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Background: Cardiovascular disease not only occurs in the elderly but also

tends to become a common social health problem. Considering the fast pace

of modern life, quantified heart rate variability (HRV) indicators combined with

the convenience of wearable devices are of great significance for intelligent

telemedicine. To quantify the changes in human mental state, this article

proposes an improved di�erential threshold algorithm for R-wave detection

and recognition of electrocardiogram (ECG) signals.

Methods: HRV is a specific quantitative indicator of autonomic nerve

regulation of the heart. The recognition rate is increased by improving the

starting position of R wave and the time-window function of the traditional

di�erential threshold method. The experimental platform is a wearable

sign monitoring system constructed based on body area networks (BAN)

technology. Analytic hierarchy process (AHP) is used to construct the mental

stress assessmentmodel, theweight judgmentmatrix is constructed according

to the influence degree of HRV analysis parameters on mental stress, and

the consistency check is carried out to obtain the weight value of the

corresponding HRV analysis parameters.

Results: Experimental results show that the recognition rate of R wave of real-

time 5min ECG data collected by this algorithm is >99%. The comprehensive

index of HRV based on weight matrix can greatly reduce the deviation caused

by the measurement error of each parameter. Compared with traditional

characteristic wave recognition algorithms, the proposed algorithm simplifies

the process, has high real-time performance, and is suitable for wearable

analysis devices with low-configuration requirements.

Conclusion: Our algorithm can describe the mental stress of the body

quantitatively and meet the requirements of application demonstration.

KEYWORDS

heart rate variability, electrocardiogram, mental stress index, body area networks,

quantitative analysis
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Introduction

With the influence of people’s habits, diet, and environment,

the death rate of cardiovascular diseases such as hypertension,

coronary heart disease, and heart disease increases rapidly, and

the clinical manifestations are hemiplegia, cerebral infarction,

stroke, and even sudden death (1). Heart rate decreases with

age. Cardiovascular disease not only occurs in the elderly but

also tends to be younger (2). Heart rate variability (HRV)

refers to the variation of heartbeat cycle and is a research

hotspot in electrocardiogram (ECG) signal processing field in

recent years (3). It contains information about the regulation

of neurohumoral factors in the cardiovascular system and is

a specific quantitative indicator reflecting the regulation of

autonomic nerves in the heart (4). It is also the most accurate

and sensitive detection indicator to judge whether patients with

diabetes are accompanied by autonomic nervous system damage

(5). By studying the variation of heart rate, we can reflect

the influence of nervous system on cardiovascular activity. It

is of great clinical immune diseases (6), rehabilitation and

intensity design (7), surgical risk assessment (8), and intelligent

telemedicine (9). At present, three methods, namely, resting-

state HRV, task HRV, and variable HRV, are used to measure

HRV. The measurement of HRV in resting state mainly refers to

the way of collecting HRV in the quiet state. The measurement

of HRV in the task investigates the differences inHRV of subjects

under different task states. The variable HRV investigates the

change in HRV, such as the change in HRV before and after

a task or operation, in order to infer the effect or effect of

the task or operation. Luque-Casado’s research showed that the

cognitive workload under execution conditions changed with

the change in tasks (10). Sustained attention is a key process

affecting HRV, and there is a separation between subjective and

objective cognitive workload.

There are two main methods to analyze HRV, namely,

time-domain analysis and spectrum analysis. In time-domain

analysis, the time-domain parameters commonly used include

standard deviation of normal to normal (SDNN) and root

mean square successive difference (RMSSD). SDNN is generally

obtained by 24 h dynamic ECG, which reflects the regulation

ability of autonomic nervous system, and further reflects an

individual’s stress ability and resistance to pressure. RMSSD is

used to assess the regulatory function and activity of the cardiac

vagus nerve or parasympathetic nerve.

