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Accurate preoperative glioma grading is essential for clinical decision-making and prognostic evaluation. Multiparametric
magnetic resonance imaging (mpMRI) serves as an important diagnostic tool for glioma patients due to its superior performance
in describing noninvasively the contextual information in tumor tissues. Previous studies achieved promising glioma grading
results with mpMRI data utilizing a convolutional neural network (CNN)-based method. However, these studies have not fully
exploited and effectively fused the rich tumor contextual information provided in the magnetic resonance (MR) images acquired
with different imaging parameters. In this paper, a novel graph convolutional network (GCN)-based mpMRI information fusion
module (named MMIF-GCN) is proposed to comprehensively fuse the tumor grading relevant information in mpMRI. Spe-
cifically, a graph is constructed according to the characteristics of mpMRI data. )e vertices are defined as the glioma grading
features of different slices extracted by the CNN, and the edges reflect the distances between the slices in a 3D volume. )e
proposed method updates the information in each vertex considering the interaction between adjacent vertices. )e final glioma
grading is conducted by combining the fused information in all vertices. )e proposed MMIF-GCN module can introduce an
additional nonlinear representation learning step in the process of mpMRI information fusion while maintaining the positional
relationship between adjacent slices. Experiments were conducted on two datasets, that is, a public dataset (named BraTS2020)
and a private one (named GliomaHPPH2018). )e results indicate that the proposed method can effectively fuse the grading
information provided in mpMRI data for better glioma grading performance.

1. Introduction

Glioma is the most common primary brain tumor, which
accounts for nearly 80% of all malignant brain tumors [1].
Generally, gliomas are categorized as low-grade gliomas
(LGGs) and high-grade gliomas (HGGs). In a clinical set-
ting, LGG patients have a good prognosis, while HGG
patients often have a poor one. )erefore, treatment options
for patients with different grades of gliomas are different.

Currently, glioma grading is performed by pathological
examinations of tumor tissues obtained by surgery. As a
result, it is not possible tomake personalized treatment plans
before operation, and noninvasive glioma grading methods
are urgently needed [2].

Multiparametric magnetic resonance imaging (mpMRI)
is the most common imaging method for examining brain
tumors and is very valuable for their diagnosis [3]. )is
imaging technology does not only reflect the information of
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human internal tissue noninvasively but also shows the
tissue morphology, anatomical structure, contrast of dif-
ferent tissues, and other information of various imaging
parameters in mpMRI of glioma. For instance, T1 can better
reflect the anatomical structure, T1CE can distinguish the
enhanced tumor and nonenhanced tumor according to the
degree of blood flow, T2 provides the degree of peritumoral
edema, and FLAIR can better reflect the anatomical infor-
mation of the tumor by inhibiting the edema information
[4]. Previous studies have shown that the information
contained in mpMRI of patients with glioma has the po-
tential for auxiliary grading diagnosis; still, it is difficult for
clinicians to effectively quantify this information [5, 6].
)erefore, it is necessary to carry out a comprehensive
analysis of glioma mpMRI, as well as fully explore and utilize
the diagnostic information in the data.

In the field of computer vision, deep learning has
achieved outstanding performance inmedical image analysis
tasks [7–9]. As a common deep learning network archi-
tecture, convolutional neural networks (CNNs) have dem-
onstrated their powerful representation learning capabilities
and have been frequently utilized in classification tasks
[10, 11]. CNNs can extract numerous features from input
images and achieve promising results. After comparing them
with the features extracted utilizing engineered approaches,
the CNN features can better reflect the characteristics of the
input. )us, they have better classification capabilities,
higher applicability, and stronger generalization abilities.
CNNs have also been adopted to automatically extract
features from glioma MRI for noninvasive grading and have
made progress in this field [12–19]. However, a limitation of
the existing studies is that they fully rely on CNNs to extract
the information without considering the specific charac-
teristics of mpMRI data. For mpMRI, joint analysis of data
acquired with different imaging sequences and sufficient
information fusion should be conducted to achieve better
classification performance. Besides, the relationship between
image slices in a whole 3D volume should also be com-
prehensively explored.

