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Abstract: As alternative entropy estimators, multiscale entropy (MSE) and permutation entropy (PE)
are utilized for quantification of the brain function and its signal variability. In this context, their
applications are primarily focused on two specific domains: (1) the effect of brain pathology on its
function (2) the study of altered states of consciousness. As a result, there is a paucity of research on
applicability of these measures in more naturalistic scenarios. In addition, the utility of these measures
for quantification of the brain function and with respect to its signal entropy is not well studied.
These shortcomings limit the interpretability of the measures when used for quantification of the
brain signal entropy. The present study addresses these limitations by comparing MSE and PE with
entropy of human subjects’ EEG recordings, who watched short movie clips with negative, neutral,
and positive content. The contribution of the present study is threefold. First, it identifies a significant
anti-correlation between MSE and entropy. In this regard, it also verifies that such an anti-correlation
is stronger in the case of negative rather than positive or neutral affects. Second, it finds that MSE
significantly differentiates between these three affective states. Third, it observes that the use of PE
does not warrant such significant differences. These results highlight the level of association between
brain’s entropy in response to affective stimuli on the one hand and its quantification in terms of MSE
and PE on the other hand. This, in turn, allows for more informed conclusions on the utility of MSE
and PE for the study and analysis of the brain signal variability in naturalistic scenarios.

Keywords: differential entropy; multi-scale entropy; permutation entropy; whole-brain variability;
brain information processing

1. Introduction

Recent neuroscientific findings present compelling empirical [1–3] and theoretical [4,5] evidence
for the importance of the brain signal variability in its function. Such a variability stems from the
interaction between neuronal circuits [6,7] across broad spatiotemporal scales [8,9]. This variability is
further hypothesized to signify the cortical self-organized criticality [10–13] in which the brain capacity
for information processing is maximized [14,15]. These observations help verify the potential role of
entropy in identification of the brain signal variability [16–21] and the significance of such a variability
in its function [22–24].

However, the entropy of biological signals can be drastically affected by such factors as long-range
autocorrelation (due to reduction of entropy by correlation [25]), the signal length, and the presence of
non-stationarity [26]. To mitigate these affects, a number of entropy estimators are introduced [27,28]
among which multiscale entropy (MSE) [29] and permutation entropy (PE) [30] are widely used.

MSE utilizes the sample entropy [28] to quantify the signal variability at different time scales
(through coarse graining process) [31,32]. It is successfully applied in the study of schizophrenia [33],
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depression [34], autism [35,36], and Alzheimer’s disease [37,38]. It also appears as a relibale tool for
analysis of the effect of ageing on brain function [39,40] as well as the sleep cycle [41].

On the other hand, PE utilizes the reoccurrences of ordinal patterns in the signal to estimate its
variability through the application of Shannon entropy [42]. PE is shown to be more robust to noise [30]
and invariant under non-linear scale transformations [43]. Applications of PE include the difference
in heart rate variability (HRV) between healthy individuals and the congestive heart failure (CHF)
patients [44], detection of epileptic seizure [45], and the effect of anesthetic drugs on humans [46] and
non-humans [47]. Zanin et al. present a review of PE applications.

1.1. The Purpose of Present Study

Within the domain of neuroscientific research, MSE and PE are primarily used in two specific
scenarios: (1) the affect of brain pathology on its function [33–38,45] (2) the differential states of
wakeful and unconscious brain [41,46–48]. This results in a lack of sufficient research on applicability
of these measures in more naturalistic scenarios. Furthermore, the utility of these measures for
quantification of the brain function and with respect to its entropy is not well studied. Such analyses
are crucial for determining the level of correspondence between these measures on the one hand
and the entropy of neurophysiological signals on the other hand. For instance, MSE utilizes several
coarse-grained versions of original time series (referred to as scales) to refine the estimate of its
variability [29]. In contrast, PE achieves this objective via the realization of the ordinal patterns in
the time series [30]. However, the lack of comparative analysis between these measures with entropy
limits their interpretability when used for quantification of the brain signal entropy.

The present study addresses these shortcomings through comparative analysis of MSE and PE for
study of the human brain signal variability in response to naturalistic stimuli. To this end, it uses the
Shanghai Jiao Tong University (SJTU) Emotion EEG Dataset (SEED) [49] that comprises human subjects’
sixty-two-channel EEG recordings. These EEG signals were acquired when the human subjects in the
SEED study watched fifteen four-minute movie clips with positive, neutral, and negative contents.

1.2. Contributions

The contribution of the present study is threefold. First, it identifies a significant anti-correlation
between MSE and entropy, whose affect is stronger in the case of negative than positive or neutral affect.
Second, it verifies that MSE significantly differentiates between these affective states. In particular,
it indicates that the negative affect is associated with lowest MSE, that the positive affect’s MSE is
higher at the small-scale, and that the neutral affect is associated with higher MSE at the large-scale.
These results highlight the level of association between the brain’s entropy in response to affective
stimuli on the one hand and its quantification in terms of MSE and PE on the other hand.

These results help draw a level of association between the brain’s entropy in response to affective
stimuli on the one hand and its quantification in terms of MSE and PE on the other hand. This, in turn,
allows for more informed conclusions on the utility of these measures for study and analysis of the
brain function.

2. Materials and Methods

The Dataset

SEED [49] includes (Figure 1B) fifteen Chinese subjects’ sixty-two-channel EEG recordings
(7 males and 8 females; Mean (M) = 23.27, Standard Deviation (SD) = 2.37). These recordings were
acquired during the participants’ watching of fifteen four-minute Chinese movie clips with negative,
neutral, and positive affective content (five clips per affect). The participants’ selection criteria were
based on the Eysenck Personality Questionnaire (EPQ) [50] personality traits. This questionnaire
analyzes the individuals’ personality along three independent temperament’s dimensions. They are
neuroticism/stability, extraversion/introversion, and psychoticism/socialization.
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Figure 1. (A) Shanghai Jiao Tong University (SJTU) Emotion EEG Dataset (SEED) [49] paradigm.
Each setting, per participant, comprised fifteen four-minute movie clips (i.e., n = 15). There was a
five-second hint before the start of each clip. After each clip, participants answered (Likert 5-point scale)
three questions that assessed their emotion-feeling states [51]. These questions included participants’
actually felt emotion while watching the clip, have they previously watched the fully movie that
the clip corresponded to, and how well they comprehended the clip’s content. (B) Sixty-two EEG
channels’ arrangement.

The movie clips were selected based on three criteria: length (i.e., four-minute to prevent fatigue),
content (easy to comprehend without requiring explicit explanations), and single-affect elicitation
(e.g., only negative affect). To choose proper movie clips, the authors recruited twenty volunteers who
were different from those who took part in SEED. These additional individuals assessed a pool of
movie clips using the Likert five-point scale. The authors then used these assessments and selected 15
movie clips whose average scores were ≥3 and were also ranked among the top five in their respective
affect category. The affectiveness of these selected movie clips were further verified in a follow-up
study [52] that included nine participants (different from the twenty individuals who first rated them).

In each experiment, per participant, the movie clips were ordered to prevent two similar-affect
clips (e.g., both having negative content) to follow one another. There was a five-second hint
period before the start of each clip (i.e., similar to [52]). After watching each four-minute movie
clip, the participants answered three questions that assessed their emotion-feeling states [51].
These questions included participants’ actually felt emotion while watching the clip, have they
previously watched the full movie that the clip was taken from, and how well they comprehended
the clip’s content. After answering these questions, the participants took a fifteen-second rest before
the next movie clip started. Every participant took part in three experiments (one week apart).
Every experiment used the same set of fifteen movie clips. All participants watched them in the same
order of presentation.

SEED’s preprocessing steps were as follows. First, the EEG segments that corresponded
to the duration of each movie clip were extracted (i.e., per EEG channel, per affect, per movie
clip, and per participants). These segments were then down-sampled to 200 Hz sampling rate.
Next, they were visually examined against the individuals’ accompanying electromyography (EMG)
and electrooculography (EOG) recordings. Subsequently, the data that were contaminated by potential
muscle- (i.e., EMG) or eye-movement (i.e., EOG) were manually removed. The EOG was further
utilized to identify blink artifacts in these EEG recordings. To attenuate the noise (e.g., cardiac
pulsations, respiration, etc.), the EEG signals were band-pass filtered between 0.3 to 50 Hz. Further
details about SEED and its data preprocessing can be found in [49,52] and at http://bcmi.sjtu.edu.cn/
~seed/seed.html.

http://bcmi.sjtu.edu.cn/~seed/seed.html
http://bcmi.sjtu.edu.cn/~seed/seed.html
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3. Data Validation

The present study utilized the EEG recordings that pertained to the first participation of every
individual and included all of their fifteen movie clips (i.e., five clips per affect) in their session
(Figure 1A). For each individual, all sixty-two EEG channels were used. Prior to further analyses,
the following EEG signals’ validation steps were applied.

To ensure that DE, MSE, and PE computations were not affected by the length of EEG
data [32,53,54], all recordings were first confirmed to be sufficiently long (Mean (M) = 45,286.71,
Standard Deviation (SD) = 2776.61, CI95% = [44,565.70 46,007.73], minimum = 37,000, maximum
Length = 47,601) where CI95% stands for 95% confidence interval. These recordings were then trimmed
to yield equal-length EEG time series (i.e., per channel, per affect, and per participant) as per the
shortest available EEG recording (i.e., 37,000 data points).

Next, the participants’ EEG recordings were de-trended. This step was then followed
by performing Augmented Dickey–Fuller (ADF) [55] and Kwiatkowski–Phillips–Schmidt–Shin
(KPSS) [56] tests on them to ensure their covariance stationarity. These tests identified that one
of the participant’s data did not satisfy covariance stationarity (i.e., trend-stationarity which implies
mean and variance do not change over time). Consequently, this participant was excluded from further
analyses. Additionally, the first session of another two participants’ EEG recordings did not also pass
these tests. Therefore, their first sessions were replaced with their corresponding second and third
sessions, respectively, that subsequently passed these tests.