The spectral analysis of HRV transforms the time series of

R–R interval to the frequency by mathematical transformation

method, forms the spectrum curve, and analyzes the shape

of the spectrum curve. Spectral analysis is usually performed

at high frequency (HF, 0.15–0.40Hz) and low frequency (LF,

0.04–0.15Hz). HF describes parasympathetic nerve activity

level, whereas LF is a sympathetic nerve activity characteristic

indicator, and its ratio is negatively correlated with albumin

level (11).

HRV index can be used to identify sympathetic and

parasympathetic nerve activity, which can help patients with

cardiovascular disease to make accurate clinical warning and

take a good treatment plan. Penttila et al. (12) evaluated

the applicability of these four different parameters in cardiac

vagus outflow and demonstrated that these parameters are

more suitable for measuring cardiac vagal outflow during free

breathing. La Rovere et al. (13) quantified HRV by measuring

the SDNN R–R interval with a large amount of data, which

might contribute to post-infarction risk stratification. Rossi

et al. (14) applied ultra-short HRV to research the influence of

data loss caused by motion artifacts, which played a significant

role in obtaining reliable HRV signals. After controlling for

environmental and personal confounding factors, Tang et al.

(15) used a linear mixed-effects model to analyze the above

frequency-domain and time-domain parameters, and proved

that temperature changes on the day of onset might significantly

reduce cardiac autonomic nervous function. Yang et al. (16)

confirmed that lower HRV was associated with a higher risk of

all-cause and cardiovascular death in hemodialysis population,

and that lower SDANN and LF/HF were the predictors of both

all-cause and cardiovascular mortality.

HRV analysis is an important means to evaluate the state of

autonomic nervous system regulating the cardiovascular system.

Quantitative evaluation can directly reflect the mental state

of patients, which is helpful for the evaluation of psychiatric

treatment programs and detection of specific drug effects.

Sripanidkulchai et al. (17) studied the effects of standard

Kaempferia Parviflora (KP) extracted on physical fitness and

HRV parameters of adolescent sports school students in a

randomized double-blind controlled trial. The experiment

proved that KP extract had an anti-stress effect on HRV

parameters, which can promote its application in sports training

and exercise. Yoo et al. (18) evaluated the relationship between

stress measured by HRV and academic achievement of medical

students during their internship.

In this article, the recognition of R characteristic wave

for ECG signal, HRV parameter calculation, and mental stress

(MS) evaluation was studied. The detection and recognition of

the waveform is the prerequisite to judging the parameters of

ECG signal. The detection and recognition of QRS waveform

is the basis of ECG signal detection. If there is error detection

and missing detection phenomenon of QRS waveform, it will

certainly affect the judgment of P wave and T wave, and also

affect the result of disease classification of ECG signal. To solve

this problem, an improved difference threshold algorithm is

proposed to detect R wave. The traditional difference threshold

algorithm is improved in two aspects, starting point and

sliding window width, to improve the accuracy of R-wave

recognition. The evaluation model of MS is constructed by

analytic hierarchy process (AHP), and it is verified that the

algorithm can quantitatively describe the MS of the body

through comparative experiments.
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FIGURE 1

Flowchart of R-wave detection.

FIGURE 2

Schematic diagram of starting point selection area for R-wave

detection.

Materials and methods

Di�erential threshold R-wave detection
algorithm

QRS-wave group is the most unique and easily recognized

characteristic wave in ECG signal. The characteristics of R wave

in wave group are particularly obvious, and the change in rising

slope and falling slope is most obvious. Differential threshold

R-wave detection algorithm uses the slope characteristics of the

rise and fall of R wave to recognize the R wave of ECG signal.

In this article, an improved differential threshold algorithm is

proposed to improve the accuracy of R-wave recognition. The

whole detection process of the proposed algorithm is shown in

Figure 1.

The selection of initial position is very important to

accurately locate all R waves. As shown in Figure 2, the

starting point of R wave may occur in the following two

situations. In the first case, the starting point is in the

stationary part of ECG signal, which can quickly and accurately

locate R wave. The second case is that the starting point is

around the R wave, and when the maximum and minimum

values are compared after the first-order difference, the

maximum value will appear before the minimum value,

which may increase the miss and fallout ratio of the R-wave

recognition (19).