A graph is a classical data representation format, which is
composed of multiple vertices and edges. )e vertices often
represent samples, and the information in each vertex
usually reflects a certain state of the sample. )e edges
generally contain the associated information of the con-
nected samples. A graph convolutional network (GCN)
transfers the structured convolution operation to unstruc-
tured graph data by constructing a graph. In this way, a more
effective representation can be learned through information
interaction between adjacent vertices [20–22]. )e GCN has
attracted more attention in various fields, including medical
image analysis. Previous studies have tried to transform
image data into a graph structure and adopted GCN to fuse
information more effectively [23–28].

In this study, a novel GCN-based mpMRI information
fusionmodule, which is namedMMIF-GCN, is proposed for
enhanced glioma grading performance. Specifically, we
construct a graph according to the characteristics of mpMRI
data of glioma patients. )e vertices are defined as the
extracted CNN features of different MR image slices, and the

edges describe the positional relationships between slices in
a 3D MR image. Our method introduces a learnable non-
linear transformation to the information interaction be-
tween adjacent vertices, which can capture more powerful
contextual features and improve the glioma grading per-
formance. )e proposed method provides a new perspective
for information fusion of mpMRI data. Furthermore, we
conducted extensive experiments on two datasets (i.e., a
public dataset named BraTS2020 and a private one named
GliomaHPPH2018), while multiple baseline CNN archi-
tectures have been investigated. )e proposed MMIF-GCN
module can consistently provide better information fusion
and achieve better glioma grading results.

)e main contributions of this work are listed as follows:

(1) We propose a novel GCN-based mpMRI informa-
tion fusion module, MMIF-GCN. Particularly, GCN
is used for the first time to fuse the contextual in-
formation of MR image slices and the comple-
mentary information of different MR imaging
parameters.

(2) Our method transforms mpMRI data into a graph
according to the characteristics of the data. With the
graph, the physical importance of information fusion
is clarified. In the process of fusing the information
of different MR image slices, a nonlinear represen-
tation learning step is introduced to improve the
information quality, while maintaining the posi-
tional relationship between adjacent slices.

(3) Extensive experiments have been conducted on two
datasets, one public dataset and one private dataset.
)e proposed MMIF-GCN method can consistently
improve the glioma grading performance of multiple
CNN baseline models.

2. Related Work

In this section, we briefly review related works from two
perspectives. In the first part, we introduce studies that focus
on utilizing CNNs to extract features from MR images for
glioma grading. In the second part, we discuss previous work
on GCN-based image information fusion.

2.1. Application of CNN in Glioma Grading. Based on suc-
cessful applications of CNN in natural image classification,
many studies have tried to perform glioma grading withMRI
data using CNN-based methods. We group these studies
into three major categories according to two criteria: (1)
whether mpMRI data are utilized, and (2) whether con-
textual information relationships between MR image slices
are exploited.

)e first category refers to studies that meet neither of
the two criteria. )ese studies utilize MR data from only one
sequence, and they did not consider the contextual infor-
mation between image slices. For example, Decuyper et al.
[12] used only T1CE-MRI data from the BraTS2017 dataset
for model training, extracted features with VGG-11, and
constructed a prediction model for glioma grading based on
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the random forest classification algorithm. Yang et al. [13]
collected MRI data with 6 different imaging sequences, but
they used only T1CE-MRI data to train the models (AlexNet
and GoogLeNet) in their study for glioma grading.)e focus
of these studies was to verify the capability of CNNs in
obtaining glioma grading-relevant information from MRI.
However, they did not consider the specific characteristics of
mpMRI data. Consequently, the grading performance is
limited.

