:10.1371/journal.pone.0152998.g001
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was the most dominant genus, accounting for 21% on average of classified sequences, followed
by Zoogloea (average content>10%). The other top 10 genera on average included Nitrospira,
Turneriella, Candidatus Accumulibacter, Sulfuritalea, Prosthecobacter, Nannocystis, Bdellovi-
brio and Sterolibacterium, which usually occurred in WWTSs [8,23–25].

Core genera are thought to be the crucial part associated with the wastewater treating per-
formance. In this study, Dechloromonas and Zoogloea are the dominant genera in all samples,
which is similar to the results of AS samples from 14 sewage wastewater treatment plants all
around the world [8]. Dechloromonas is frequently found in wastewater treatment plants,
which was reported to be capable of anaerobic benzene degradation, denitrification and phos-
phorous removal [26,27]. Zoogloea is the typical AS bacterium that plays an important part in
wastewater treatment by its ability to lower biological oxygen demand and by being the main
agent for the flocculation of AS [28]. Zoogloea ramigera is known to form characteristic cell
aggregates embedded inextracellular gelatinous matrices [29]. Sulfuritalea [23], Nitrospra [30]
and Candidatus Accumulibacter [31] which are also abundant in this study have been proved
to promote nitrogen and phosphorus removal in treating wastewater. Although some other
abundant genera, such as Turneriella, Prosthecobacter and Nannocystis are commonly found to
occur in WWTSs, the information about their existence and roles is limited. The high diversity
of microbial communities shown in AS does not mean that all sequences can be classified. In
fact, the short length of the 16S rRNA gene amplicons may influence the taxonomic classifica-
tion accuracy, and this limitation for high-throughput sequencing technique need further
modification.

Fig 2. The seasonal variation of abundances of Proteobacteria. The abundance is presented in terms of percentage in total effective bacterial
sequences in each sample.

doi:10.1371/journal.pone.0152998.g002
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Variability of microbial community compositions across multiple seasons
andWWTSs
OTU-based Bray-Curtis similarity coefficients for beta-diversity of the bacterial communities
are given in S5 Table. PCoA was conducted to evaluate similarities of all AS samples. Seasonal
variation in communities based sampling time is shown in Fig 3. Four groups were distin-
guished in the first two dimensions: summer, autumn, winter and spring. The PC1 is clearly
related to water temperature and explains 47.37% of the variation. The first two PCs totally
explains 65.12% of the variation among the 33 samples. The samples in summer group seem
more dynamic than other samples considering their relative wide distribution in the ordina-
tion, while good similarity on microbial communities among the samples in winter group is
well characterized with their closer distribution. ANOSIM was also conducted to test the
hypothesis that within-season microbial community similarities were greater than among-sea-
son similarities (Table 1). Global ANOSIM illustrated strong and significant variation in
microbial communities across seasons (R = 0.72, p = 0.001). Moreover, six pairwise ANOSIM
tests demonstrated significantly higher within-group similarity than between-group similarity
at the p = 0.01 level.

Fig 3. Principal coordinates analysis (PCoA) of 33 activated sludge (AS) samples by Bray-Curtis
similarity coefficient. It was measured via 3% cutoff OTUs information. The dots were signed with different
colors according to sampling seasons.

doi:10.1371/journal.pone.0152998.g003
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Previous studies of the variability and diversity of microbial communities in AS ecosystems
are restricted to single dimensions, focusing on different bioreactors [8] or long-term time
series [6] across environmental factors. Although Hai et al. [32] showed the bacterial commu-
nity dynamics within a lab-scale and a full-scale bioreactor, the variability of the AS bacterial
community compositions across bioreactors and time was not given. Therefore, we present a
dataset containing varying microbial community compositions of AS, which could reflect both
seasonal and locational influences on the performance of the 8 concernedWWTSs. The PCoA
and ANOSIM based on OTUs allow further studies on patterns of microbial communities in 4
distinct groups across season variability. For the same season, AS samples taken from different
WWTSs shared great similarity on microbial communities. However, those taken from the
sameWWTS demonstrated seasonal variations of the communities in spite of their same origin
of inoculum and temporary continuity. Furthermore, higher temperature stress in winter (15–
21°C) might lead to lower microbial diversity and less dynamic than in summer (29–30°C).
Fortunato et al. [33] found that spatial variability overwhelms seasonal patterns in bacterio-
plankton communities across coastal margin, while different environments such as river, estu-
aries, plume and ocean were considered. Valentín-Vargas et al. [34] studied activated sludge
microbial communities during a one-year period from two conventional activated sludge
(CAS) bioreactors by T-RFLP. The results showed microbial community structures from the
same bioreactors were more similar than those between different bioreactors. In our study, the
WWTSs are located in the same city, which implies similar climatic and geographical environ-
ments and thereby seasonal patterns of AS microbial communities are expected to be over-
whelmed location variability.