To prevent the second situation mentioned above, the initial

detection time of R wave should be avoided near the R wave.

First, the ECG data during the period [1:t] are intercepted to find

out the maximum ECG data Amax. Then, another period ECG

data during [t+1:2×t] is intercepted to find out the maximum

ECG data Bmax. Finally, the value of Amax is required to

compare with the value of 1.8 × Bmax. If Amax is greater, it

indicates that the initial position is near the R wave. 2× t will be

used as the initial position for R-wave recognition. Otherwise,

the initial position of R-wave detection is set as 1. After the

ECG signal detection point L is selected, a segment of ECG

signal Xwf is intercepted through the time-window functionWf,

and the signal sequence is searched to locate the position point

R1 corresponding to the maximum value. At the same time,

the first-order difference of Xwf will be carried out, and the

comparison between the differential signal and the original ECG

signal is shown in Figure 3.

After the differential signal dif(t) of signal segment Xwf is

calculated, theminimum andmaximum values of the differential

signal dif(t) are first located to correspond to the time points

tmin and tmax of ECG signal. Then, the position point R
′

corresponding to the maximum value of ECG signal in the time

period is found. Finally, a comparison is performed to judge

whether R1 and R
′
are the same point. If they are the same

point, then that point is the R-wave position. Otherwise, the

smaller one is the R-wave position. Once the position of the

first R wave is determined, as shown in Figure 4, the initial

point L is some distance away from that position, which means

that L = R + T1. The same process is then performed to

determine the location of the second R wave. The calculated

time interval between these two R waves is defined as the RR

interval (20).

Similarly, after the second R-wave position is determined,

the delayed T1 position is set as the initial point. Then, the

ECG signal sequence is intercepted according to the dynamic

time-window function Wf, and the position of R wave in this

segment of ECG signal is located. In this process, if R1 and R
′

are not at the same position, the absolute values of R1R and

R
′
R are, respectively, subtracted from the previous RR interval.

The position point with small difference is the position point of

R wave.
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FIGURE 3

Comparison between the original ECG signal and di�erential signal.

FIGURE 4

Schematic diagram of selecting the starting point for the latter R

wave.

Mental stress model construction based
on HRV signal

The HRV analysis is essentially a quantitative analysis of

sinus heart rate. When premature beats or severe arrhythmias

appear in the signals, HRV analysis will lose its significance.

Therefore, the RR interval sequence will be processed to some

extent in the actual analysis process as shown in Figure 5. First,

the absolute value of the difference between two adjacent RR

intervals is set as tRR, and the critical value is set as 0.12 s. If there

are 256 consecutive intervals, which are all less than the critical

value when scanning the RR interval sequence, these data will

be used as an HRV signal. Otherwise, it is necessary to estimate,

in turn, to throw out any RR intervals in the sequence that do

not satisfy the condition. Finally, the remaining RR intervals are

pieced together to form HRV signals (21).

When researchers evaluate body pressure, there is no clear

judgment standard so far, and most of them determine the

stress state of the subjects by observing too many indicators

of HRV. In the process of HRV analysis, no matter the time-

domain parameters, frequency-domain parameters, or non-

linear parameters, any single parameter cannot accurately

represent the MS changes of the body (22). Therefore, the AHP

is proposed to conduct quantitative evaluation in this article as

shown in Figure 6. By obtaining the body pressure index, testers

can intuitively understand their own pressure status.

In this article, some HRV analysis parameters are selected

as pressure evaluation indexes by analyzing the experimental

results. Among the time-domain parameters, SDNN, PNN50,

and HR are selected as pressure indicators. While TP, HF,

and LF/HF are frequency-domain parameter, VAI, HRD, and

HLE are non-linear parameter. The hierarchical structure of the

pressure model constructed according to the pressure index is

shown in Table 1. Here, G represents the target layer of the

model, Gi represents the criterion layer of the model, and Gij

represents the scheme layer of the model. The body pressure

value can be obtained by comprehensively weighing each level

index of the hierarchical model. This process represents the

MS in the form of mathematics, instead of the subjective

judgment before.