)e second category includes studies that meet one of
the criteria. )ese studies built glioma grading models by
fusing context information of MR image slices or infor-
mation of MR data acquired with different imaging pa-
rameters. Shahzadi et al. [14] proposed the long short-term
memory (LSTM) module to fuse the slices’ contextual
information of glioma MRI. )e FLAIR-MRI of 60 patients
from the BraTS2015 dataset was used as training data, and
the features extracted by AlexNet, ResNet, and VGGNet
were inputted into the LSTMmodule to construct a grading
model fused with slice context information. Ge et al. [15]
proposed a CNN model using 3D convolution to extract
context features between slices for glioma grading. )e
study used the T1CE-MRI sequence training model of 285
patients from the BraTS2017 dataset. Similarly, Mzoughi
et al. [16] used a 3D CNN model to extract features and
predict the grade of glioma from the T1CE-MRI of 285
patients from the BraTS2018 dataset. Zhuge et al. [17]
collected a joint dataset of BraTS2018 and TCIA including
MRI data with 4 parameters of 315 patients. )e glioma
grading model was constructed based on a Mask R-CNN.
)e slices of T1CE, T2, and FLAIR images were constructed
into three-channel PNG data to achieve mpMRI fusion. Ge
et al. [18] proposed a multistream CNN model to achieve
information fusion of MRI images with different param-
eters. In the study, the features of 4MR images from the
BraTS2017 are extracted, and element-wise multiplication
was used to realize the information fusion of images with
various parameters. )e fusion performance is better than
that of the single MRI. In contrast to the first category of
research work, these studies intentionally fuse context
information of MR image slices or information of MR data
acquired with different imaging parameters, but there is
still room for improvement.

)e third category contains studies that meet both cri-
teria of fusing context information of MR image slices and
information of MR data acquired with different imaging
parameters. )e study presented by Ye et al. [19] is based on
a 3D CNN for extracting context information in MRI, and
the information in different MRI sequences is fused by the
designed module. )e study was carried out for 274 patients
from the BraTS2015 dataset. )e experimental results show
that the fusion of contextual information obtained from
different MRI sequences can improve the prediction per-
formance. Moreover, in comparison with simple informa-
tion fusion, further improvement of the information fusion
method can improve the performance of the proposed
method. )e method can only contain MRI of two pa-
rameters, so the amount of information that can be fused is
limited.

Most of the aforementioned studies have tried to con-
struct a glioma grading model based on the characteristics of
mpMRI data; however, there are certain limitations in fully
fusing the grading information of mpMRI. Our method
realizes the fusion of mpMRI data characteristics through
using graph convolution, which has advantages in fusing
interactive information and improves the grading prediction
performance of the CNN model.

2.2. Image Information Fusion with the Graph Convolutional
Network. With the continuous development of methods for
graph analytics, the application of these methods in the field
of computer vision has also made major progress. Here, we
introduce the research application of the GCN method in
natural and medical images and analyze its role in practical
applications.

For the analysis of natural images, some studies used
GCN to realize information interaction and fusion in order
to improve the performance of specific tasks. Li et al. [23]
tried to use GCN as a new method to capture the long-
distance context dependency between objects and other
elements in a scene for the purpose of visual recognition
research. In their study, the vertices of the graph are pixel
clusters with similar characteristics. )e edges are con-
structed according to the similarity of information between
each vertex. Finally, the information interaction between the
vertices of the graph is completed through the GCN, so as to
capture the long-distance dependency of context and im-
prove the recognition performance. Similarly, Xu et al. [24]
transformed various objects in an image into graph data.
Different objects in the graph constitute vertices and learned
potential connections are edges from the characteristics of
these objects. )e information between co-occurrence and
locations of objects in the process of image recognition is
realized through the information interaction of the GCN,
which helps to improve the performance of the model.
Knyazev et al. [25] used a GCN to realize the classification
task of natural image data. In this study, the image is
transformed into superpixels of different scales as the ver-
tices of the graph, and multiple edges are constructed
according to the various relationships between the vertices.
)en, a GCN is used to realize the interaction and fusion of
information between vertices and, finally, improve the
classification performance. It can be seen that these studies
on natural image analysis have aimed at solving specific
information fusion problems because of the use of GCN.