4. Quantification of the EEG Channels’ Signal Variability Using DE, PE, and MSE

In the present study, DE, MSE, and PE were computed in terms of the brain variability across
distributed regions. This approach was motivated by the findings that underlined the distributed
nature of the brain function [57–60]. For instance, prior research indicated that most accurate neural
signature of discrete emotions were associated with the brain’s anatomically distributed variational
patterns [61]. It also identified that the use of joint activity from these regions more accurately
discriminated between different emotions [62,63]. In this respect, Liu et al. [48] showed that MSE
and FC were robust measures for mice spatiotemporal whole-brain variability across anesthetic and
wakeful states. These results provided evidence for the involvement of large-scale cortical networks in
the formation of high-level mental states and distinct emotions [64–66].

In line with these findings, Keshmiri et al. [67] also observed that DE of the brain’s distributed
regions significantly distinguished between negative, neutral, and positive affect. Specifically, their
results indicated that DE of the negative and positive affect were higher than that of neutral affect.
This finding echoed the results that identified an increase in the brain’s information processing during
the emotional than neutral contexts [68]. It was also in accord with the findings that indicated an
increase in brain activity with attention [69,70]. Keshmiri et al. [67] also observed that DE was able
to significantly differentiate between the negative, neutral, and positive affect. These results further
supported the observations that considered distributed brain regions were involved in the formation of
differential affect and emotions [66,71,72]. In light of these findings, the present study considered DE
from [67] as a basis for evaluation of the utility of MSE and PE for quantification of the brain responses
to negative, neutral, and positive affective stimuli.

4.1. The Procedure

The present study followed the same steps that were outlined in [67] to compute DE, PE, and MSE
values for participants’ full-length EEG time series (i.e., 37,000 data points), per channel. For clarity,
these steps are restated in this section.

For every trial, each participant’s data that pertained to each of its five movie clips (i.e., one EEG
data file for each of the movie clip), per affect, were accessed, one-by-one, and their respective DE, MSE,
and PE were computed. This step yielded five separate sets (i.e., one set for each of the movie clips,
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per affect), each of which containing DE, PE, and MSE values for each of sixty-two EEG channels, per
participant. We then computed the average values of each of these entropic measures for each channel.

For example, in the case of PE computation for EEG channel FP1 (Figure 1B), there were five PEs
(i.e., one PE for each of the movie clips of a given affect (e.g., negative affect): [PEFP1

movie clip1, PEFP1
movie clip2,

PEFP1
movie clip3, PEFP1

movie clip4, PEFP1
movie clip5]. These five PEs were averaged (i.e., mean([PEFP1

movie clip1,

PEFP1
movie clip2, PEFP1

movie clip3, PEFP1
movie clip4, PEFP1

movie clip5]). It is also apparent that these values’ order have
no effect on their computed average PE for FP1 [73].

4.2. DE Computation

DE was computed using its non-parametric estimator [74] that is based on the nearest neighbour
distance [75]. The present results utilized its implementation in [76].

In the case of DE, the computation step highlighted in Section 4 resulted in 1 × 62 vectors, per
affect, per participant, where 62 refers to the number of EEG channels (Figure 1B).

4.3. PE Computation

PE computation was carried out using its original implementation by Bandt and Pompe [30].
In the case of PE, practical consideration for its use favours the choice of permutation order that is
3 ≤ m! << N [53,77,78] where m and N refer to permutation order and the length of the time series,
respectively. Considering the length of EEG time series in the present study (i.e., 37,000 data points),
the only suitable permutation orders were 3–7. Therefore, the main text reported PE results using
order 3 and time lag 1 (i.e., its original implementation by Bandt and Pompe [30]). Appendices J, K
and L provide the results pertinent to permutation orders 5, 6 and 7.

In the case of PE, computational steps in Section 4 resulted in 1 × 62 vectors (for all permutation
orders 3, 5, 6, and 7), per affect, per participant, where 62 refers to the number of EEG channels
(Figure 1B).

4.4. MSE Computation

The present study utilized the original MSE implementation by Goldberger et al. [32]. It also
followed their guidelines on the choice of parameters, thereby using the scale factor 20 (MSE1 through
MSE20 hereafter) and the similarity criterion 0.20 (i.e., a positive real value, typically within 10.0% to
20.0% of the time series standard deviation [32]).

MSE computation also followed the same computational steps in Section 4 (i.e., similar to DE
and PE). Unlike DE and PE, MSE computation resulted in 20 × 62 matrices, per affect, per participant,
where 62 refers to the number of EEG channels (Figure 1B) and 20 refers to MSE1–MSE20, per channel,
per affect.

5. Analysis

For both PE and MSE, their Spearman correlations with DE, per EEG channel, per affect, were
computed. This was followed by their bootstrap (10,000 simulation runs) correlations at 95.0% (i.e.,
p < 0.05) confidence interval. This test considered the null hypothesis

Hypothesis 1. There was no correlation between participants’ PEs/MSEs and the corresponding DEs of their
EEG channels.

Hypothesis 1 was then tested against the alternative hypothesis

Hypothesis 2. There was a significant correlation between participants’ PEs/MSEs and the corresponding
DEs of their EEG channels.
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We further computed the p-value of these tests as a fraction of the distribution that was more
extreme than the actually observed correlation values. This was carried out using a two-tailed test in
which the correlation coefficients’ absolute values were used so that both, the positive and the negative
correlations were accounted for.

Next, the significance of EEG channels’ PE and MSE for each of the negative, neutral, and positive
affect were compared (i.e., with respect to DE) using Kruskal–Wallis test. This was then followed by
posthoc Wilcoxon rank-sum tests between every pair of affect. These results were further verified
through the application of the paired two-sample bootstrap test of significance (10,000 simulation runs)
at 95.0% confidence interval on each pair of these affective states. These paired two-sample bootstrap
tests considered the null hypothesis

Hypothesis 3. The difference between PE/MSE values of participants’ EEG channels in two different mental
states was non-significant.

They tested Hypothesis 3 against the alternative hypothesis.

Hypothesis 4. The PE/MSE values of participants’ EEG channels were significantly different in two different
mental states.

Reported Results and Affect Sizes

In the case of two-tailed bootstrap tests, their mean, standard deviation, and 95.0% confidence
interval are reported.

Results pertinent to MSE1 and MSE20, per participant, per affect, per EEG channel, are reported
in the main text. Appendices G–I provide these results for MSE2–MSE19.

For PE, the main text includes its results based on permutation order 3. Subsequently,
Appendices J–L present the results for permutation orders 5, 6, and 7.

Appendix M provide the Spearman Correlations Between MSE1 versus MSE2–MSE20. The rand
p-values associated with these figures are shown in Tables A17–A19.

The effect size for the Kruskal–Wallis test was computed using r =
√

χ2

N [79] where N and χ2 are
the sample size and the test-statistics. For Wilcoxon tests, the effect size r = W√

N
[80] was used. In this

equation, W is the Wilcoxon statistics. All results were Bonferroni-corrected. All analyses were carried
out in Matlab 2016a.

In regards to the adapted analyses by the present study, two points beg further clarification: the
choice of non-parametric tests and the bootstrap test of significance. The choice of non-parametric tests
were due to the fact that the computed DE, PE, and MSE, per affect, were not normally distributed
(separately as well as combined, with respect to both: individuals and EEG channels). On the
other hand, the use of bootstraps was motivated by the fact that the reported analyses were based
on a small sample of fourteen individuals. As a result, it was necessary to ensure that the observed
differences between DE, MSE, and PE were not due to a sub-sample of participants (i.e., skewed values).
Applying bootstrap tests with large re-sampling successions (10,000 simulations) at 95.0% confidence
interval (i.e., p < 0.05 significance level) allowed for further evaluation of the reported results.

6. Results

6.1. DE vs. PE

Figure 2 shows the correlations between participants’ DE and their corresponding PE values. PE
and DE were significantly correlated in the case of negative affect (Figure 2A, r = 0.32, p < 0.001).
However, such correlations were non-significant in the case of neutral (r = 0.05, p = 0.15) and positive
(r = 0.05, p = 0.15) affect. These results were further supported by their corresponding bootstrap tests
(10,000 simulation runs) at 95.0% confidence interval (Appendix A).
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Figure 2. Spearman correlation between participants’ DEs (i.e., 62 DEs associated with 62 EEG channels
of a participant, per affect) and their corresponding PE values (i.e., 62 permutation entropies (PE)
associated with 62 EEG channels of a participant, per affect) in (A) negative, (B) neutral, and (C) positive.

Figure 3A shows the grand averages of the spatial maps of participants’ PE in negative, neutral,
and positive affect. Kruskal–Wallis test indicated a significant difference among participants’ positive,
neutral, and negative affect (p < 0.001, H(2, 2603) = 20.79, r = 0.09). Posthoc Wilcoxon test (Figure 3B)
indicated higher PE values in the case of positive than neutral affect (p < 0.001, W(1734) = 4.52, r = 0.11,
MPositive = 2.56, SDPositive= 0.04, MNeutral = 2.54, SDNeutral= 0.05). Similarly, the negative affect was
associated with higher PEs than the neutral affect (p < 0.01, W(1734) = 3.03, r = 0.07, MNegative = 2.55,
SDNegative = 0.05). On the other hand, the difference between the PEs of the positive and negative affect
were non-significant (p = 0.21, W(1734) = 1.26). However, these significant differences did not survive
the two-sample bootstrap test of significance (10,000 simulation runs) at 95.0% confidence interval
(Appendix B).

Figure 3. (A) Grand averages of the spatial maps of participants’ PEs in negative, neutral, and positive
affect states. These subplots identify that PEs associated with these mental states exhibited
highly resembling patterns that were approximately uniformly distributed over all brain regions.
(B) Descriptive statistics of the posthoc Wilcoxon rank-sum tests applied on participants’ whole-brain
PEs (i.e., 62 PEs associated with 62 EEG channels of a participant, per affect) in negative, neutral,
and positive affect states. The asterisks mark the significant differences in these subplots.