The judgment matrix is constructed using the 1–9 scale

method, which represents the ratio of the index and the

importance degree of the index to the upper index in the form of

numbers. The larger the ratio a/b is, the more important index a

is to the upper index relative to index b. In the judgment matrix

constructed using the 1–9 scale method, element aij represents

the ratio of the importance of the ith element and the jth element

to the upper index (23).
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FIGURE 5

(A) The R-wave recognition e�ect diagram; (B) the generated HRV signal diagram.

FIGURE 6

Schematic representation of the AHP.

TABLE 1 Pressure indicator architecture.

Target layer (G) Criterion layer (Gi) Scheme layer (Gij)

Body pressure index, G Frequency domain G1 LF/HF G11

TP G12

Time domain G2 SDNN G21

PNN50 G22

HR G23

Non-linear G3 HLE G31

HRD G32

VAI G33

The 1–9 scale method is used to construct the weight

judgment matrix according to the influence degree of each

parameter on MS (24). The weight judgment matrix of the

constructed criterion layer is as follows:

A=







1 4 5

1/4 1 3

1/5 1/3 1






(1)

The weight judgment matrices B1, B2, and B3 of frequency-

domain parameters, time-domain parameters, and non-linear

parameters of scheme layer Gij are respectively expressed

as follows:

B1 =

[

1 3

1/3 1

]

B2







1 1 3

1 1 3

1/3 1/3 1






B3







1 3 4

1/3 1 2

1/4 1/2 1






(2)

According to the above analysis, the weight value of each

element in setG = {G1,G2,G3} is expressed as β = {β1,β2,β3}.
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FIGURE 7

Schematic representation of the experimental test platform for HRV. (A) Overall structure diagram of the server, (B) schematic diagram of the

customer premises equipment, (C) data acquisition interface of upper computer, and (D) electronic medical record interface.

The weight value of each element in the parameter set G1 =

{G11,G12} in the frequency domain is expressed as λ1 =

{λ11, λ12}. The weight value of each element in the parameter

set G2 = {G21,G22,G23} in the time domain is expressed

as λ2 = {λ21, λ22, λ23}. Similarly, the weight value of each

element in the non-linear parameter set G3 = {G31,G32,G33} is

expressed as λ3 = {λ31, λ32, λ33}. The body pressure evaluation

model of the criterion layer, expressed as ZGi = f
(

Gij, λij
)

, is

constructed by combining the weight of each parameter. Here,

Gij is HRV analysis parameter value, and λij is the corresponding

weight value. The calculation method of criterion layer is

as follows:

ZG1 =

(

λ11 ×
G11

15
+ λ12 ×

G12

9000

)

× 100% (3)

ZG2 =

(

λ21 ×
200− G21

200
+ λ22 ×

60− G22

60
+ λ23

×
G23

100

)

× 100% (4)

ZG3 =

(

λ31 ×
G31

10
+ λ32 ×

0.4− G32

0.4
+ λ33

×
10− G33

10

)

× 100% (5)

After the value of the secondary model ZGi is calculated, the

body pressure value is calculated by combining the weight of the

criterion layer βi. The calculation formula of pressure index of

the target layer model is shown in the following formula:

Z =

k
∑

i=1

100βi × ZGi (6)

Results

Experimental test platform

The test platform in this article is a wearable signmonitoring

system constructed based on BAN technology. The overall

design structure block diagram of the system is shown in

Figure 7A. It includes a three-layer structure of customer-

premises equipment (CPE), cloud computing services, and

doctor-premises equipment (DPE). The ECG signal is collected

by the client and sent to a remote data center to obtain a

diagnostic report. On the one hand, the remote data center

receives the collected user data, calculates the HRV signal, and

transmits the calculation results to the doctor. On the other

hand, it receives the medical report transmitted by the doctor

and feeds it back to the client. The doctor side will present

the final HRV data calculation results, and the doctor can

control the patient’s status in real time for timely diagnosis

and treatment advice. The hardware circuit diagram of the
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CPE in this experiment is shown in Figure 7B. The device

simultaneously collects ECG and pulse signals of the human

body. The ECG signal is collected by CM5 bipolar chest lead,

with two lead wires as positive pole LA and negative pole RA.