Additionally, there are some research studies using GCN
fusion information for the analysis of medical images. Chen
et al. [26] proposed a novel GCN framework, which can
integrate the co-occurrence and interdependency of dif-
ferent pathological labels in chest X-ray images and improve
the classification performance of the model. In this method,
the vertex of the graph corresponds to the pathology, and the
edge is the relationship between pathologies. Liu et al. [27]
aimed at the problem that the complementary information
of the mediolateral oblique and craniocaudal views of a
mammogram are difficult to obtain using conventional
methods, and they proposed a GCN-based method to
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achieve the interactive fusion of two modal information,
which improves the performance and interpretability of the
model. After obtaining the design of the research study,
different regions in each view are vertices. )e two types of
views form two types of vertex sets. )e edges between the
two types of vertices are constructed through geometric and
semantic relation learning. Tian et al. [28] used a GCN to
achieve interactive segmentation of prostate MR images.)e
study used N vertices to form the prostate segmentation
contour. )e vertex information is the feature vector and
position coordinates of the image, while the edge is the
prostate segmentation contour formed by the connection of
vertices.)e interactive segmentation results are transmitted
to all vertices through the graph convolutional vertex in-
formation fusion so that each vertex learns a new position
information update and improves the accuracy of the overall
segmentation. It can also be seen that the GCN method has
research value in fusing medical image information.

So far, the aforementioned research studies have to
design imaging data as graph data according to task re-
quirements and, then, use GCN to realize the information
interaction between vertices and adjacent vertices. In a
similar way, our research study is aimed at characteristics of
different images complementary information and organi-
zational context information in glioma mpMRI data, so as to
transform this information into graph data, clarify the
physical meaning of the graph, and realize learnable in-
formation fusion.

3. Method

3.1. Overview. )e architecture of our proposed module,
MMIF-GCN, is shown in Figure 1. )e architecture consists
of feature extraction, graph construction, graph convolu-
tional network, and classification. It is assumed that each
glioma patient corresponds to MRI with 4 different imaging
parameters, and the MRI of each parameter has n corre-
sponding slices containing tumor information. F

(k)
i repre-

sents the feature extracted by a CNN from the ith MRI axial
slice of the kth parameter (k ∈ [1, 4], i ∈ [1, n]). Xi 

n
i�1

represents the mpMRI feature vector learned by nonlinear
mapping after feature concatenation of the ith slice layer of
k-parametric MRI. We combine the above information with
the positional relationship of slices to present the graph
G � (V,E), where vi ∈ V represents vertices, and the in-
formation of vertices Xi and (vi, vj) ∈ E represents edges,
reflecting the proximity relationship between different slices.
We define the adjacency matrix as A ∈ Rn×n, the feature
vectors matrix of the vertex as X ∈ Rn×D, where D represents
the dimension of the feature after nonlinear mapping.

3.2. Feature Extraction. First, 2D slices containing tumor
regions were obtained from MRI with different imaging
parameters of glioma patients. )en, common CNN models
are used to extract the tumor grading features in the slices.
)ese models include AlexNet [29], VGGNet-16 [30],
GoogLeNet-Inceptionv3 [31], ResNet-34 [32], EfficientNet-
b3 [33]. When extracting features using AlexNet and

VGGNet-16, the last pooling layer in the network is mod-
ified to global max pooling, and the pooled features are
extracted as the final features used by the slice. When using
ResNet-34 and GoogLeNet-Inceptionv3 to extract features,
the features before the fully connected layer are used as the
final features of the slice. When using EfficientNet-b3 to
extract features, a global average pooling layer needs to be
added after the last MBConvBlock, and the pooled features
are used as the final features of the slice.

3.3. GraphConstruction. )e process for converting grading
information of glioma extracted from mpMRI into a graph
data structure is the key to realize information fusion
through GCN. In this study, according to the characteristics
of mpMRI data, the representation of the graph was
designed. )e details are described in the following.