6.2. MSE1 vs. DE

Figure 4 shows the correlations between participants’ DEs and MSE1s. MSE1 and DE were
significantly anti-correlated in the case of negative (Figure 4A, r = −0.50, p < 0.001), neutral (Figure 4B,
r = −0.13, p < 0.001), and positive affect (Figure 4C, r = −0.13, p < 0.001). These results were further
supported by their corresponding bootstrap tests (10,000 simulation runs) at 95.0% confidence interval
(Appendix C).
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Figure 4. Spearman correlation between participants’ DEs (i.e., 62 DEs associated with 62 EEG channels
of a participant, per affect) and their corresponding multiscale entropy (MSE)1 values (i.e., 62 MSE1s
associated with 62 EEG channels of a participant, per affect) in (A) Negative (B) Neutral (C) Positive.

Figure 5A shows the grand averages of the spatial maps of participants’ MSE1s in negative,
neutral, and positive affect. These subplots identify incremental patterns of MSE1 from negative to
positive affect. Kruskal–Wallis test on these MSE1 values identified a significant difference between
these three affective states (p < 0.001, H(2, 2603) = 160.39, r = 0.25). Posthoc Wilcoxon test (Figure 5B)
indicated that MSE1 in the case of positive affect was significantly higher than neutral (p < 0.001,
W(1734) = 4.51, r = 0.11, MPositive = 1.22, SDPositive = 0.46, MNeutral = 1.13, SDNeutral = 0.38) and negative
(p < 0.001, W(1734) = 11.84, r = 0.28, MNegative= 0.95, SDNegative= 0.45) affect. It also showed that
neutral affect’s MSE1 was significantly higher than MSE1 associated with the negative affect (p < 0.001,
W(1734) = 8.90, r = 0.22). These results were further supported by their corresponding two-sample
bootstrap tests of significance (10,000 simulation runs) at 95.0% confidence interval (Appendix D).

Figure 5. (A) Grand averages of the spatial maps of participants’ MSE1s (i.e., 62 MSE1s associated with
62 EEG channels of a participant, per affect) in negative, neutral, and positive mental states. Distribution
of MSE1s in these spatial maps corresponds to the EEG channels’ arrangement in Figure 1B (i.e., one
MSE1 value, per EEG channel) Differential patterns of the participants’ MSE1s that show an increase
from negative to positive states is evident in these subplots. (B) Descriptive statistics of participants’
MSE1 in negative, neutral, and positive mental states. The asterisks mark the significant differences in
these subplots.

6.3. MSE20 vs. DE

There were also significant anti-correlations between participants’ DEs and MSE20s (negative:
Figure 6A, r = −0.56, p < 0.001, and neutral: Figure 6B, r = −0.41, p < 0.001, and positive: Figure 6C,
r = −0.41, p < 0.001). These anti-correlations were stronger in the case of MSE20 than MSE1. They
were further supported by their corresponding bootstrap tests (10,000 simulation runs) at the 95.0%
confidence interval (Appendix E).
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Figure 6. Spearman correlation between participants’ DEs (i.e., 62 DEs associated with 62 EEG channels
of a participant, per affect) and their corresponding MSE20 values (i.e., 62 MSE20s associated with 62
EEG channels of a participant, per affect) in (A) negative, (B) neutral, and (C) positive.

Figure 7A shows the grand averages of the spatial maps of participants’ MSE20s in negative,
neutral, and positive affect. These subplots identify a pattern in which MSE20s associated with
neutral affect is higher than negative and positive affect. Kruskal–Wallis on these MSE20s identified
a significant difference between participants’ three affective states (p < 0.001, H(2, 2603) = 155.37,
r = 0.24). However in this case and unlike MSE1, posthoc Wilcoxon test (Figure 7B) revealed that neutral
affect’s MSE20 was significantly higher than positive ( p < 0.01, W(1734) = 2.84, r = 0.07, MPositive = 1.26,
SDPositive = 0.33, MNeutral = 1.31, SDNeutral = 0.31) and negative (p < 0.001, W(1734) = 9.20, r = 0.22,
MNegative= 1.09, SDNegative = 0.38) affect. It also indicated that positive affect’s MSE20 was significantly
higher (i.e., similar to MSE1) than the MSE20 of negative affect (p < 0.001, W(1734) = 11.85, r = 0.28).
These results were further supported by their corresponding two-sample bootstrap tests of significance
10,000 simulation runs) at a 95.0% confidence interval (Appendix F).

Figure 7. (A) Grand averages of the spatial maps of participants’ MSE20s (i.e., 62 MSE20s associated
with 62 EEG channels of a participant, per affect) in negative, neutral, and positive mental states.
Distribution of MSE20s in these spatial maps corresponds to the EEG channels’ arrangement in
Figure 1B (i.e., one MSE20 value, per EEG channel). These subplots identify a pattern in which MSE20s
associated with the neutral state is higher than the negative as well as the positive state. Similar to
participants’ MSE1s, the negative state’s MSE20s are below those of the neutral and the positive states.
(B) Descriptive statistics of the posthoc Wilcoxon rank-sum tests applied on participants’ whole-brain
MSE20s (i.e., 62 MSE20s associated with 62 EEG channels of a participant, per affect).

7. Discussion

The present study sought to examine the utility of MSE and PE for study of the effect of naturalistic
affective stimuli on brain signal variability. For this purpose, it utilized SEED [49]: a publicly available
dataset of human subjects’ sixty-two-channel EEG recordings. These EEG signals were recorded
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while participants watched movie clips whose contents elicited negative, neutral, and positive affect.
Our study was primarily motivated by two observations. First, previous research has mostly considered
MSE and PE for investigation of either the effect of brain pathology on its function [33–38,45] or the
altered state of consciousness [41,46–48]. This has left the utility of these measures for the study of
brain variability in more naturalistic settings unanswered. Second, the lack of comparative analysis of
MSE and PE with the brain signal entropy has further limited the scope of their interpretability when
used for quantification of the brain signal entropy.

MSE appeared to complement the findings on the use of DE for quantification of the differential
effect of negative, neutral, and positive affect on the brain activity. Specifically, Keshmiri et al. [67]
identified that DE of the brain’s distributed regions significantly distinguished between negative,
neutral, and positive affect. They also observed that DEs of negative and positive affect were higher
than neutral’s DE. This finding echoed the brain’s higher information processing during the emotional,
rather than neutral contexts [68]. In this respect, the present results found that positive and neutral
affects were associated with higher MSE than the negative affect. They further indicated that the
positive affect’s MSE was higher at the small-scale and the neutral affect was associated with higher
MSE at the large-scale. These results were in accordance with the findings that maximum entropy
does not necessarily promote higher signal variability [25,29]. They also extended the findings on the
interplay between small and large scale MSEs [39,48,81,82] to the case of brain affective responses to
naturalistic stimuli.

On the other hand, we found little evidence in support of the use of PE. For instance, the use of
permutation order-3 resulted in a significant correlation between PE and DE in the case of negative
affect. Although this correlation was in accord with the correspondence between PE and signal’s
entropy [30,83,84], such a correlation was absent in the case of neutral and positive affect. Surprisingly,
such a correlation was absent altogether in the case of higher-order permutations (Appendices J–L).
Considering the present results, PE appeared to more readily associate with the brain variability that
is characterized with distinct states (e.g., epileptic seizure [45], the affect of anesthetic drugs [46,47])
that presumably take place in a dichotomous fashion [66] than subtle changes in mental states during
naturalistic settings (e.g., negative than neutral or positive affect).

A number of studies utilize PE to interpret the affect of such activities as meditation [85] and
mediated social communication [86] on human subjects. These studies use PE to construe the observed
changes in the brain activity in terms of relaxation and induced comfort in such settings. The present
results challenged the plausibility of such interpretations. In particular, the observed insensitivity
of PE to subtle changes in brain variability appeared to explain the discrepancy of the findings in
the meditation literature. For instance, Vyšata et al. [85] reported a decrease in global permutation
entropy during the mediation (interpreted as a sign for relaxation by the authors). On the contrary,
Kakumanua et al. [87] observed an increase in PE that was only present in the case of experienced
meditators. This was also the case in mediated social communication in which the lower [86] and
higher [88,89] entropy was assumed to highlight such self-assessed feelings as relaxed mood, interest,
and the feeling of human presence. Furthermore, the mediated social communication studies were
based on a surprisingly limited number of brain sites (e.g., only two forehead sites in [86,88,89]).
As a result, it was unclear whether the observed changes in entropy were due to the individuals’
interaction with the media or potentially a residue of overall brain signal variability [1,3] which may
not necessarily pertain to the affect of stimuli. Most importantly, these results were inconsistent
with the findings that underlined the substantial contrast between human–human and human–agent
interactions (HHI and HAI, respectively) [90]. For example, Rauchbauer and colleagues [91] observed
that neural markers of mentalizing [92,93] and social motivation [94] were only activated during HHI.
These studies also suggested that although the brain activity within the person perception network
(PPN) was not reduced during HAI (as compared to HHI), the activity within the theory-of-mind
(TOM) network [95,96] was reduced [97,98]. These findings along with the insensitivity of PE to
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differential affect in the present study, appear to be at odds with the interpretation of decreased PE as
a measure of relaxation/comfort in mediated communication [86].

Taken together, the present study implied that MSE and PE may yield different results in the
case of naturalistic settings in comparison with such scenarios as the affect of brain pathology on its
function [33–38,45] and altered states of consciousness [41,46–48]. These results help realize the level
of association between entropy, on the one hand, and MSE and PE on the other hand, thereby allowing
for more informed conclusions on their use for the quantification of the brain variability in response to
naturalistic stimuli.

On the other hand, it is also crucial to emphasize that the present results suffer from two important
limiting factors: small sample size and the lack of cultural diversity within this sample. In this regard,
the accompanying bootstrap tests with large repeated re-sampling partially allowed for mitigating the
potential impact that the small sample might have otherwise imposed on the analyses. However, such
tests must not be interpreted as substitutes for larger sample size and therefore care must be taken
to avoid improper generalization of the present findings. In the same vein, cultural diversity is the
key to a thorough understanding of the full spectrum of the humans’ emotion and mental states.
Although individuals’ ability to experience affect appears to be a unifying facet across cultures [99],
this does not necessarily imply that all individuals experience and respond to affective stimuli in a
similar way. Therefore, one must take caution to prevent unwarranted generalization of the present
results across different cultures.