The electrode is attached to the human body, and the ECG

signal is transmitted to the acquisition circuit board through

the lead wire. The ADS1292R chip amplifies the analog ECG

signal, converts A/D into digital signal, and sends it to the MCU

processing circuit through SPI interface. The microcontroller

assembles the collected ECG and pulse signals into frames,

sends them to the USB-serial circuit, and then the computer.

At this point, the synchronous collection of ECG and pulse is

completed. The data collection interface of the upper computer

is shown in Figure 7C. The HRV time-domain, frequency–

domain, and non-linear data can be presented by calculation.

Figure 7D is the doctor-side diagnosis and treatment interface,

which can intuitively display the patient’s current MS status

and query the historical changes of MS, and provide the best

diagnosis and treatment suggestions accordingly.

The test data are measured in cooperation with Southwest

Medical University. The ages of subjects are between 20 and

40 years, and the data are collected for 5min at a time.

The Institution Research Ethics Board of Southwest Medical

University approved this experiment, and all experiments

FIGURE 8

R-wave detection of ECG signal without noise interference.

FIGURE 9

R-wave detection of ECG signal with noise interference.
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are performed in accordance with relevant guidelines and

regulations. In addition, all volunteers who provide data have

agreed to use the data for publication and informed consent is

obtained from all subjects.

Verification of R-wave detection
algorithm

To verify the accuracy and anti-jamming ability of the R-

wave detection algorithm, the R-wave location simulation of

ECG signals under different conditions is carried out by using

this algorithm on the test platform. The positioning effect

diagram of ECG signal without noise interference is shown

in Figure 8, and the one with noise interference is shown in

Figure 9.

Real-time collection of 5min ECG data using the algorithm

presented in this article is used to identify R wave. The

simulation results show that the algorithm recognition rate of

R wave reaches 100%. To further verify the accuracy of the

algorithm, 30min ECG data from theMIT/BIH ECG database is

used to detect and identify R characteristic waves. Table 2 shows

the statistics of the recognition rate of the R-wave recognition

algorithm for partial ECG data randomly selected from the

MIT/BIH database. As shown in Table 2, the average R-wave

recognition rate of this algorithm for the electrical signals in the

center of the MIT/BIH database is ∼99.69%, which is mainly

caused by excessive noise interference in the signals.

The R-wave recognition algorithm proposed in this article

has the following advantages over the traditional R-wave

recognition algorithm. On the one hand, the algorithm improves

the R-wave recognition rate and avoids missing and wrong

detection of short-range ECG signals. On the other hand, the

algorithm is easy to implement and the computation is small,

so it is suitable for the analysis equipment with a high real-

time requirement.

Contrastive experimental verification of
mental states under di�erent conditions

In this article, a comparative experiment is carried out

according to the difference of motion state and environmental

factors. It is found that muscle tension and mental activity

could increase after exercise. In this experiment, HRV analysis

parameters are used to calculate and compare MS values to

verify the validity of the pressure model. Table 3 shows the

TABLE 3 Comparison of random experimental data and pressure

index before and after exercise.