Vertex represents a slice of a certain position of the
tumor in the MRI of a glioma patient.

Vertex information: Xi represents the glioma grading
information learned from the ith MR slice. In our study, we
used CNN to extract the glioma grading features from the
same location slices of four parameters MRI which are
represented by F

(1)
i , F

(2)
i , F

(3)
i , F

(4)
i . )e integration of in-

formation in slices at the same position in mpMRI is achieved
through the concatenation of feature matrices. In order to
effectively fuse tumor grading information in images with
different parameters, the dimensions of various extracted
CNN features are unified.We have added a nonlinear encoder
f. )rough this learnable nonlinear representation, the ef-
fective fusion of different grading information is achieved and
the dimensionality of the vertex information is unified. )e
following formula shows the fusion process of slice infor-
mation at the same location in mpMRI:

Xi � f Concat F
(1)
i , F

(2)
i , F

(3)
i , F

(4)
i  . (1)

Edge represents the edge between vertices, which reflects
whether the positions of the slices are close in the MRI. We
have taken into account the way that medical imaging spe-
cialists need to consider the information of several adjacent
slices above and below when analyzing slices at a certain
location. )en, we constructed edges between corresponding
vertices of adjacent slices. We set each slice to be connected to
the 3 adjacent slices above and below, and each vertex has a
total of 6 edges. Based on the definition of the above edge, we
construct the corresponding adjacency matrix. )e definition
of the adjacency matrix A ∈ Rn×n is as follows:

Aij �
1, if |i − j|≤ 3,

0, otherwise,
 (2)

where |i − j| represents the distance between the ith and jth

slices.

3.4. Graph Convolutional Network. Graph convolution real-
izes the convolution operation in graph structures data through
the information interaction between each vertex and adjacent
vertices. )e process consists of an aggregator and an updater.
)e aggregator can fuse the information contained in all
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vertices connected to the current vertex. )e updater can fuse
the current vertex informationwith the aggregated information
of adjacent vertices and update the fused information into the
vertices. )rough the convolution operation on all vertices in
the graph, the information fusion of each vertex and adjacent
vertices is realized, and the fused vertex information is put into
the corresponding vertices in the new graph with the same
structure [20, 34]. To realize the dissemination and fusion of
each vertex information through multiple GCN iterations, this
learnable information fusion method can help the model to
obtain a better feature representation.

)e graph convolution method used in this research is
shown in Figure 2. In this study, G0 represents the initial
graph, and X0⟶ X″ is the process of performing a graph
convolution on a vertex. X0 represents the vertex infor-
mation of the current graph convolution operation in the
graph, and Xi, i ∈ [1, 6] represents the information in the 6
vertices connected to the vertex, where Xi ∈ RD. )e
aggregator will first perform nonlinear mapping of Xi to
obtain new information Xi

′, presented in formula (3), where
Xi
′ ∈ RD. )en, through the max pooling operation on

Xi
′, i ∈ [1, 6], the aggregate information Xneigh

″ is obtained, as
shown in formula (4), where Xneigh

″ ∈ RD. Subsequently, the
updater concatenates X0 and Xneigh

″ to obtain Xcat, where
Xcat ∈ R2 D, and then, uses nonlinear maps to obtain the
final fused information X′’, as shown in formula (5), where
X″ ∈ RD. After all vertices in the graph perform graph
convolution operation to fuse information, a new graph with
the same structure and different information is obtained by
using residual connection, as shown in formula (6).

Xi
′ � ReLU F Xi( ( , (3)

Xneigh
″ � MaxPooling X1, X2, X3, X4, X5, X6( , (4)

X″ � ReLU BN F Concat X0, Xneigh″    , (5)

Gn � GCN Gn−1, wn−1(  + Gn−1, (6)

where F(·) represents a linear transformation using the fully
connected network and then a nonlinear transformation

through ReLU(·), MaxPooling(·) represents global max
pooling, Concat(·) represents feature concatenation, and
BN(·) represents batch normalization. GCN(·) represents a
convolution operation for each vertex in the graph according
to formulas (3)–(5). wn−1 represents the training parameters
of the convolution operation in layer n − 1.