8. Limitations and Future Direction

An important characteristic of the brain function is the innate interactivity among its distributed
regions [20]. This interplay among brain’s distributed regions implies the flow of information across
its multiple areas whose information-content may concurrently contribute to a number of functional
pathways [100]. The present study fell short in considering the potential effect of a such a flow of
information on computed DE, PE, and MSE values. Therefore, future research to verify the possibility of
such impacts [101,102] is necessary, thereby allowing for more informed conclusion on present results.

Our analyses identified significant anti-correlations between DE and MSE at different scales
(i.e., MSE1–MSE20). They also indicated that such anti-correlations were stronger in the case of
negative than positive and neutral affect. This differed from the results of the altered states of
consciousness [48] in which positive/negative correlations were associated with the small/large scales.
Although Liu et al. [48] also reported the weakening of correlations in the case of simulated brain
variability, observed correlations in the present study were substantially weaker. These differences
may suggest the differential behaviour of MSE in naturalistic settings compared to such scenarios as
a study of the brain variability under anesthesia and wakefulness. On the other hand, the observed
correlational differences might be due to the differing operational principle between DE that was used
in the present study and the regional entropy (RE) [15,103] that Liu et al. [48] utilized. The comparative
analysis of RE and DE is an interesting venue for future research to shed further light on their respective
degree of correlation with MSE.

The Spearman correlation between DE and MSE1 appeared to suggest a degree of a nonlinear
relationship between these two quantities. A potential reason behind the observed effect might be
the shared information among different EEG channels with respect to their MSE1. The possibility of
higher shared information between DE and MSE1 became more plausible, considering the increased
anti-correlation between DE and MSE of higher scales (e.g., MSE20). This might also hint at the
possibility of lower scale MSE (e.g., MSE1) to more closely reflect/capture the local information
processing [39,81] at the sight of EEG channels. This, in turn, could imply that the changes in the
lower scale MSE was more in line (i.e., less anti-correlated) with the signal entropy (i.e., its DE). It is
apparent that these potential non-linear relations could not be captured by Spearman correlation
(i.e., a linear measure). Therefore, it is crucial to further investigate the nature and potential causes of
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such variation in the observed anti-correlations through the use of measures that can quantify linear as
well as nonlinear relations (e.g., mutual information (MI) [104]).

The small sample size is another limitation of the present work. This concerning issue [58,105–107]
is best highlighted by Lindquist [66] that found 914 affect-related experimental contrasts included
only 6827 participants (i.e., 6827/914 ≈ 7.47 individuals on average). This is further worsened by
the fact that many of these studies comprise individuals from the same demographic background
(however, see [108] for a small deviation). Although individuals’ ability to experience affect appears
to be a unifying and common concept across cultures [109,110], the present results could be further
enriched through the inclusion of larger human samples from different age groups and cultural
backgrounds. This will, in turn, allow for a thorough comprehension and generalization of the utility
of DE, MSE, and PE within the context of the brain variability in response to naturalistic stimuli.

Entropic measures have also been widely used as robust features for classification of the
individuals’ mental [45,49]. Interestingly, Liu and colleagues [111] used a considerably large
resting-state functional magnetic resonance imaging data from Human Connectome Project
(998 individuals) to demonstrate that the information from cortical entropy profiles could effectively
predict diverse facets of human subjects’ cognitive ability. Although the present results pointed
at subtle differences between DE and MSE on the one hand, and PE on the other hand, they did
not discard their potentials as robust features for quantification of the b374-382rain activity in such
applications as brain–computer interface (BCI) [112] and neurofeedback brain training [113]. In this
regard, an intriguing venue for future exploration is to consider the combination of these features to
utilize their differential power for quantification of the brain variability in such applications.

The adapted non-parametric estimator of DE in the present study utilizes the nearest neighbour
distance for its DE estimation [74], thereby achieving a more robust estimate of DE in comparison with
histogram-based techniques [26]. It also bypasses the need for imposing an unwarranted distribution
on data that is necessary when one opts for parametric (e.g., Gaussian distribution and its closed-form
parametric DE computation) approaches [26]. From a computational perspective, the use of nearest
neighbour distance by this approach highlights an interesting underlying similarity between DE
on the one hand and PE and SE on the other hand. Specifically, DE and PE computations share
a basic principle in that they both estimate the entropy of a continuous time-series through its
discretization: i.e., neighbourhood formation in the case of DE estimator and the signal’s symbolic
representation in the case of PE. In the same vein (although in a much-restricted sense), DE and PE
both relate to SE computation through the realization that the latter is based on a discretized (a binary
discretization in this case) summary statistics of a given continuous time series. In this respect, it
would be interesting for future research to further examine the effect of such discretization strategies
on the level of correspondence between the estimated entropy by these algorithms. Another possibility
for future research that is worth investigating would be to reevaluate the use of PE for estimation of
the brain variability in response to naturalistic stimuli based on its more recent variant i.e., multiscale
permutation entropy (MPE) [114].
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Appendix A. DE vs. PE3: Bootstrap Spearman Correlation

Figure A1 shows the Spearman correlation bootstrap tests (10,000 simulation runs) at 95.0%
confidence interval between participants’ DE and their corresponding PE values. This test verified the
non-significant correlation between DE and PE in the case of neutral and positive affect. Table A1 shows
the values associated with Spearman correlation coefficient’s mean (yellow line) and 95.0% confidence
interval (red lines) for negative (Figure A1A), neutral (Figure A1B), and positive (Figure A1C) affect.
The two-tailed p-value of each test is presented in the column “p” of this table.

Figure A1. Bootstrap Spearman correlation test (10,000 simulation runs) at 95.0% confidence interval
between participants’ DEs (i.e., 62 DEs associated with 62 EEG channels of a participant, per affect) and
their corresponding PE3 values (i.e., 62 PEs associated with 62 EEG channels of a participant, per affect)
in (A) negative, (B) neutral, and (C) positive. Although PE showed a significant correlation to DE in the
negative mental state, such a correlation was non-significant in the case of neutral and positive states.

Table A1. Bootstrap (10,000 simulation runs) 95.0% confidence intervals (CI) associated with the
Spearman correlation between PEs (i.e., 62 PEs associated with 62 EEG channels of a participant, per
affect) and DE (i.e., 62 DEs associated with 62 EEG channels of a participant, per affect) in negative,
neutral, and positive mental states.

Conditions r p (Two-Tailed) CI95%

Negative 0.32 <0.001 [0.26 0.38]
Neutral 0.05 =0.15 [−0.018 0.11]
Positive 0.05 =0.15 [−0.017 0.12]

Appendix B. DE vs. PE3: Bootstrap Two-Sample Test of Significance

Figure A2 show the paired two-sample bootstrap test (10,000 simulation runs) at 95.0% confidence
interval (CI) applied on the participants’ PE3 values (i.e., 62 PE3s associated with 62 EEG channels
of a participant, per affect). Compared pairs of mental states are: positive versus neutral, positive
versus negative, and negative versus neutral. This figure verifies non-significant differences between
the positive and the neutral and the negative and the neutral states. In Table A2, the values associated
with mean differences (yellow line) and their corresponding 95% confidence interval for positive vs.
neutral (Figure A2A), positive vs. negative (Figure A2B), and negative vs. neutral (Figure A2C) are
shown. The column “SDdi f f ” in this table presents the standard deviation associated with each of
these paired mean differences.
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Figure A2. Paired two-sample bootstrap test (10,000 simulation runs) at 95.0% confidence interval
(CI) associated with the participants’ PE3 values (i.e., 62 PE3s associated with 62 EEG channels of a
participant, per affect). Compared pairs of mental states are (A) positive versus neutral, (B) positive
versus negative, and (C) negative versus neutral. X-axis: difference between average values of two
affective states (e.g., positive versus negative). Blue line: non-significant difference between PEs of two
different affective states. Red lines: 95.0% confidence interval boundaries. Yellow line: average two
affetective states’ mean differences over 10,000 simulations.

Table A2. Paired two-sample bootstrap test (10,000 simulation runs) at 95.0% confidence interval (CI)
applied on the participants’ PE3 values (i.e., 62 PE3s associated with 62 EEG channels of a participant,
per affect). Compared pairs of mental states are: positive versus neutral, positive versus negative,
and negative versus neutral. M: mean difference, SD: standard deviation of such a difference. CI: 95%
confidence interval for every paired affective states’ difference.

Conditions Mdiff SDdiff 95.0% CIdiff

Positive vs. Neutral 0.0135 0.009 [−0.003 0.031]
Positive vs. Negative 0.007 0.008 [−0.009 0.023]
Negative vs. Neutral −0.007 0.010 [−0.026 0.013]

Appendix C. DE vs. MSE1: Bootstrap Spearman Correlation

Figure A3 shows the Spearman correlations bootstrap tests between the participants’ DEs and
their corresponding MSE1 (10,000 simulation runs) at the 95.0% confidence interval. Table A3 shows
the values associated with Spearman correlation coefficient’s mean (yellow line) and 95.0% confidence
interval (red lines) for negative (Figure A3A), neutral (Figure A3B), and positive (Figure A3C) affect.
The two-tailed p-value of each test is presented in the column “p” of this table.

Table A3. Bootstrap (10,000 simulation runs) 95.0% confidence intervals (CI) associated with the
Spearman correlation between MSE1s (i.e., 62 MSE1s associated with 62 EEG channels of a participant,
per affect) and DE (i.e., 62 DEs associated with 62 EEG channels of a participant, per affect) in the
negative, neutral, and positive mental states.