No. State VAI HRD HLE HR SDNN PNN50 TP LF/HF

1 Before 1.11 0.07 5.01 81 54.20 4.70 1,365 0.29

After 0.73 0.07 7.48 99 35.26 1.90 1,929 10.45

2 Before 1.06 0.06 5.64 80 42.63 5.10 1,914 0.30

After 0.88 0.05 6.71 102 21.43 1.10 3,924 3.86

3 Before 1.39 0.06 5.80 73 34.01 9.80 1,700 0.51

After 0.89 0.06 6.35 95 24.36 1.90 2,042 7.28

4 Before 1.08 0.08 5.22 79 68.98 5.90 4,920 0.21

After 0.03 0.05 5.26 100 63.36 1.20 6,743 2.23

5 Before 1.27 0.07 5.76 80 46.17 7.90 1,675 1.26

After 0.91 0.07 6.21 98 30.12 2.80 2,485 2.05

TABLE 2 R-wave detection statistics of partial ECG data in the MIT/BIH database.

File No. No. of standard QRS Missing detection Fault detection Incorrect total Recognition rate

100 2,273 0 1 1 99.91%

102 2,187 0 2 2 99.91%

103 2,084 1 2 3 99.86%

104 2,229 1 5 6 99.73%

105 2,572 2 6 8 99.69%

107 2,137 0 5 5 99.77%

109 2,532 1 8 9 99.64%

123 1,518 2 1 3 99.80%

208 2,955 0 9 9 99.70%

210 2,650 5 8 13 99.51%

215 3363 5 7 12 99.64%

219 2,154 0 5 5 99.77%

230 2,256 2 1 3 99.87%

Total 30,910 19 60 79 99.69%
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FIGURE 10

Comparison of mental stress before and after exercise for

random sample.

comparison of experimental data of five randomly selected

subjects in the database in two environments. From Figure 10,

we can see the calculated quantitative indexes of MS before

and after exercise. It can be seen from the figure that the

MS value obtained by comprehensive calculation after exercise

is significantly increased compared with that before exercise,

which is in line with the objective fact, indicating that this model

can be used for stress assessment caused by exercise.

Drastic changes in the environment may stress the subjects.

The validity of the pressure evaluation model is verified by

comparing the pressure values of the test subjects under two

conditions. As we all know, virtual reality (VR) video has a

certain auxiliary effect on mental illness and is being used by

many psychiatrists to assist diagnosis and treatment. On account

of this reason, VR video is used in this article to create different

conditions for the subjects.

VR videos tested include soothing landscapes and a scary

movie. First, the subject’s MS is calculated and recorded while

the subject is relaxed by watching the soothing landscapes. Every

subject is then left alone in a dark room to watch a horror movie

clip. The corresponding MS in a state of anxiety and tension

is calculated and recorded. Table 4 shows the comparison of

experimental data of five randomly selected subjects in the

database in two conditions. Figure 11 shows the comparison of

MS values.

According to the results of the experiment, the subjects

are relaxed when watching the scenery videos, with almost no

psychological or physical stress. The value of the corresponding

MS is small, and the average value is ∼30. After watching the

scary video, the psychological activity of the subjects is greater

and even produces a sense of fear. As can be seen from Figure 11,

the value of MS increases significantly. Although there are

individual differences, the increase is generally more than 60%,

and the biggest change even reaches 106.7%. This quantitative

TABLE 4 Comparison of random experimental data and pressure

index before and after watching.

No. State VAI HRD HLE HR SDNN PNN50 TP LF/HF

1 Before 1.12 0.05 5.86 77 52.85 4.11 1,728 0.76

After 0.65 0.05 7.07 90 37.44 0.98 3,415 5.25

2 Before 2.52 0.06 5.12 70 32.29 0.78 2,992 0.35

After 1.11 0.06 7.48 97 21.58 0 4,469 3.88

3 Before 1.06 0.05 4.96 72 48.04 2.54 2,210 0.26

After 0.84 0.03 6.71 98 34.41 0 5,264 3.94

4 Before 2.61 0.11 5.63 80 51.7 9.59 2,426 0.9

After 1.05 0.06 6.68 87 44.42 0.78 3,262 6.5

5 Before 1.26 0.07 5.35 77 52.85 2.15 822 1.01

After 0.65 0.05 7.27 90 25.29 0.39 3,415 8.18

FIGURE 11

Comparison of mental stress before and after watching the

video.

description is capable of reflecting the changes of MS effectively

brought by different stimuli to the organism.