3.5. Global Average Pooling and Classification. After n it-
erations in order to update the initial graph, the graph
after fusion information is finally obtained. )e infor-
mation of all vertices is merged into a one-dimensional
feature vector through global average pooling, which is
used as the input of the fully connected layer in the entire
network. Finally, the network model achieves classifi-
cation training using the softmax and cross-entropy loss
functions.

4. Results and Discussion

4.1. Datasets. In this study, two datasets were used to
evaluate the performance of the method, namely, the public
dataset BraTS2020 and the private dataset Glio-
maHPPH2018 that were collected from the Henan Pro-
vincial People’s hospital. Figure 3 shows image examples of
the two datasets. )e specific details of the two datasets are
described as follows.

BraTS2020: this dataset contains multiparametric glioma
MRI data [35], and it is a public dataset that is widely used in
glioma image analysis. )is dataset was acquired with dif-
ferent clinical protocols and various scanners from multiple
institutions. It contains 369 samples (293 HGG and 76
LGG). In our experiment, it was randomly shuffled into
three subsets by the patient: 60% for training, 20% for
validation, and 20% for testing.

GliomaHPPH2018: this dataset is derived from the
PACS system of Henan Provincial People’s Hospital
(Henan, China) between 2012 and 2018. It contains 232
samples (157 HGG and 75 LGG). )is study was approved
by the local ethics committee. Given the retrospective
nature of the study and the anonymity of patient data, the
requirement for written informed consent was waived.
Similarly, the GliomaHPPH2018 dataset was randomly
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Figure 1: Overview of the proposed framework.
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shuffled into three subsets by the patient: 60% for training,
20% for validation, and 20% for testing.

Lastly, all data met the following criteria: (1) preop-
erative images were obtained, including T1CE, T1, T2, and
FLAIR sequences; (2) the histopathological examination
and grading of gliomas were in accordance with WHO
criteria.

4.2. Experimental Setting. First, the slices obtained from
different CNN models have different feature dimensions. To
unify the input information dimensionality of the MMIF-
GCN module and reduce the number of model parameters,
we set the features of mpMRI slices to 200 through the
encoder, that is, Xi ∈ R200.)e number of iterations for each
graph is 4 (i.e., G0⟶ G4).

Matrix Size: 240*240*155
Slice Trickness: 1 mm

T1CE T1 T2 FLAIR

BraTS2020
(n=369)

GliomaHPPH2018
(n=232)

Matrix Size: 320*320*18
Slice Trickness: 6 mm

Figure 3: Image examples of 4-sequence MRI from BraTS2020 and GliomaHPPH2018 datasets.
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Figure 2: )e process of graph convolution operation.
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)e proposed model is implemented using PyTorch [36]
and the DGL [37] framework and runs on GeForce RTX
2080Ti GPU with 12GB memory. In our experiment, the
batch size is set to 16, and the initial learning rate is set to
5×10−6. When the network performance is not improved
within 10 epochs, the learning rate is reduced by half. In
addition, we adjust the size of the original image to
224× 224. During training, we use the Adam optimizer to
train 200 epochs through the cross-entropy loss function.

4.3. Effectiveness of Information Fusion Using MMIF-GCN.
)is study uses accuracy and the area under the receiver
operating characteristic curve (AUC) as evaluation indices
to compare the classification performance of different
models. )e experiment was carried out based on the MRI
data with 4 different parameters from the BraTS2020 and
GliomaHPPH2018 datasets. )e effectiveness of the pro-
posed method in the fusion of MRI slice context information
and MRI complementary information of different imaging
parameters is verified.