Microbial community dynamics altered by environmental factors
The direct gradient ordination method RDA was performed to discern the possible influence
of physicochemical and operational parameters on microbial community compositions (Fig 4).
It explained the majority of variance in the species-environment correlations (62.7%). Based
on Function envfit with 999 permutations, of 10 input explanatory variables, 5 were identified
as significantly linked to microbial community variability at the p< 0.05 level. The length of
an environmental variable arrow indicates the strength of the relationship between that vari-
able and microbial community compositions. As such, temperature is the most important envi-
ronmental parameter (r = 0.66, p = 0.001) dramatically affecting the microbial community
compositions. The dominant taxa OTU1 and OTU9 increased across the temperature. Influent
SS, BOD, NH4

+-N and TN appears to strongly influence the compositions of microbial com-
munities. OTU6 as the most abundant OTU showed decline with increasing NH4

+-N.

Table 1. Analysis of Similarity Statistics (ANOSIM) test for significant differences between quarterly
groupings in AS overall microbial community compositions. A priori grouping strategy was based on
the result of principal coordinates analysis (PCoA).

Samples in different seasons Significant difference P-value

Global, with seasons nested 0.72 0.001

Summer vs. Fall 0.66 0.001

Summer vs. Winter 0.98 0.001

Summer vs. Spring 0.93 0.001

Fall vs. Winter 1 0.001

Fall vs. Spring 0.87 0.001

Winter vs. Spring 0.33 0.001

doi:10.1371/journal.pone.0152998.t001
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Seasonal or locational variations in microbial communities might be influenced by many
environmental factors, particularly on the rate of growth of individual taxa and physical
parameters preventing different communities from interacting [35]. A deeper analysis of the
compositions and dynamics of bioreactor microbial communities as a function of environmen-
tal factors is of great help to enhance treatment performance and management. Therefore,
RDA ordination analysis indicated that temperature, a well-recognized variable in biological
WWTSs, was most strongly and significantly associated with microbial community dynamics.
The influence of temperature on microbial community compositions of AS across space or
time has been noted previously. Spatial pattern was studied via 14 wastewater treatment plants
in China, the canonical correspondence analysis results showed that the microbial community
variance correlated most strongly with water temperature [1]. Based on the survey of temporal

Fig 4. Redundancy analysis (RDA) of OTUs data andmeasurable variables in all samples. The arrows represent environmental parameters. The length
of the arrows indicates the strength of the correlations and the angle of the arrows indicates the direction of variable increment. The triangles represent the
species. The dots represent the samples.

doi:10.1371/journal.pone.0152998.g004
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dynamic patterns of bacteria communities both in lab-scale and full-scale reactors via 454 pyr-
osequencing of 16S rRNA genes, the microbial community variance was significantly associ-
ated with water temperature [32]. Similar results have also been obtained in a lab-scale reactors
treating industrial wastewater [36] and a full-scale wastewater treatment plant [3]. The
observed correlation to temperature may be a reflection of seasonal periodicity in microbial
community compositions. Furthermore, BOD plays a key role in shaping the microbial com-
munities in WWTSs since organic loading is important carbon or energy source to heterotro-
phic microorganisms [6]. High organic loading could influence microbial diversity by reducing
competition between the heterotrophic microorganisms [37]. In a lab-scale bioreactor under
continuous steady-state conditions, Van Der Gast et al. [38] have also demonstrated that
organic loading was an important structuring factor for the pattern of microbial community
compositions and diversity via the denaturing gradient gel electrophoresis (DGGE) analysis.
The influent concentration of TN and NH4