Conditions r p (Two-Tailed) CI95%

Negative −0.50 <0.001 [−0.56 −0.43]
Neutral −0.13 <0.001 [−0.20 −0.05]
Positive −0.13 <0.001 [−0.20 −0.05]
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Figure A3. Spearman correlation between participants’ DEs (i.e., 62 DEs associated with 62 EEG
channels of a participant, per affect) and their corresponding MSE1 values (i.e., 62 MSE1s associated
with 62 EEG channels of a participant, per affect) in (A) negative, (B) neutral, and (C) Positive.

Appendix D. DE vs. MSE1: Bootstrap Two-Sample Test of Significance

The paired two-sample bootstrap test on these MSE1 values further verified that the MSE1s
associated with the positive state were higher than the neutral (Figure A4A) and the negative
(Figure A4B) states. It also indicated that the neutral state’s MSE1s were higher than the MSE1s
in a negative state (Figure A4C). In Table A4, the values associated with mean differences (yellow line)
and their corresponding 95% confidence interval for positive vs. neutral (Figure A4A), positive vs.
negative (Figure A4B), and negative vs. neutral (Figure A4C) are shown. The column “SDdi f f ” in this
table presents the standard deviation associated with each of these paired mean differences.

Figure A4. Paired two-sample bootstrap test of significance (10,000 simulation runs) at 95.0% confidence
interval (CI) associated with the participants’ MSE1s (i.e., 62 MSE1s associated with 62 EEG channels of
a participant, per affect). Compared pairs of mental states are: (A) positive versus neutral, (B) positive
versus negative, and (C) negative versus neutral. X-axis: difference between average values of two
affective states (e.g., positive versus negative). Blue line: non-significant difference between MSE1s of
two different affective states. Red lines: 95.0% confidence interval boundaries. Yellow line: average
two affetective states’ mean differences over 10,000 simulations.
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Table A4. Paired two-sample bootstrap test of significance (10,000 simulation runs) at 95.0% confidence
interval (CI) applied on the participants’ MSE1 values (i.e., 62 MSE1s associated with 62 EEG channels
of a participant, per affect). Compared pairs of mental states are: positive versus neutral, positive
versus negative, and negative versus neutral. M: mean difference, SD: standard deviation of such a
difference. CI: 95% confidence interval for every paired affective states’ difference.

Conditions Mdiff SDdiff 95.0% CIdiff

Positive vs. Neutral 0.94 0.020 [0.055 0.133]
Positive vs. Negative 0.28 0.023 [0.230 0.320]
Negative vs. Neutral −0.18 0.021 [−0.222 −0.139]

Appendix E. DE vs. MSE20: Bootstrap Spearman Correlation

Figure A5 shows the bootstrap Spearman correlations (10,000 simulation runs) at 95.0% confidence
interval between participants’ DEs (i.e., 62 DEs associated with 62 EEG channels of a participant, per
affect) and their corresponding MSE20 values (i.e., 62 MSE20s associated with 62 EEG channels of
a participant, per affect) in (A) negative, (B) neutral, and (C) positive. MSE20 was significantly
anti-correlated with DE in the negative, neutral, and positive states. Overall, MSE20 anti-correlations
were stronger than MSE1 in every mental state. Table A5 shows the values associated with Spearman
correlation coefficient’s mean (yellow line) and 95.0% confidence interval (red lines) for negative
(Figure A5A), neutral (Figure A5B), and positive (Figure A5C) affect. The two-tailed p-value of each
test is presented in the column “p” of this table.

Figure A5. Bootstrap Spearman correlation test (10,000 simulation runs) at 95.0% confidence interval
between participants’ DEs (i.e., 62 DEs associated with 62 EEG channels of a participant, per affect) and
their corresponding MSE20 values (i.e., 62 MSE20s associated with 62 EEG channels of a participant,
per affect) in (A) negative, (B) neutral, and (C) positive. MSE20 was significantly anti-correlated with
DE in the negative, neutral, and positive states. Overall, MSE20 anti-correlations were stronger than
MSE1 in every mental state.

Table A5. Bootstrap (10,000 simulation runs) 95.0% confidence intervals (CI) associated with the
Spearman correlation between MSE20s (i.e., 62 MSE20s associated with 62 EEG channels of a participant,
per affect) and DEs (i.e., 62 DEs associated with 62 EEG channels of a participant, per affect) in the
negative, neutral, and positive mental states.

Conditions r p (Two-Tailed) CI95%

Negative −0.56 <0.001 [−0.47 −0.34]
Neutral −0.41 <0.001 [−0.47 −0.34]
Positive −0.41 <0.001 [−0.47 −0.34]
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Appendix F. DE vs. MSE20: Bootstrap Two-Sample Test of Significance

The paired two-sample bootstrap test on these states’ MSE20 values further verified that the
MSE20s associated with the neutral state were higher than the positive (Figure A6A) and the negative
(Figure A6C) states. It also identified that the positive state’s MSE20s were higher than the negative
state’s MSE20s (Figure A6B). In Table A6, the values associated with mean differences (yellow line)
and their corresponding 95% confidence interval for positive vs. neutral (Figure A6A), positive vs.
negative (Figure A6B), and negative vs. neutral (Figure A6C) are shown. The column “SDdi f f ” in this
table presents the standard deviation associated with each of these paired mean differences.

Figure A6. Paired two-sample bootstrap test of significance (10,000 simulation runs) at 95.0% confidence
interval (CI) associated with the participants’ MSE20s (i.e., 62 MSE20s associated with 62 EEG channels
of a participant, per affect). Compared pairs of mental states are: (A) positive versus neutral, (B) positive
versus negative, and (C) negative versus neutral. X-axis: difference between average values of two
affective states (e.g., positive versus negative). Blue line: non-significant difference between MSE20s of
two different affective states. Red lines: 95.0% confidence interval boundaries. Yellow line: average
two affetective states’ mean differences over 10,000 simulations.

Table A6. Paired two-sample bootstrap test of significance (10,000 simulation runs) at 95.0% confidence
interval (CI) applied on the participants’ MSE20 values (i.e., 62 MSE20s associated with 62 EEG channels
of a participant, per affect). Compared pairs of mental states are: positive versus neutral, positive
versus negative, and negative versus neutral. M: mean difference, SD: standard deviation of such a
difference. CI: 95% confidence interval for every paired affective states’ difference.

Conditions Mdiff SDdiff CIdiff

Positive vs. Neutral −0.048 0.015 [−0.078 −0.018]
Positive vs. Negative 0.169 0.017 [0.134 0.202]
Negative vs. Neutral −0.217 0.017 [−0.249 −0.184]

Appendix G. Correlation: MSE2–MSE19 vs. DE

Left-column subplots in Figures A7–A9 show the Spearman correlation between participants’ DEs
and their corresponding MSE1s (i.e., 62 MSE1s associated with 62 EEG channels of a participant, per
affect) through MSE20s (i.e., 62 MSE20s associated with 62 EEG channels of a participant, per affect) in
the negative, the neutral, and the positive mental states. The right-column subplots in these figures
correspond to the bootstrap correlation test (10,000 simulation runs) at 95.0% confidence interval in
these mental states.

Table A7 (negative state), Table A8 (neutral state), and Table A9 (positive state) show the values
associated with Spearman correlation coefficient’s mean (yellow line) and 95.0% confidence interval
(red lines) for negative (Figure A7, right subplots), neutral (Figure A8, right subplots), and positive
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(Figure A9, right subplots) affect. The two-tailed p-values for each of these subplots are presented in
the column “p” of their corresponding tables.

(a) MSE1 - MSE4 (b) MSE5 - MSE8

(c) MSE9 - MSE12 (d) MSE13 - MSE16

(e) MSE17 - MSE20

Figure A7. Negative mental state. Spearman correlation between participants’ DEs (i.e., 62 DEs
associated with 62 EEG channels of a participant, per affect) and their corresponding MSE1s (i.e.,
62 MSE1s associated with 62 EEG channels of a participant, per affect) through MSE20 values (i.e.,
62 MSE20s associated with 62 EEG channels of a participant, per affect). The subplots in the right
column correspond to bootstrap correlation test (10,000 simulation runs) at 95.0% confidence interval.
The values associated with these subplots are summarized in Table A7.

(a) MSE1–MSE4 (b) MSE5–MSE8

(c) MSE9–MSE12 (d) MSE13–MSE16

(e) MSE17–MSE20

Figure A8. Neutral mental state. Spearman correlation between participants’ DEs (i.e., 62 DEs
associated with 62 EEG channels of a participant, per affect) and their corresponding MSE1s (i.e.,
62 MSE1s associated with 62 EEG channels of a participant, per affect) through MSE20 values (i.e.,
62 MSE20s associated with 62 EEG channels of a participant, per affect). The subplots in the right
column correspond to bootstrap correlation test (10,000 simulation runs) at 95.0% confidence interval.
The values associated with these subplots are summarized in Table A8.
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(a) MSE1–MSE4 (b) MSE5–MSE8

(c) MSE9–MSE12 (d) MSE13–MSE16

(e) MSE17–MSE20

Figure A9. Positive mental state. Spearman correlation between participants’ DEs (i.e., 62 DEs
associated with 62 EEG channels of a participant, per affect) and their corresponding MSE1s (i.e.,
62 MSE1s associated with 62 EEG channels of a participant, per affect) through MSE20s (i.e., 62
MSE20s associated with 62 EEG channels of a participant, per affect) values. The subplots in the right
column correspond to bootstrap correlation test (10,000 simulation runs) at 95.0% confidence interval.
The values associated with these subplots are summarized in Table A9.

Table A7. Bootstrap (10,000 simulation runs) 95.0% confidence intervals (CI) associated with the
Spearman correlation between MSE1s (i.e., 62 MSE1s associated with 62 EEG channels of a participant,
per affect) through MSE20s (i.e., 62 MSE20s associated with 62 EEG channels of a participant, per
affect) and DEs (i.e., 62 DEs associated with 62 EEG channels of a participant, per affect) in the negative
mental states.