To demonstrate the effectiveness of graph convolution
methods in helping common CNN models to fuse con-
textual information, this study compares the tumor
grading performance of common CNN models for each
parameter MRI and the performance of GCN as a con-
textual information fusion module. )e experimental
results are shown in Table 1. We found that all CNN
models can use GCN to fuse MRI slice context infor-
mation to improve the classification performance of the
model. At the same time, we compared the performance of
the context information fusion method based on graph
convolution and 3D convolution, as shown in Table 2. To
eliminate the influence of network structure on model

performance, we uniformly choose CNN that is based on
the ResNet framework as the training model to compare
performances. )e experimental results show that the
contextual information fusion method based on graph
convolution has more potential to improve the classifi-
cation performance of the model for different parameters
MRI.

In addition, Table 1 shows that our proposed MMIF-
GCN can simultaneously fuse slice context information and
MRI complementary information for different imaging
parameters, as well as improve the performance of common
CNN models in glioma grading tasks. Similarly, Table 3
shows the performance of our MMIF-GCN method and the
other two models that can simultaneously fuse different
parameters MRI complementary information and slice
context information. )e experimental procedures of these
twomethods are shown in Figure 4. N(1) represents a glioma
grading model that uses 3D convolution to fuse context
information and concatenates feature information to fuse
complementary MRI information with different parameters.
N(2) represents a model built by fusing each parameter MRI
with graph convolution to fuse context information and,
then, concatenate the final features to fuse multiparametric
MRI information. )e results indicate that our proposed
MMIF-GCNmodule can fuse better the grading information
in mpMRI of glioma patients, as well as predict better the
tumor grade of patients. We speculate that this is due to the
well-designed MMIF-GCN fusion method, which adds
learnable nonlinear representation to each 2D mpMRI in-
formation fusion process, while considering the context
information. )erefore, the effect is better than directly
concatenating and analyzing the information of MRI with
different parameters. )is result is similar to the conclusion
of the study carried out by Ye et al. [19].

Table 1: Demonstration of the graph convolution module can fuse contextual information in MRI with different imaging parameters to
improve the performance of the CNN models.

Dataset Method
GoogLeNet-
Inceptionv3 EfficientNet-b3 ResNet-34 AlexNet VGGNet-16

AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

BraTS2020

T1CE 0.911 0.893 0.921 0.893 0.932 0.907 0.910 0.880 0.915 0.867
G-TICE 0.931 0.907 0.936 0.920 0.946 0.920 0.943 0.907 0.947 0.893

T1 0.851 0.813 0.884 0.867 0.896 0.840 0.804 0.800 0.854 0.827
G-T1 0.860 0.853 0.896 0.880 0.906 0.853 0.816 0.827 0.863 0.853
T2 0.893 0.867 0.892 0.853 0.849 0.840 0.867 0.853 0.876 0.840

G-T2 0.904 0.893 0.904 0.893 0.873 0.880 0.886 0.880 0.903 0.880
FLAIR 0.897 0.827 0.885 0.853 0.894 0.853 0.802 0.827 0.889 0.840

G-FLAIR 0.911 0.867 0.905 0.867 0.908 0.867 0.834 0.840 0.915 0.867
MMIF-GCN 0.963 0.920 0.974 0.933 0.986 0.947 0.954 0.933 0.974 0.920

GliomaHPPH2018

T1CE 0.810 0.787 0.952 0.851 0.842 0.787 0.802 0.809 0.867 0.787
G-TICE 0.904 0.851 0.965 0.894 0.900 0.830 0.846 0.830 0.929 0.872

T1 0.898 0.872 0.923 0.872 0.921 0.894 0.729 0.766 0.933 0.872
G-T1 0.913 0.894 0.942 0.915 0.962 0.915 0.821 0.830 0.942 0.936
T2 0.692 0.766 0.798 0.745 0.729 0.745 0.629 0.660 0.856 0.766

G-T2 0.769 0.787 0.856 0.851 0.813 0.787 0.731 0.809 0.863 0.830
FLAIR 0.873 0.809 0.967 0.872 0.931 0.872 0.838 0.766 0.879 0.851

G-FLAIR 0.890 0.830 0.973 0.915 0.942 0.894 0.846 0.809 0.896 0.872
MMIF-GCN 0.960 0.936 1.000 0.979 0.996 0.979 0.881 0.851 0.979 0.957