Error analysis of measurement data

Considering the influence of subjects, environment, and

measuring instruments, there will be some errors in the actual

measurement. To reduce the error, we calculate the average

of multiple measurements. Table 5 shows all error rates of

HRV parameters.

The result shows that the errors of SDNN in the time domain

range from 0.16 to 17.27%, PNN50 range from 0.53 to 26.36%,

HR range from 0.42 to 3.02%, and LF/HF range from 3.20 to

34.48%. Total power (TP) error is between 1.92 and 36.35%.

The errors of relative dispersion of non-linear parameters HRD,

Lyapunov index HLE, and vector angle index (VAI) are 0.19–

14.96%, 0.42–7.26%, and 0.57–12.68%, respectively. The error of

the final calculated MS index is between 0.57 and 9.68%, which

meets the requirements of application demonstration.
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TABLE 5 Error rate of HRV parameters.

No. SDNN pNN50 HR LF/HF TP HRD HLE VAI MS

1 2.94% 3.82% 1.29% 23.97% 4.28% 2.95% 0.59% 0.57% 4.71%

2 5.53% 15.41% 1.41% 16.35% 1.92% 5.56% 0.42% 1.16% 7.76%

3 4.35% 4.37% 1.62% 6.09% 7.19% 5.16% 3.72% 12.68% 1.98%

4 2.81% 3.82% 0.79% 24.00% 4.27% 6.72% 1.76% 1.65% 1.24%

5 3.42% 8.41% 1.27% 24.09% 4.73% 9.06% 0.55% 5.39% 2.97%

6 11.01% 8.27% 0.67% 18.79% 6.32% 4.83% 7.26% 9.65% 4.26%

7 6.52% 17.07% 2.12% 19.00% 5.05% 2.28% 1.34% 2.82% 5.71%

8 2.99% 26.36% 2.56% 18.89% 3.37% 3.00% 2.72% 9.93% 8.74%

9 2.98% 22.50% 3.55% 18.30% 2.33% 2.98% 3.20% 1.00% 9.68%

10 4.79% 20.03% 4.42% 28.22% 36.35% 6.25% 6.53% 11.80% 9.34%

11 17.27% 13.49% 1.92% 18.86% 23.27% 13.03% 1.59% 3.84% 0.57%

12 0.16% 19.08% 1.40% 6.57% 4.96% 0.19% 3.46% 8.85% 5.77%

13 3.96% 1.55% 2.53% 3.20% 3.29% 2.98% 1.25% 7.72% 1.77%

14 14.97% 16.17% 1.14% 20.64% 10.96% 14.96% 6.60% 8.21% 3.13%

15 3.96% 0.53% 1.63% 34.48% 13.33% 3.98% 1.55% 0.39% 5.26%

16 3.24% 0.70% 0.47% 29.74% 22.32% 5.68% 2.47% 3.02% 0.86%

17 13.18% 22.17% 1.15% 25.24% 23.61% 3.41% 2.81% 3.22% 2.58%

18 5.31% 13.46% 2.44% 6.78% 10.10% 5.31% 3.07% 3.32% 0.78%

19 6.09% 15.00% 3.02% 7.45% 6.75% 5.39% 3.18% 1.90% 1.72%

20 4.27% 19.99% 1.55% 19.15% 7.92% 3.41% 2.81% 1.61% 4.10%

Discussion

In this study, we construct the quantitative description

model of mental stress, propose an improved differential

threshold method to detect, and recognize R waves of ECG

signals accurately and reliably. Both these research findings

shed light on the accurate HRV measurement and quantitative

detection of mental stress, likely playing a role in the treatment

of mental illness.