+-N was also significantly linked to microbial com-
munity compositions. Nitrogen source would affect the growth of microorganisms and func-
tional microbial communities relevant to nitrogen cycle. Previous studies indicated that
ammonia concentration affects nitrification, nitrite accumulation and nitrifying microbial
communities [39]. However, more than 30% of the community variance cannot be explained
by the 10 environmental factors (main process operating parameters and influent parameters).
It is reasonable to expect that some additional factors, such as stochastic factors [38], taxo-
nomic relatedness and competition [40], organic toxicity of influent [41] and unmonitored fac-
tors (e.g. conductivity, oxidation reduction potential, etc.) [34], shape bacterial assembly in AS.

Performance assessment using SVRmodel
Microbial community compositions in the complex data set consists of 5412 OTUs in the pres-
ent study. Thus, it was necessary to do dimensionality reduction before building SVR model,
and 22 new variables were acquired. Furthermore, 27 AS samples were randomly selected for
the training of SVR model, while the remaining 6 samples were used for model validation. The
training results were listed in Table 2, which showed a very good training for BOD, SS and TN
prediction models with the mean square error (mse) less than 0.008 and high correlation coeffi-
cients (r2) in the training sets, but poorer training for NH4

+-N and TP with larger mse and
smaller r2. Consequently, better validation was found for BOD, SS and TN models. Fig 5
showed reasonable agreement between the predicted and measured BOD, SS and TN with the
r2 > 0.9. For NH4

+-N, low correlation between the predicted and measured values was

Table 2. Optimized support vector regression (SVR) models for effluent prediction in terms of BOD, SS, NH4
+-N, TN and TP (all with microbial com-

munity compositions as inputs).

Water constituents CVmsea cb gc Training sets Validation sets

mse r2 mse r2

BOD 0.0424 2.143 48.50 0.00652 0.935 0.00787 0.907

SS 0.0373 59.714 8.00 0.00771 0.931 0.01401 0.930

NH4
+-N 0.0642 2.828 45.25 0.03196 0.717 0.03851 0.412

TN 0.0424 2.462 90.51 0.00700 0.942 0.00478 0.966

TP 0.0536 4.925 128.00 0.01201 0.848 0.02475 0.824

aCVmse: cross validation mse.
bc: the optimized regularization cost parameter
cg: the optimized kernel-specific parameter.

doi:10.1371/journal.pone.0152998.t002
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Fig 5. Plot of the modeled versusmeasured BOD (a), SS (b), NH4
+-N (c), TN (d), and TP (e) concentration in effluent from the validation tests. The

dashed line on each plot fits for the ideal “y = x” line which means the model perfectly fits the data set.

doi:10.1371/journal.pone.0152998.g005
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illustrated with r2 < 0.5. Robust estimation was tested by changing the training dataset and val-
idation dataset (S6 Table). For BOD, SS and TN prediction models, r2 was> 0.8 in each per-
mutation. The sensitivity ranking for the performance of the top 10 inputs to the effluent in
BOD, SS and TN prediction models was made and the relevant results were summarized in
Table 3. In BOD prediction model, OTU1 and OTU6 were the most sensitive inputs with varia-
tion range greater than 0.5%. In SS prediction model, OTU6 is of the first important input, fol-
lowed by other 9 OTUs with variation range greater than 1%. For TN prediction model, the
primary inputs were found with the order of OTU1, OTU6, OTU12 and OTU4. The taxonomy
assignment of these OTUs was listed in S7 Table.