Note. G means to fuse context information with GCN. )e results of our study are shown in bold.
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4.4. Ablation Studies. In this section, we evaluate the impact
of parameters on grading results based on two aspects, that
is, the vertex feature dimensionality of GCN and the number
of graph iterations that are described as follows:

Vertex feature dimensions of GCN: the model needs
to select the smallest feature dimensionality to accurately
express the information of the original feature. After

fixing other parameters, we set a series of different vertex
feature dimensions for the MMIF-GCN (i.e., {50, 100,
200, 300}) to evaluate the performance separately. As
shown in Figure 5, when the vertex feature dimension-
ality is set to 200, our proposed MMIF-GCN achieves the
best performance on both datasets and each network
framework.

Table 2: Demonstration of the context information fusion method based on graph convolution and 3D convolution.

Dataset Method
T1CE T1 T2 FLAIR

AUC ACC AUC ACC AUC ACC AUC ACC

BraTS2020
2D-ResNet 0.932 0.907 0.896 0.840 0.849 0.840 0.894 0.853
3D-ResNet 0.939 0.920 0.905 0.853 0.860 0.880 0.853 0.867

G-2D-ResNet 0.946 0.920 0.906 0.853 0.873 0.880 0.908 0.867

GliomaHPPH2018
2D-ResNet 0.842 0.787 0.921 0.894 0.729 0.745 0.931 0.872
3D-ResNet 0.844 0.809 0.960 0.894 0.750 0.766 0.923 0.872

G-2D-ResNet 0.900 0.830 0.962 0.915 0.813 0.787 0.942 0.894

Table 3: )e performance of three methods of fusing mpMRI context and multiparameter information in two different datasets is
compared.

Dataset Method
Base-ResNet

AUC ACC

BraTS2020
N(1) 0.949 0.920
N(2) 0.970 0.920

MMIF-GCN 0.986 0.947

GliomaHPPH2018
N(1) 0.965 0.894
N(2) 0.969 0.936

MMIF-GCN 0.996 0.979
)e results of our study are shown in bold.
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Figure 4: Methodology for realizing mpMRI context and multiparameter information fusion simultaneously. (a) N(1). (b) N(2).
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)e number of iterations of GCN in the graph is an
important issue in the GCN-related research. )us, it is
necessary to ensure effective information interaction but also
prevent the smoothness of multiple iterations. In our ex-
periment, we set the number of iterations of GCN in the
graph to m, where m ∈ [2, 5]. As shown in Figure 6, after
4-layer GCN iterations and fusion of information, our
proposed MMIF-GCN module achieved the best perfor-
mance on both datasets and each network framework.

5. Conclusions

In this study, we propose a novel GCN-based mpMRI in-
formation fusion module, named MMIF-GCN. With this
module, an effective fusion of contextual information
extracted from 2D mpMRI slices can be accomplished, and
enhanced glioma grading performance can be achieved.
Extensive experiments on two datasets utilizing multiple
baseline CNN models have been conducted, and the ef-
fectiveness of the proposed method for the information
fusion of mpMRI data has been properly validated.

)ere are several limitations to our study. In terms of
clinical problems, only glioma grading was studied. In
further studies, we will try to apply the MMIF-GCNmethod
to the aided diagnosis analysis in 3D multiparameter

medical images of other diseases to further verify the ef-
fectiveness of the proposed method. Methodologically, this
study was limited to the fusion of features extracted from 2D
CNN models. In the future, we will try to add the 2D slice
features extracted by the radiomics method for feature
fusion.
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Figure 5: Classification accuracy of the validation set under different CNN models and vertex feature dimensionality of GCN. (a)
BraTS2020 dataset. (b) GliomaHPPH2018 dataset.
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Figure 6: Classification accuracy of the validation set under different CNN models and GCN iterations. (a) BraTS2020 dataset. (b)
GliomaHPPH2018 dataset.
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