By analyzing HRV time-domain and frequency-domain

indexes, researchers aim to quantitatively study the relationship

between HRV indexes and sympathetic nerve activity level and

special diseases. Penttila et al. (12) studied the applicability of

four different measures of HRV in the assessment of cardiac

vagal outflow. However, its research tended to be in the category

of free breathing and could not be directly quantified. Recent

research by Rovere (13) introduced Baroreflex Sensitivity (BRS)

for risk stratification after infarction on the basis of traditional

time-domain parameter SDNN. Based on 24 h Holter recording

and rate–pressure response to intravenous phenylephrine, they

unveiled that low values of either HRV (SDNN < 70ms) or

BRS (<3ms per mmHg) carried a significant multivariate risk of

cardiac mortality. However, the results of this study have great

limitations, especially for patients with low BRS. Furthermore,

as a time-domain parameter, SDNN has a great interference and

error in the measurement process. Yang et al. (16) confirmed

that the reduction in HRV was associated with a high risk of

all-cause and cardiovascular death in hemodialysis population.

Decreased SDANN and LF/HF were identified as predictors of

both all-cause and cardiovascular mortality, while the utility

of other HRV metrics requires further investigation. Tang’s

(15) study showed that temperature variability decreased both

frequency-domain and time-domain HRV parameters, which

is a possible predictor for adverse cardiac events. Consistent

with these results, we found that HRV index can effectively

predict the occurrence of some diseases, but also can be

used as the evaluation basis of some diseases. Through the

above experiments, we verified the changes of HRV indicators

under different emotions and different sports states, and gave

quantitative descriptions to intuitively evaluate the changes in

their diseases.

To truly estimate disease status throughHRV index, accurate

measurement and calculation of acquisition parameters are very

important. Rossi et al. (14) simulated missing values induced

by motion artifacts (from 0 to 70%) in an ultra-short-time

window by the random walk Gilbert burst model in 22 young

healthy subjects to obtain reliable HRV parameters from device.

Tang’s (15) study integrated eight measurement parameters in

time domain and frequency domain to ensure the reliability of

calculation results. Although there is extensive evidence that

multiparameter comprehensive measurement can effectively

reduce measurement error and improve data reliability, we show
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for the first time that the comprehensive index of HRV based on

weight matrix in Equation (6) can greatly reduce the deviation

caused by the measurement error of each parameter as shown in

Table 5.

This study has some limitations. One limitation is that the

all participants are adults. Future studies could be performed

in order to detect individual characteristics such as gender, age,

and individual habits. Another limitation is the lack of a broader

stimulus. Future studies could be performed in order to consider

stimulating factor such as sadness, shock, and weightlessness.

Conclusion

The quantitative analysis of HRV can reflect the regulation

of the autonomic nervous system to the cardiovascular system.

Not only can it help patients and doctors diagnose or predict

cardiovascular disease, but it can also be used to assess

psychological conditions such as stress. In this article, an

improved differential threshold method is used to detect

and recognize R waves of ECG signals. To improve the

recognition rate, the traditional difference threshold method

is improved through a novel algorithm for locating initial

position of R wave and improved time-window function.

The experimental results show that the recognition rate of

R wave in 5min ECG data collected in real time is >99%.

Compared with traditional characteristic wave recognition

algorithms, the proposed algorithm simplifies process, has

high real-time performance, and is suitable for wearable

analysis devices with low-configuration requirements. The

accurate recognition of ECG signal R characteristic wave goes

far toward obtaining an accurate HRV signal. The AHP is

used to construct the mental stress evaluation model in this

article. According to the influence degree of HRV analysis

parameters on mental stress, the weight judgment matrix

is constructed and the consistency is verified. Then, the

weight values of the corresponding HRV analysis parameters

are calculated. In the end, according to the value range

of the parameters selected by the model and the ratio

relationship between the parameters and mental stress, the

mental stress evaluation model is constructed. The validity

of the mental stress model is verified by comparing the

mental stress values of the subjects in different states and

different environments. The experimental results show that

the mental stress model can describe the mental stress of the

body quantitatively.
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