Oxidation of ammonium to nitrite is conducted by ammonia oxidizing bacteria including
only a few special genera, such as Nitrosomonas, Nitrosospira and Nitrosococcus [42]. Poly-
phospate accumulating organisms (PAOs) are responsible for the removal of phosphorus from
wastewater and the most important PAOs have been identified as Candidatus Accumulibacter
phosphatis [43] and Tetrasphaera [44]. These may be the reasons for the poorer prediction for
NH4

+-N and TP using microbial community compositions [45]. The better fit of predicted and
measured BOD, SS and TN could be attributed to wide distribution of organic degrading bacte-
ria and denitrifying bacteria. Similar results were derived by changing the training and valida-
tion datasets, which demonstrated the robustness of the models. Sensitivity analysis on the
influence of microbial communities on system performance showed the lowest sensitive to the
top 10 OTUs in BOD prediction model. Seshan et al. [45] showed that richness was more
prominent in predicting effluent BOD in SVR model, and functional redundancy led by high
richness might result in the low sensitivity of the OTUs. Such real-time models have been
established using diversity indices of microbial communities for predicting reactor perfor-
mance in a controlled experimental setting [45], but rarely done using community composi-
tions for predicting effluent water quality in full-scale systems. With the SVR models, the
performance of the full-scale bioreactors could be well assessed based on the core microbial
community compositions.

Conclusions
Our results demonstrated significant seasonal variability of microbial communities in eight
full-scale WWTSs in Guangzhou, China. Based on the input information on microbial com-
munity compositions derived from high-throughput sequencing, the trained support vector
regression models could reasonably predict for effluent BOD, SS and TN despite less

Table 3. Sensitivity rank of top 10 input variables in support vector regression (SVR).

BOD SS TN

Input Variation range Input Variation range Input Variation range

OTU1 0.78% OTU6 2.54% OTU1 1.77%

OTU6 0.56% OTU3 2.03% OTU6 0.89%

OTU12 0.32% OTU4 1.81% OTU12 0.71%

OTU7 0.21% OTU1 1.06% OTU4 0.52%

OTU9 0.11% OTU7 0.92% OTU10 0.22%

OTU17 0.08% OTU5 0.86% OTU5 0.18%

OTU11 0.07% OTU14 0.81% OTU14 0.17%

OTU13 0.06% OTU2 0.72% OTU3 0.16%

OTU5 0.06% OTU10 0.55% OTU20 0.16%

OTU3907 0.05% OTU9 0.55% OTU18 0.15%

doi:10.1371/journal.pone.0152998.t003
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satisfactory for NH4
+-N and TP. This provided an alternative option for efficient assessment

on their performance of full-scale wastewater treatment plants.

Supporting Information
S1 Table. List of 8 wastewater treatment systems.
(XLSX)

S2 Table. Characteristics of 8 wastewater treatment systems during sampling time.
(XLSX)

S3 Table. Different α-diversity indices of 33 samples.
(XLSX)

S4 Table. Abundance of genera across the 33 samples.
(XLSX)

S5 Table. Bray-Curtis similarity coefficients of microbial communities.
(XLSX)

S6 Table. Robust tested by changing the training dataset and validation dataset.
(XLSX)

S7 Table. The taxonomy assignment of the OTUs.
(XLSX)

Author Contributions
Conceived and designed the experiments: JN TL QC. Performed the experiments: TL. Ana-
lyzed the data: TL SL MZ. Contributed reagents/materials/analysis tools: JN QC. Wrote the
paper: TL JN SL.

References
1. Wang X, Hu M, Xia Y, Wen X, Ding K. Pyrosequencing Analysis of Bacterial Diversity in 14 Wastewater

Treatment Systems in China. Appl Environ Microbiol. 2012; 78: 7042–7047. doi: 10.1128/AEM.01617-
12 PMID: 22843531

2. Werner JJ, Knights D, Garcia ML, Scalfone NB, Smith S, Yarasheski K, et al. Bacterial community
structures are unique and resilient in full-scale bioenergy systems. Proc Natl Acad Sci U S A. 2011;
108: 4158–4163. doi: 10.1073/pnas.1015676108 PMID: 21368115

3. Wells GF, Park HD, Yeung CH, Eggleston B, Francis CA, Criddle CS. Ammonia-oxidizing communities
in a highly aerated full-scale activated sludge bioreactor: Betaproteobacterial dynamics and low relative
abundance of Crenarchaea. Environ Microbiol. 2009; 11: 2310–2328. doi: 10.1111/j.1462-2920.2009.
01958.x PMID: 19515200