Conditions r p (Two-Tailed) CI95%

MSE1 −0.50 <0.001 [−0.56 −0.43]
MSE2 −0.5408 <0.001 [−0.60 −0.48]
MSE3 −0.5836 <0.001 [−0.64 −0.52]
MSE4 −0.5930 <0.001 [−0.65 −0.54]
MSE5 −0.6073 <0.001 [−0.66 −0.55]
MSE6 −0.6073 <0.001 [−0.66 −0.55]
MSE7 −0.6120 <0.001 [−0.66 −0.56]
MSE8 −0.6051 <0.001 [−0.65 −0.55]
MSE9 −0.6053 <0.001 [−0.65 −0.55]

MSE10 −0.6001 <0.001 [−0.65 −0.55]
MSE11 −0.6000 <0.001 [−0.65 −0.55]
MSE12 −0.5928 <0.001 [−0.64 −0.54]
MSE13 −0.5900 <0.001 [−0.64 −0.54]
MSE14 −0.5840 <0.001 [−0.63 −0.53]
MSE15 −0.5804 <0.001 [−0.63 −0.53]
MSE16 −0.5736 <0.001 [−0.62 −0.53]
MSE17 −0.5724 <0.001 [−0.63 −0.52]
MSE18 −0.5677 <0.001 [−0.62 −0.52]
MSE19 −0.5648 <0.001 [−0.61 −0.51]
MSE20 −0.56 <0.001 [−0.47 −0.34]
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Table A8. Bootstrap (10,000 simulation runs) 95.0% confidence intervals (CI) associated with the
Spearman correlation between MSE1s (i.e., 62 MSE1s associated with 62 EEG channels of a participant,
per affect) through MSE20s (i.e., 62 MSE20s associated with 62 EEG channels of a participant, per
affect) and DEs (i.e., 62 DEs associated with 62 EEG channels of a participant, per affect) in the neutral
mental states.

Conditions r p (Two-Tailed) CI95%

MSE1 −0.13 <0.001 [−0.20 −0.05]
MSE2 −0.1652 <0.001 [−0.25 −0.09]
MSE3 −0.2646 <0.001 [−0.34 −0.19]
MSE4 −0.3191 <0.001 [−0.39 −0.25]
MSE5 −0.3730 <0.001 [−0.44 −0.30]
MSE6 −0.3948 <0.001 [−0.46 −0.33]
MSE7 −0.4226 <0.001 [−0.48 −0.36]
MSE8 −0.4261 <0.001 [−0.49 −0.36]
MSE9 −0.4351 <0.001 [−0.50 −0.37]

MSE10 −0.4320 <0.001 [−0.49 −0.37]
MSE11 −0.4386 <0.001 [−0.50 −0.38]
MSE12 −0.4368 <0.001 [−0.50 −0.37]
MSE13 −0.4371 <0.001 [−0.50 −0.37]
MSE14 −0.4313 <0.001 [−0.49 −0.37]
MSE15 −0.4311 <0.001 [−0.49 −0.37]
MSE16 −0.4232 <0.001 [−0.48 −0.36]
MSE17 −0.4217 <0.001 [−0.48 −0.36]
MSE18 −0.4163 <0.001 [−0.48 −0.35]
MSE19 −0.4185 <0.001 [−0.48 −0.35]
MSE20 −0.41 <0.001 [−0.47 −0.34]

Table A9. Bootstrap (10,000 simulation runs) 95.0% confidence intervals (CI) associated with the
Spearman correlation between MSE1s (i.e., 62 MSE1s associated with 62 EEG channels of a participant,
per affect) through MSE20s (i.e., 62 MSE20s associated with 62 EEG channels of a participant, per affect)
and DEs (i.e., 62 DEs associated with 62 EEG channels of a participant, per affect) in the positive
mental states.

Conditions r p (Two-Tailed) CI95%

MSE1 −0.13 <0.001 [−0.20 −0.05]
MSE2 −0.1652 <0.001 [−0.24 −0.09]
MSE3 −0.2646 <0.001 [−0.34 −0.19]
MSE4 −0.3191 <0.001 [−0.39 −0.25]
MSE5 −0.3730 <0.001 [−0.44 −0.31]
MSE6 −0.3948 <0.001 [−0.46 −0.33]
MSE7 −0.4226 <0.001 [−0.48 −0.36]
MSE8 −0.4261 <0.001 [−0.49 −0.36]
MSE9 −0.4351 <0.001 [−0.50 −0.37]

MSE10 −0.4320 <0.001 [−0.49 −0.37]
MSE11 −0.4386 <0.001 [−0.50 −0.38]
MSE12 −0.4368 <0.001 [−0.50 −0.37]
MSE13 −0.4371 <0.001 [−0.50 −0.37]
MSE14 −0.4313 <0.001 [−0.49 −0.37]
MSE15 −0.4311 <0.001 [−0.49 −0.37]
MSE16 −0.4232 <0.001 [−0.48 −0.36]
MSE17 −0.4217 <0.001 [−0.48 −0.36]
MSE18 −0.4163 <0.001 [−0.48 −0.35]
MSE19 −0.4185 <0.001 [−0.48 −0.35]
MSE20 −0.41 <0.001 [−0.47 −0.34]
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Appendix H. MSE2–MSE19 Two-Sample Bootstrap Test of Significance

Paired two-sample bootstrap test (10,000 simulation runs) at 95.0% confidence interval (CI)
associated with the participants’ MSE2–MSE10 and MSE11–MSE19 are shown in Figures A10 and A11.
In Table A10, the values associated with mean differences (yellow line) and their corresponding 95%
confidence interval for each of these two figures are shown. The column “SDdi f f ” in these tables
pertain to the standard deviation for each of the paired mean differences in Figures A10 and A11.

MSE2 MSE3 MSE4

MSE5 MSE6 MSE7

MSE8 MSE9 MSE10

(a) (b) (c)

Figure A10. Paired two-sample bootstrap test of significance (10,000 simulation runs) at 95.0%
confidence interval (CI) associated with the participants’ MSE2s (i.e., 62 MSE2s associated with 62
EEG channels of a participant, per affect) through MSE10s (i.e., 62 MSE10s associated with 62 EEG
channels of a participant, per affect). In each subplot, the compared pairs of mental states are: Top:
positive versus neutral, Middle: positive versus negative, and Bottom: negative versus neutral.
X-axis: difference between average values of two affective states (e.g., positive versus negative).
Blue line: non-significant difference between MSEs of two different affective states. Red lines: 95.0%
confidence interval boundaries. Yellow line: average two affetective states’ mean differences over
10,000 simulations. The values associated with these figures are summarized in Table A10.
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Table A10. Paired two-sample bootstrap test of significance (10,000 simulation runs) at 95.0% confidence
interval (CI) applied on the participants’ MSE2s (i.e., 62 MSE2s associated with 62 EEG channels of
a participant, per affect) through MSE19s (i.e., 62 MSE19s associated with 62 EEG channels of a
participant, per affect) values. Compared pairs of mental states are: positive versus neutral, positive
versus negative, and negative versus neutral. M: mean difference, SD: standard deviation of such a
difference. CI: 95% confidence interval for every paired affective states’ difference.

Positive vs. Neutral Positive vs. Negative Negative vs. Neutral
M/SD/CI95% M/SD/CI95% M/SD/CI95%

MSE2 0.04/0.02/[0.004 0.074] 0.23/0.02/[0.19 0.27] −0.19/0.02/[−0.23 −0.16]
MSE3 −0.011/0.02/[−0.04 0.02] 0.20/0.02/[0.16 0.24] −0.21/0.02/[−0.25 −0.17]
MSE4 −0.03/0.017/[−0.06 −0.0002] 0.18/0.019/[0.14 0.22] −0.21/0.02/[−0.25 −0.18]
MSE5 −0.049/0.02/[−0.08 −0.02] 0.17/0.02/[0.13 0.20] −0.21/0.02/[−0.25 −0.18]
MSE6 −0.06/0.02/[−0.09 −0.02] 0.16/0.02/[0.12 0.20] −0.21/0.02/[−0.25 −0.18]
MSE7 −0.06/0.02/[−0.09 −0.03] 0.16/0.02/[0.12 0.19] −0.21/0.02/[−0.25 −0.18]
MSE8 −0.06/0.02/[−0.09 −0.02] 0.16/0.02/[0.12 0.19] −0.21/0.02/[−0.25 −0.18]
MSE9 −0.06/0.02/[−0.09 −0.02] 0.16/0.02/[0.12 0.19] −0.21/0.02/[−0.25 −0.18]
MSE10 −0.06/0.02/[−0.09 −0.02] 0.16/0.02/[0.12 0.19] −0.21/0.02/[−0.25 −0.18]
MSE11 −0.05/0.02/[−0.08 −0.02] 0.16/0.02/[0.12 0.19] −0.21/0.02/[−0.25 −0.18]
MSE12 −0.05/0.02/[−0.08 −0.02] 0.16/0.02/[0.12 0.19] −0.21/0.02/[−0.24 −0.18]
MSE13 −0.05/0.02/[−0.08 −0.02] 0.16/0.02/[0.13 0.19] −0.21/0.02/[−0.25 −0.18]
MSE14 −0.05/0.02/[−0.08 −0.02] 0.16/0.02/[0.13 0.19] −0.21/0.02/[−0.25 −0.18]
MSE15 −0.05/0.02/[−0.08 −0.02] 0.16/0.02/[0.13 0.20] −0.21/0.02/[−0.25 −0.18]
MSE16 −0.05/0.02/[−0.08 −0.02] 0.16/0.02/[0.13 0.20] −0.21/0.02/[−0.25 −0.18]
MSE17 −0.05/0.02/[−0.08 −0.02] 0.16/0.02/[0.13 0.20] −0.21/0.02/[−0.25 −0.18]
MSE18 −0.05/0.02/[−0.08 −0.02] 0.17/0.02/[0.13 0.20] −0.22/0.02/[−0.25 −0.18]
MSE19 −0.05/0.02/[−0.08 −0.02] 0.17/0.02/[0.13 0.20] −0.22/0.02/[−0.25 −0.18]

MSE11 MSE12 MSE13

MSE14 MSE15 MSE16

MSE17 MSE18 MSE19

(a) (b) (c)

Figure A11. Paired two-sample bootstrap test of significance (10,000 simulation runs) at 95.0%
confidence interval (CI) associated with the participants’ MSE11s (i.e., 62 MSE11s associated with 62
EEG channels of a participant, per affect) through MSE19s (i.e., 62 MSE19s associated with 62 EEG
channels of a participant, per affect). In each subplot, the compared pairs of mental states are: Top:
positive versus neutral, Middle: positive versus negative, and Bottom: negative versus neutral.
X-axis: difference between average values of two affective states (e.g., positive versus negative).
Blue line: non-significant difference between MSEs of two different affective states. Red lines: 95.0%
confidence interval boundaries. Yellow line: average two affetective states’ mean differences over
10,000 simulations. The values associated with these figures are summarized in Table A10.
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Appendix I. MSE2–MSE19 Grand Averages’ Spatial Maps

Figures A12 and A13 show the grand averages of the participants’ spatial maps for MSE2–MSE19.