4. Gentile ME, Nyman JL, Criddle CS. Correlation of patterns of denitrification instability in replicated bio-
reactor communities with shifts in the relative abundance and the denitrification patterns of specific pop-
ulations. ISME J. 2007; 1: 714–728. PMID: 18059495

5. Slater FR, Johnson CR, Blackall LL, Beiko RG, Bond PL. Monitoring associations between clade-level
variation, overall community structure and ecosystem function in enhanced biological phosphorus
removal (EBPR) systems using terminal-restriction fragment length polymorphism (T-RFLP). Water
Res. 2010; 44: 4908–4923. doi: 10.1016/j.watres.2010.07.028 PMID: 20701946

6. Kim TS, Jeong JY, Wells GF, Park HD. General and rare bacterial taxa demonstrating different tempo-
ral dynamic patterns in an activated sludge bioreactor. Appl Microbiol Biotechnol. 2013; 97: 1755–
1765. doi: 10.1007/s00253-012-4002-7 PMID: 22526777

7. HuM, Wang X, Wen X, Xia Y. Microbial community structures in different wastewater treatment plants
as revealed by 454-pyrosequencing analysis. Bioresour Technol. 2012; 117: 72–79. doi: 10.1016/j.
biortech.2012.04.061 PMID: 22609716

Performance Assessment of WWTSs Using SVRModel

PLOS ONE | DOI:10.1371/journal.pone.0152998 April 6, 2016 13 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0152998.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0152998.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0152998.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0152998.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0152998.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0152998.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0152998.s007
http://dx.doi.org/10.1128/AEM.01617-12
http://dx.doi.org/10.1128/AEM.01617-12
http://www.ncbi.nlm.nih.gov/pubmed/22843531
http://dx.doi.org/10.1073/pnas.1015676108
http://www.ncbi.nlm.nih.gov/pubmed/21368115
http://dx.doi.org/10.1111/j.1462-2920.2009.01958.x
http://dx.doi.org/10.1111/j.1462-2920.2009.01958.x
http://www.ncbi.nlm.nih.gov/pubmed/19515200
http://www.ncbi.nlm.nih.gov/pubmed/18059495
http://dx.doi.org/10.1016/j.watres.2010.07.028
http://www.ncbi.nlm.nih.gov/pubmed/20701946
http://dx.doi.org/10.1007/s00253-012-4002-7
http://www.ncbi.nlm.nih.gov/pubmed/22526777
http://dx.doi.org/10.1016/j.biortech.2012.04.061
http://dx.doi.org/10.1016/j.biortech.2012.04.061
http://www.ncbi.nlm.nih.gov/pubmed/22609716


8. Zhang T, Shao M-F, Ye L. 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14
sewage treatment plants. ISME J. 2012; 6: 1137–1147. doi: 10.1038/ismej.2011.188 PMID: 22170428

9. Huang MZ, Wan JQ, Ma YW, Li WJ, Sun XF, Wan Y. A fast predicting neural fuzzy model for on-line
estimation of nutrient dynamics in an anoxic/oxic process. Bioresour Technol. 2010; 101: 1642–1651.
doi: 10.1016/j.biortech.2009.08.111 PMID: 19857962

10. Hong Y-ST, Rosen MR, Bhamidimarri R. Analysis of a municipal wastewater treatment plant using a
neural network-based pattern analysis. Water Res. 2003; 37: 1608–1618. PMID: 12600389

11. Singh KK, Pal M, Ojha CSP, Singh VP. Estimation of Removal Efficiency for Settling Basins Using Neu-
ral Networks and Support Vector Machines. J Hydrol Eng. 2008; 13: 146–155.

12. Vapnik VN. An overview of statistical learning theory. IEEE Trans Neural Networks. 1999; 10: 988–999.
doi: 10.1109/72.788640 PMID: 18252602

13. Guo H, Jeong K, Lim J, Jo J, Kim YM, Park J, et al. Prediction of effluent concentration in a wastewater
treatment plant using machine learning models. J Environ Sci. 2015; 32: 1–12.

14. Guo F, Zhang T. Biases during DNA extraction of activated sludge samples revealed by high through-
put sequencing. Appl Microbiol Biotechnol. 2013; 97: 4607–4616. doi: 10.1007/s00253-012-4244-4
PMID: 22760785

15. Peiffer J a, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, et al. Diversity and heritability of the maize rhi-
zosphere microbiome under field conditions. Proc Natl Acad Sci U S A. 2013; 110: 6548–53. doi: 10.
1073/pnas.1302837110 PMID: 23576752

16. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows
analysis of high-throughput community sequencing data. Nat Methods. 2010; 7: 335–336. doi: 10.
1038/nmeth.f.303 PMID: 20383131

17. Edgar RC. UPARSE: highly accurate OTU sequences frommicrobial amplicon reads. Nat Methods.
2013; 10: 996–998. doi: 10.1038/nmeth.2604 PMID: 23955772

18. McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, et al. An improved Green-
genes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea.
ISME J. 2012; 6: 610–618. doi: 10.1038/ismej.2011.139 PMID: 22134646

19. Community T, Package E, Oksanen AJ, Kindt R, Legendre P. The vegan Package. Community Ecol
Packag. 2007; 631–637.

20. Chang C-C, Lin C-J. Libsvm. ACM Trans Intell Syst Technol. 2011; 2: 1–27.

21. Xia S, Duan L, Song Y, Li J, Piceno YM, Andersen GL, et al. Bacterial community structure in geograph-
ically distributed biological wastewater treatment reactors. Environ Sci Technol. 2010; 44: 7391–7396.
doi: 10.1021/es101554m PMID: 20812670

22. Antony R, Krishnan KP, Laluraj CM, ThambanM, Dhakephalkar PK, Engineer AS, et al. Diversity and
physiology of culturable bacteria associated with a coastal Antarctic ice core. Microbiol Res. 2012; 167:
372–380. doi: 10.1016/j.micres.2012.03.003 PMID: 22537873

23. Ju F, Xia Y, Guo F, Wang Z, Zhang T. Taxonomic relatedness shapes bacterial assembly in activated
sludge of globally distributed wastewater treatment plants. Environ Microbiol. 2014; 16: 2421–2432.
doi: 10.1111/1462-2920.12355 PMID: 24329969

24. Albertsen M, Hansen LBS, Saunders AM, Nielsen PH, Nielsen KL. A metagenome of a full-scale micro-
bial community carrying out enhanced biological phosphorus removal. ISME J. 2012; 6: 1094–1106.
doi: 10.1038/ismej.2011.176 PMID: 22170425

25. McIlroy SJ, Starnawska A, Starnawski P, Saunders AM, Nierychlo M, Nielsen PH, et al. Identification of
active denitrifiers in full-scale nutrient removal wastewater treatment systems. Environ Microbiol. 2016;
18: 50–64. doi: 10.1111/1462-2920.12614 PMID: 25181571

26. Liu Y, Zhang T, Fang HHP. Microbial community analysis and performance of a phosphate-removing
activated sludge. Bioresour Technol. 2005; 96: 1205–1214. PMID: 15734306

27. Coates JD, Chakraborty R, Lack JG, O’Connor SM, Cole K a, Bender KS, et al. Anaerobic benzene oxi-
dation coupled to nitrate reduction in pure culture by two strains of Dechloromonas. Nature. 2001; 411:
1039–1043. PMID: 11429602

28. Rossello-Mora R a., Wagner M, Amann R, Schleifer KH. The abundance of Zoogloea ramigera in sew-
age treatment plants. Appl Environ Microbiol. 1995; 61: 702–707. PMID: 7574608

29. Dugan P, Stoner D, Pickrum H. The Genus Zoogloea. The Prokaryotes. New York, NY: Springer-Ver-
lag; 2006. pp. 960–970.