MSE2 MSE3 MSE4

MSE5 MSE6 MSE7

MSE8 MSE9 MSE10

(a) (b) (c)

Figure A12. Grand averages of spatial maps of participants’ MSE2s (i.e., 62 MSE2s associated with 62
EEG channels of a participant, per affect) through MSE10s (i.e., 62 MSE10s associated with 62 EEG
channels of a participant, per affect). Distribution of MSEs in these spatial maps corresponds to the
EEG channels’ arrangement in Figure 1B in the main text (i.e., one MSE value, per EEG channel).

MSE11 MSE12 MSE13

MSE14 MSE15 MSE16

MSE17 MSE18 MSE19

(a) (b) (c)

Figure A13. Grand averages of spatial maps of participants’ MSE11s (i.e., 62 MSE11s associated with
62 EEG channels of a participant, per affect) through MSE19s (i.e., 62 MSE19s associated with 62 EEG
channels of a participant, per affect). Distribution of MSEs in these spatial maps corresponds to the
EEG channels’ arrangement in Figure 1B in the main text (i.e., one MSE value, per EEG channel).
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Appendix J. PE5

The left subplots in Figure A14 show the correlations between participants’ DE and their
corresponding PE5 (i.e., order-5 permutation) values. We observed that these correlations were
non-significant in all three mental states: negative (r = −0.012, p = 0.71), neutral (r = −0.053, p = 0.11),
positive (r = −0.048, p = 0.16). These results were further supported by their corresponding bootstrap
tests (10,000 simulation runs) at 95.0% confidence interval (Figure A14, the right column’s subplots).
Table A11 shows the values associated with Spearman correlation coefficient’s mean (yellow line) and
95.0% confidence interval (red lines) for negative (Figure A14A), neutral (Figure A14B), and positive
(Figure A14C) affect. The two-tailed p-value of each test is presented in the column “p” of this table.

Figure A14. Spearman correlation between participants’ DEs (i.e., 62 DEs associated with 62 EEG
channels of a participant, per affect) and their corresponding PE5 values (i.e., 62 PE5s associated with
62 EEG channels of a participant, per affect) in (A) Negative (B) Neutral (C) Positive. The subplots
on the right column correspond to the bootstrap correlation test (10,000 simulation runs) at the 95.0%
confidence interval.

Table A11. Bootstrap (10,000 simulation runs) 95.0% confidence intervals (CI) associated with the
Spearman correlation between PE5s (i.e., 62 PE5s associated with 62 EEG channels of a participant,
per affect) and DEs (i.e., 62 DEs associated with 62 EEG channels of a participant, per affect) in the
negative, neutral, and positive mental states.

Conditions r p (Two-Tailed) CI95%

Negative −0.013 0.71 [−0.08 0.05]
Neutral −0.053 0.12 [−0.12 0.01]
Positive −0.048 0.17 [−0.11 0.02]

Figure A15A shows the grand averages of the spatial maps of participants’ PE5 in negative, neutral,
and positive mental states. The Kruskal–Wallis test of the participants’ PE5 showed a significant
difference between their affective states (p < 0.001, H(2, 2603) = 169.56, r = 0.26). The posthoc Wilcoxon
test (Figure A15B) indicated higher PE5 in the case of positive than neutral (p < 0.001, W(1734) = 12.73,
r = 0.31, MPositive = 9.07, SDPositive = 0.35, MNeutral = 8.85, SDNeutral = 0.42) and negative (p < 0.001,
W(1734) = 7.10, r = 0.17, MNegative = 8.96, SDNegative = 0.40) states. Similarly, the negative state was
associated with higher PE5 than the neutral (p < 0.001, W(1734) = 6.48, r = 0.16).

However, only the difference between the positive and the neutral states passed the paired
two-sample bootstrap test of significance (Figure A16). In Table A12, the values associated with mean
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differences (yellow line) and their corresponding 95% confidence interval for positive vs. neutral
(Figure A16A), positive vs. negative (Figure A16B), and negative vs. neutral (Figure A16C) are shown.
The column “SDdi f f ” in this table presents the standard deviation associated with each of these paired
mean differences.

Figure A15. (A) Grand averages of the spatial maps of participants’ PE5 values (i.e., 62 PE5s associated
with 62 EEG channels of a participant, per affect) in negative, neutral, and positive mental states.
Distribution of PE5s in these spatial maps corresponds to the EEG channels’ arrangement in Figure 1B
in the main text (i.e., one PE5 value, per EEG channel) (B) Descriptive statistics of the posthoc Wilcoxon
rank sum tests applied on participants’ whole-brain PE5s (i.e., 62 PE5s associated with 62 EEG channels
of a participant, per affect).

Figure A16. Paired two-sample bootstrap test of significance (10,000 simulation runs) at the 95.0% CI
associated with the participants’ PE5s (i.e., 62 PE5s associated with 62 EEG channels of a participant,
per affect). Compared pairs of mental states are (A) positive versus neutral, (B) positive versus negative,
and (C) negative versus neutral. IX-axis: difference between average values of two affective states (e.g.,
positive versus negative). Blue line: non-significant difference between PE5s of two different affective
states. Red lines: 95.0% confidence interval boundaries. Yellow line: average two affetective states’
mean differences over 10,000 simulations.
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Table A12. Paired two-sample bootstrap test of significance (10,000 simulation runs) at 95.0% confidence
interval (CI) applied on the participants’ PE5s (i.e., 62 PE5s associated with 62 EEG channels of a
participant, per affect). Compared pairs of mental states are: positive versus neutral, positive versus
negative, and negative versus neutral. M: mean difference, SD: standard deviation of the difference. CI:
95% confidence interval for every paired affective states’ difference.

Conditions Mdiff SDdiff CIdiff

Positive vs. Neutral 0.14 0.02 [0.10 0.17]
Positive vs. Negative 0.02 0.02 [−0.01 0.05]
Negative vs. Neutral 0.03 0.02 [−0.01 0.07]

Appendix K. PE6

Left subplots in Figure A17 show the correlations between participants’ DE and their
corresponding PE6 (i.e., order 6 permutation) values. These correlations were non-significant in
all three mental states: negative (r = −0.013, p = 0.71), neutral (r = −0.053, p = 0.11), positive (r =
−0.048, p = 0.16). These results were further supported by their corresponding bootstrap tests (10,000
simulation runs) at 95.0% a confidence interval (Figure A17, right column’s subplots). Table A13 shows
the values associated with Spearman correlation coefficient’s mean (yellow line) and 95.0% confidence
interval (red lines) for negative (Figure A17A), neutral (Figure A17B), and positive (Figure A17C) affect.
The two-tailed p-value of each test is presented in the column “p” of this table.

Figure A17. Spearman correlation between participants’ DEs (i.e., 62 DEs associated with 62 EEG
channels of a participant, per affect) and their corresponding PE6 values (i.e., 62 PE6s associated with
62 EEG channels of a participant, per affect) in (A) negative, (B) neutral, and (C) positive. The subplots
on the right column correspond to the bootstrap correlation test (10,000 simulation runs) at 95.0%
confidence interval.
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Table A13. Bootstrap (10,000 simulation runs) 95.0% CI associated with the Spearman correlation
between PE6s (i.e., 62 PE6s associated with 62 EEG channels of a participant, per affect) and DEs (i.e., 62
DEs associated with 62 EEG channels of a participant, per affect) in the negative, neutral, and positive
mental states.

Conditions r p (Two-Tailed) CI95%

Negative −0.012 0.70 [−0.08 0.05]
Neutral −0.053 0.12 [−0.12 0.01]
Positive −0.048 0.17 [−0.11 0.02]

Figure A18A shows the grand averages of the spatial maps of participants’ PE6 in negative, neutral,
and positive mental states. The Kruskal–Wallis test of the participants’ PE6 showed a significant
difference between their neutral, negative, and positive affective states (p < 0.001, H(2, 2603) = 169.56,
r = 0.26). The posthoc Wilcoxon test (Figure A18B) indicated higher PE6 in the case of positive
than neutral (p < 0.001, W(1734) = 12.73, r = 0.31, MPositive = 9.07, SDPositive= 0.35, MNeutral = 8.85,
SDNeutral = 0.42) and negative (p < 0.001, W(1734) = 7.10, r = 0.17, MNegative = 8.96, SDNegative = 0.40)
states. Similarly, the negative state was associated with higher PE6 than the neutral (p < 0.001, W(1734)
= 6.48, r = 0.16).

Figure A18. (A) Grand averages of the spatial maps of participants’ PE6s (i.e., 62 PE6s associated
with 62 EEG channels of a participant, per affect) in negative, neutral, and positive mental states. The
distribution of PE6s in these spatial maps corresponds to the EEG channels’ arrangement in Figure 1B
in the main text (i.e., one PE6 value, per EEG channel). (B) Descriptive statistics of the posthoc Wilcoxon
rank sum tests applied on participants’ whole-brain PE6s (i.e., 62 PE6s associated with 62 EEG channels
of a participant, per affect).