30. Koch H, Lücker S, Albertsen M, Kitzinger K, Herbold C, Spieck E, et al. Expanded metabolic versatility
of ubiquitous nitrite-oxidizing bacteria from the genusNitrospira. Proc Natl Acad Sci U S A. 2015; 112:
11371–11376. doi: 10.1073/pnas.1506533112 PMID: 26305944

Performance Assessment of WWTSs Using SVRModel

PLOS ONE | DOI:10.1371/journal.pone.0152998 April 6, 2016 14 / 15

http://dx.doi.org/10.1038/ismej.2011.188
http://www.ncbi.nlm.nih.gov/pubmed/22170428
http://dx.doi.org/10.1016/j.biortech.2009.08.111
http://www.ncbi.nlm.nih.gov/pubmed/19857962
http://www.ncbi.nlm.nih.gov/pubmed/12600389
http://dx.doi.org/10.1109/72.788640
http://www.ncbi.nlm.nih.gov/pubmed/18252602
http://dx.doi.org/10.1007/s00253-012-4244-4
http://www.ncbi.nlm.nih.gov/pubmed/22760785
http://dx.doi.org/10.1073/pnas.1302837110
http://dx.doi.org/10.1073/pnas.1302837110
http://www.ncbi.nlm.nih.gov/pubmed/23576752
http://dx.doi.org/10.1038/nmeth.f.303
http://dx.doi.org/10.1038/nmeth.f.303
http://www.ncbi.nlm.nih.gov/pubmed/20383131
http://dx.doi.org/10.1038/nmeth.2604
http://www.ncbi.nlm.nih.gov/pubmed/23955772
http://dx.doi.org/10.1038/ismej.2011.139
http://www.ncbi.nlm.nih.gov/pubmed/22134646
http://dx.doi.org/10.1021/es101554m
http://www.ncbi.nlm.nih.gov/pubmed/20812670
http://dx.doi.org/10.1016/j.micres.2012.03.003
http://www.ncbi.nlm.nih.gov/pubmed/22537873
http://dx.doi.org/10.1111/1462-2920.12355
http://www.ncbi.nlm.nih.gov/pubmed/24329969
http://dx.doi.org/10.1038/ismej.2011.176
http://www.ncbi.nlm.nih.gov/pubmed/22170425
http://dx.doi.org/10.1111/1462-2920.12614
http://www.ncbi.nlm.nih.gov/pubmed/25181571
http://www.ncbi.nlm.nih.gov/pubmed/15734306
http://www.ncbi.nlm.nih.gov/pubmed/11429602
http://www.ncbi.nlm.nih.gov/pubmed/7574608
http://dx.doi.org/10.1073/pnas.1506533112
http://www.ncbi.nlm.nih.gov/pubmed/26305944


31. He S, McMahon KD. Microbiology of “Candidatus Accumulibacter” in activated sludge. Microb Biotech-
nol. 2011; 4: 603–619. doi: 10.1111/j.1751-7915.2011.00248.x PMID: 21338476

32. Hai R, Wang Y, Wang X, Li Y, Du Z. Bacterial community dynamics and taxa-time relationships within
two activated sludge bioreactors. PLoS One. 2014; 9: e90175. doi: 10.1371/journal.pone.0090175
PMID: 24594695

33. Fortunato CS, Herfort L, Zuber P, Baptista AM, Crump BC. Spatial variability overwhelms seasonal pat-
terns in bacterioplankton communities across a river to ocean gradient. ISME J. 2012; 6: 554–563. doi:
10.1038/ismej.2011.135 PMID: 22011718

34. Valentín-Vargas A, Toro-Labrador G, Massol-Deyá AA. Bacterial Community Dynamics in Full-Scale
Activated Sludge Bioreactors: Operational and Ecological Factors Driving Community Assembly and
Performance. PLoS One. 2012; 7: e42524. doi: 10.1371/journal.pone.0042524 PMID: 22880016

35. Nelson CCE. Phenology of high-elevation pelagic bacteria: the roles of meteorologic variability, catch-
ment inputs and thermal stratification in structuring communities. ISME J. 2009; 3: 13–30. doi: 10.1038/
ismej.2008.81 PMID: 18784755

36. Nadarajah N, Grant Allen D, Fulthorpe RR. Effects of transient temperature conditions on the diver-
gence of activated sludge bacterial community structure and function. Water Res. 2007; 41: 2563–
2571. PMID: 17448516

37. Tan TW, Ng HY, Ong SL. Effect of mean cell residence time on the performance and microbial diversity
of pre-denitrification submerged membrane bioreactors. Chemosphere. 2008; 70: 387–396. PMID:
17714756

38. Van Der Gast CJ, Ager D, Lilley AK. Temporal scaling of bacterial taxa is influenced by both stochastic
and deterministic ecological factors. Environ Microbiol. 2008; 10: 1411–1418. doi: 10.1111/j.1462-
2920.2007.01550.x PMID: 18205822

39. Kim DJ, Lee DI, Keller J. Effect of temperature and free ammonia on nitrification and nitrite accumula-
tion in landfill leachate and analysis of its nitrifying bacterial community by FISH. Bioresour Technol.
2006; 97: 459–468. PMID: 15927463

40. Ju F, Zhang T. Bacterial assembly and temporal dynamics in activated sludge of a full-scale municipal
wastewater treatment plant. ISME J. 2015; 9: 683–695. doi: 10.1038/ismej.2014.162 PMID: 25180966

41. Ren S. Assessing wastewater toxicity to activated sludge: recent research and developments. Environ
Int. 2004; 30: 1151–64. PMID: 15337358

42. Monteiro M, Séneca J, Magalhães C. The history of aerobic ammonia oxidizers: From the first discover-
ies to today. J Microbiol. 2014; 52: 537–547. doi: 10.1007/s12275-014-4114-0 PMID: 24972807

43. Crocetti GR, Hugenholtz P, Bond PL, Schuler AJ, Keller J, Jenkins D, et al. Identification of polypho-
sphate-accumulating organisms and design of 16SrRNA-directed probes for their detection and quanti-
tation. Appl Environ Microbiol. 2000; 66: 1175–1182. PMID: 10698788

44. Kong Y, Nielsen JLJJL, Nielsen PHPPH. Identity and Ecophysiology of Uncultured Actinobacterial
Polyphosphate-Accumulating Organisms in Full-Scale Enhanced Biological Phosphorus Removal
Plants. Appl Environ Microbiol. 2005; 71: 4076–4085. PMID: 16000823

45. Seshan H, Goyal MK, Falk MW,Wuertz S. Support vector regression model of wastewater bioreactor
performance using microbial community diversity indices: Effect of stress and bioaugmentation. Water
Res. 2014; 53: 282–296. doi: 10.1016/j.watres.2014.01.015 PMID: 24530548

Performance Assessment of WWTSs Using SVRModel

PLOS ONE | DOI:10.1371/journal.pone.0152998 April 6, 2016 15 / 15

http://dx.doi.org/10.1111/j.1751-7915.2011.00248.x
http://www.ncbi.nlm.nih.gov/pubmed/21338476
http://dx.doi.org/10.1371/journal.pone.0090175
http://www.ncbi.nlm.nih.gov/pubmed/24594695
http://dx.doi.org/10.1038/ismej.2011.135
http://www.ncbi.nlm.nih.gov/pubmed/22011718
http://dx.doi.org/10.1371/journal.pone.0042524
http://www.ncbi.nlm.nih.gov/pubmed/22880016
http://dx.doi.org/10.1038/ismej.2008.81
http://dx.doi.org/10.1038/ismej.2008.81
http://www.ncbi.nlm.nih.gov/pubmed/18784755
http://www.ncbi.nlm.nih.gov/pubmed/17448516
http://www.ncbi.nlm.nih.gov/pubmed/17714756
http://dx.doi.org/10.1111/j.1462-2920.2007.01550.x
http://dx.doi.org/10.1111/j.1462-2920.2007.01550.x
http://www.ncbi.nlm.nih.gov/pubmed/18205822
http://www.ncbi.nlm.nih.gov/pubmed/15927463
http://dx.doi.org/10.1038/ismej.2014.162
http://www.ncbi.nlm.nih.gov/pubmed/25180966
http://www.ncbi.nlm.nih.gov/pubmed/15337358
http://dx.doi.org/10.1007/s12275-014-4114-0
http://www.ncbi.nlm.nih.gov/pubmed/24972807
http://www.ncbi.nlm.nih.gov/pubmed/10698788
http://www.ncbi.nlm.nih.gov/pubmed/16000823
http://dx.doi.org/10.1016/j.watres.2014.01.015
http://www.ncbi.nlm.nih.gov/pubmed/24530548