However, only the difference between the positive and the neutral states passed the paired
two-sample bootstrap test of significance (Figure A19). In Table A14, the values associated with mean
differences (yellow line) and their corresponding 95% confidence interval for positive vs. neutral
(Figure A19A), positive vs. negative (Figure A19B), and negative vs. neutral (Figure A19C) are shown.
The column “SDdi f f ” in this table presents the standard deviation associated with each of these paired
mean differences.
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Figure A19. Paired two-sample bootstrap test of significance (10,000 simulation runs) at 95.0% CI
associated with the participants’ PE6s (i.e., 62 PE6s associated with 62 EEG channels of a participant,
per affect). Compared pairs of mental states are (A) positive versus neutral, (B) positive versus negative,
and (C) negative versus neutral. X-axis: difference between average values of two affective states (e.g.,
positive versus negative). Blue line: non-significant difference between PE6s of two different affective
states. Red lines: 95.0% confidence interval boundaries. Yellow line: average two affetective states’
mean differences over 10,000 simulations.

Table A14. Paired two-sample bootstrap test of significance (10,000 simulation runs) at 95.0% confidence
interval (CI) applied on the participants’ PE6s (i.e., 62 PE6s associated with 62 EEG channels of a
participant, per affect). Compared pairs of mental states are: positive versus neutral, positive versus
negative, and negative versus neutral. M: mean difference, SD: standard deviation of such a difference.
CI: 95% confidence interval for every paired affective states’ difference.

Conditions Mdiff SDdiff CIdiff

Positive vs. Neutral 0.14 0.02 [0.10 0.17]
Positive vs. Negative 0.02 0.018 [−0.01 0.06]
Negative vs. Neutral 0.03 0.02 [−0.01 0.06]

Appendix L. PE7

Figure A20 left subplots show the correlations between participants’ DE and their corresponding
PE7 (i.e., order-7 permutation). These correlations were non-significant in all three mental states:
negative (r =−0.012, p = 0.71), neutral (r =−0.053, p = 0.11), positive (r =−0.048, p = 0.16). These results
were further supported by their corresponding bootstrap tests (10,000 simulation runs) at 95.0%
confidence interval (Figure A20, right column’s subplots). Table A15 shows the values associated
with Spearman correlation coefficient’s mean (yellow line) and 95.0% confidence interval (red lines)
for negative (Figure A20A), neutral (Figure A20B), and positive (Figure A20C) affect. The two-tailed
p-value of each test is presented in the column “p” of this table.
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Figure A20. Spearman correlation between participants’ DEs (i.e., 62 DEs associated with 62 EEG
channels of a participant, per affect) and their corresponding PE7s (i.e., 62 PE7s associated with 62
EEG channels of a participant, per affect) in (A) negative, (B) neutral, and (C) positive. The subplots
on the right column correspond to the bootstrap correlation test (10,000 simulation runs) at 95.0%
confidence interval.

Figure A21A shows the grand averages of the spatial maps of participants’ PE7 in negative, neutral,
and positive mental states. The Kruskal–Wallis test of the participants’ PE7 showed a significant
difference between their affective states (p < 0.001, H(2, 2603) = 169.56, r = 0.26). The posthoc Wilcoxon
test (Figure A21B) indicated higher PE7 in the case of positive than neutral (p < 0.001, W(1734) = 12.73,
r = 0.31, MPositive = 9.07, SDPositive = 0.35, MNeutral = 8.85, SDNeutral = 0.42) and negative (p < 0.001,
W(1734) = 7.10, r = 0.17, MNegative = 8.96, SDNegative = 0.40) states. Similarly, the negative state was
associated with higher PE7 than the neutral (p < 0.001, W(1734) = 6.48, r = 0.16).

Table A15. Bootstrap (10,000 simulation runs) 95.0% confidence intervals (CI) associated with the
Spearman correlation between PE7s (i.e., 62 PE7s associated with 62 EEG channels of a participant, per
affect) and DE (i.e., 62 DEs associated with 62 EEG channels of a participant, per affect) in the negative,
neutral, and positive mental states.

Conditions r p (Two-Tailed) CI95%

Negative −0.013 0.70 [−0.08 0.05]
Neutral −0.053 0.12 [−0.12 0.01]
Positive −0.048 0.16 [−0.11 0.02]
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Figure A21. (A) Grand averages of the spatial maps of participants’ PE7s (i.e., 62 PE7s associated
with 62 EEG channels of a participant, per affect) in negative, neutral, and positive mental states.
Distribution of PE7s in these spatial maps corresponds to the EEG channels’ arrangement in Figure 1B
in the main text (i.e., one PE7 value, per EEG channel). (B) Descriptive statistics of participants’
PE7 in negative, neutral, and positive mental states. The asterisks mark the significant difference in
these subplots.

However, only the difference between the positive and the neutral states passed the paired
two-sample bootstrap test of significance (Figure A22). In Table A16, the values associated with mean
differences (yellow line) and their corresponding 95% confidence interval for positive vs. neutral
(Figure A22A), positive vs. negative (Figure A22B), and negative vs. neutral (Figure A22C) are shown.
The column “SDdi f f ” in this table presents the standard deviation associated with each of these paired
mean differences.

Figure A22. Paired two-sample bootstrap test of significance (10,000 simulation runs) at 95.0% CI
associated with the participants’ PE7s (i.e., 62 PE7s associated with 62 EEG channels of a participant,
per affect). Compared pairs of mental states are (A) positive versus neutral, (B) positive versus negative,
and (C) negative versus neutral. X-axis: difference between average values of two affective states (e.g.,
positive versus negative). Blue line: non-significant difference between MSE1s of two different affective
states. Red lines: 95.0% confidence interval boundaries. Yellow line: average two affetective states’
mean differences over 10,000 simulations.
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Table A16. Paired two-sample bootstrap test of significance (10,000 simulation runs) at 95.0% confidence
interval (CI) applied on the participants’ PE7s (i.e., 62 PE7s associated with 62 EEG channels of a
participant, per affect). Compared pairs of mental states are: positive versus neutral, positive versus
negative, and negative versus neutral. M: mean difference, SD: standard deviation of such a difference.
CI: 95% confidence interval for every paired affective states’ difference.

Conditions Mdiff SDdiff CIdiff

Positive vs. Neutral 0.14 0.02 [0.10 0.17]
Positive vs. Negative 0.02 0.02 [−0.02 0.06]
Negative vs. Neutral 0.03 0.02 [−0.01 0.06]

Appendix M. Spearman Correlations between MSE1 versus MSE2–MSE20

Figures A23–A25 show the Spearman correlations between MSE1 versus MSE2–MSE20. The r-
and p-values associated with these figures are shown in Tables A17–A19.

Figure A23. Negative affect’s Spearman correlations between MSE1 versus MSE2–MSE20. (A) Scatter
plots of MSE1 versus MSE2–MSE20 (B) Spearman correlations associated with MSE2–MSE20 and MSE1
(C) Spearman correlations’ p-values associated with MSE2–MSE20 and MSE1.

Figure A24. Neutral affect’s Spearman correlations between MSE1 versus MSE2–MSE20. (A) Scatter
plots of MSE1 versus MSE2–MSE20 (B) Spearman correlations associated with MSE2–MSE20 and MSE1
(C) Spearman correlations’ p-values associated with MSE2–MSE20 and MSE1.
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Figure A25. Positive affect’s Spearman correlations between MSE1 versus MSE2–MSE20. (A) Scatter
plots of MSE1 versus MSE2–MSE20 (B) Spearman correlations associated with MSE2–MSE20 and MSE1
(C) Spearman correlations’ p-values associated with MSE2–MSE20 and MSE1.

Table A17. Spearman correlations between MSE1 versus MSE2–MSE20 in negative affect.

MSE1 vs. r p<

MSE2 0.9555 0.00001
MSE3 0.9112 0.00001
MSE4 0.8572 0.00001
MSE5 0.8311 0.00001
MSE6 0.8033 0.00001
MSE7 0.7956 0.00001
MSE8 0.7826 0.00001
MSE9 0.7761 0.00001

MSE10 0.7627 0.00001
MSE11 0.7568 0.00001
MSE12 0.7460 0.00001
MSE13 0.7419 0.00001
MSE14 0.7375 0.00001
MSE15 0.7340 0.00001
MSE16 0.7293 0.00001
MSE17 0.7298 0.00001
MSE18 0.7267 0.00001
MSE19 0.7214 0.00001
MSE20 0.7183 0.00001

Table A18. Spearman correlations between MSE1 versus MSE2–MSE20 in neutral affect.

MSE1 vs. r p<

MSE2 0.9220 0.0001
MSE3 0.8323 0.0001
MSE4 0.7460 0.0001
MSE5 0.7006 0.0001
MSE6 0.6605 0.0001
MSE7 0.6483 0.0001
MSE8 0.6344 0.0001
MSE9 0.6351 0.0001
MSE10 0.6256 0.0001
MSE11 0.6254 0.0001
MSE12 0.6184 0.0001
MSE13 0.6159 0.0001
MSE14 0.6087 0.0001
MSE15 0.6133 0.0001
MSE16 0.6092 0.0001
MSE17 0.6013 0.0001
MSE18 0.6017 0.0001
MSE19 0.5991 0.0001
MSE20 0.5930 0.0001



Brain Sci. 2020, 10, 527 33 of 38

Table A19. Spearman correlations between MSE1 versus MSE2–MSE20 in positive affect.

MSE1 vs. r p <

MSE2 0.9581 0.0001
MSE3 0.8803 0.0001
MSE4 0.7921 0.0001
MSE5 0.7218 0.0001
MSE6 0.6608 0.0001
MSE7 0.6243 0.0001
MSE8 0.5913 0.0001
MSE9 0.5725 0.0001
MSE10 0.5551 0.0001
MSE11 0.5458 0.0001
MSE12 0.5329 0.0001
MSE13 0.5239 0.0001
MSE14 0.5153 0.0001
MSE15 0.5105 0.0001
MSE16 0.5035 0.0001
MSE17 0.5000 0.0001
MSE18 0.5017 0.0001
MSE19 0.4922 0.0001
MSE20 0.4898 0.0001
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