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Simple Summary: Melanoma is a deadly skin cancer, and the incidence of melanoma is rising.
Chemoprevention, using small molecule drugs to prevent the development of cancer, is a key strategy
that could reduce the burden of melanoma on society. The long-term goal of our study is to develop
a gene signature biomarker of progression from nevi to melanoma. We found that a small number
of genes can distinguish nevi from melanoma and identified shared genes and immune-related
pathways that are associated with progression from nevi to melanoma across independent datasets.
This study demonstrates (1) a novel approach to aid melanoma chemoprevention trials by using
a gene signature as a surrogate endpoint and (2) the feasibility of determining a gene signature
biomarker of melanoma progression.

Abstract: There is a need to identify molecular biomarkers of melanoma progression to assist
the development of chemoprevention strategies to lower melanoma incidence. Using datasets
containing gene expression for dysplastic nevi and melanoma or melanoma arising in a nevus, we
performed differential gene expression analysis and regularized regression models to identify genes
and pathways that were associated with progression from nevi to melanoma. A small number of genes
distinguished nevi from melanoma. Differential expression of seven genes was identified between
nevi and melanoma in three independent datasets. C1QB, CXCL9, CXCL10, DFNA5 (GSDME),
FCGR1B, and PRAME were increased in melanoma, and SCGB1D2 was decreased in melanoma,
compared to dysplastic nevi or nevi that progressed to melanoma. Further supporting an association
with melanomagenesis, these genes demonstrated a linear change in expression from benign nevi to
dysplastic nevi to radial growth phase melanoma to vertical growth phase melanoma. The genes
associated with melanoma progression showed significant enrichment of multiple pathways related
to the immune system. This study demonstrates (1) a novel application of bioinformatic approaches
to aid clinical trials of melanoma chemoprevention and (2) the feasibility of determining a gene
signature biomarker of melanomagenesis.

Keywords: melanoma; dysplastic nevi; molecular biomarkers

1. Introduction

Melanoma is the sixth most common cancer in both men and women in the US.
The vast majority of melanoma cases are cutaneous malignant melanoma (CMM). Solar
ultraviolet radiation (UVR) exposure remains the major environmental risk factor for
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developing CMM. Despite public health initiatives that have promoted sun protection, the
incidence of CMM continues to increase, with much of the increased incidence driven by
thin CMM [1,2]. According to recent predictions from the American Cancer Society, an
estimated 106,110 new cases of invasive melanoma and 101,280 cases of melanoma in situ
will be diagnosed in the US in 2021 [3]. Despite recent advances in targeted therapies as
well as immunotherapies, 7180 melanoma-related deaths are estimated for 2021 [3]. The
increasing incidence of CMM, poor prognosis, and societal cost in treating advanced stages
support the investigation of novel approaches to prevention such as chemoprevention.

To date, limited early phase clinical trials have been conducted to evaluate potential
chemopreventive agents for melanoma prevention (reviewed by [4]). In these trials, the
chemopreventive effects are often evaluated in individuals with clinically atypical or
histopathologically dysplastic nevi (DN), because several lines of evidence support the
notion that DN are markers of increased risk for CMM and could be potential precursors
of CMM. The presence of one or more atypical or DN, or 25 or more benign nevi (BN),
are clinical risk factors for the development of CMM [5]. About 26% of all invasive CMM
contain histologic features of nevus [6]. In this study, we term the nevus portion of a CMM
arising in the context of a nevus as progressing nevi (PN) for nevi known to progress to
melanoma. These findings support the relevance of investigating DN and PN lesions, in
comparison to CMM, to identify genes associated with progression towards CMM.

Early phase clinical trials have included clinical and histologic changes of DN as early
efficacy biomarkers, but failed to demonstrate any changes in these endpoints [7–9]. How-
ever, it is not known whether the clinical and histologic features of DN can be modulated
with the limited intervention duration in the setting of early phase trials. In addition, the
few selected molecular biomarkers included in the prior trials had only putative associ-
ations with the degree of dysplasia [7,9]. Thus, developing molecular biomarkers of the
progression toward melanoma to assess the early efficacy of a candidate agent represents
an important area of research in the clinical development of chemopreventive agents for
melanoma prevention.

In this study, we sought to determine the changes in gene expression associated with
melanoma progression, using three publicly available datasets with gene expression data
for DN, PN, and CMM. Differential gene expression analysis and regularized regression
models identified genes that distinguished nevi (both DN and PN) from CMM across
multiple datasets. The genes identified in this study have known expression and functions
consistent with a role in melanoma progression, supporting the feasibility of this approach
to create a gene signature biomarker of melanoma progression to assist clinical trials of
putative chemopreventive agents.

2. Materials and Methods
2.1. Data Acquisition and Processing

Three publicly available datasets containing gene expression data, including DN or
PN and CMM, were obtained using the data accession numbers presented in Table 1, briefly
the Krueger dataset, the Scatolini dataset, and the Bastian dataset. These datasets were
identified by searching the dbGaP and GEO databases for datasets including both CMM
and DN or PN with expression data from microarrays or RNA sequencing (RNAseq). In
the Krueger dataset, BN included congenital, compound, intradermal, and junctional nevi;
DN included compound nevi with moderate or severe atypia; and CMM included invasive
melanoma with a Breslow depth between 0.4 and 6.7 mm [10,11]. However, annotations
were not provided for the subset of lesions with publicly available data. The samples were
selected from frozen sections of the tumor. In the Scatolini dataset, the BN characteristics
were not specified, the DN included both low- and high-grade atypia, and the CMM
samples included both melanoma in situ and invasive melanoma. Scatolini further divided
their CMM into radial growth phase melanoma (RGM), defined as Clark level I and II, and
vertical growth phase melanoma (VGM), defined as Clark level III, IV, and V. For BN, DN
and RGM, the area representative of the lesion was selected from the fresh, excisional biopsy,
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and for VGM, the specimen was limited to the dermal portion [12]. In the Bastian dataset,
formalin-fixed paraffin-embedded samples of CMM arising in the context of a nevus were
manually microdissected with a scalpel under a dissecting microscope. We refer to the
nevus portion as PN and invasive melanoma portion as CMM [13,14].

Table 1. Three available datasets with dysplastic or progressing nevi and melanoma.

Lesion Types 1 (n) Sample Type Relationship Data Type Data Access References

BN (5), DN (7),
CMM (16) Frozen sections

Independent
samples

1-channel
microarray GSE114445

Krueger:
Mitsui et al., 2016 [10]

Yan et al., 2019 [11]

BN (18), DN (11),
RGM (8), VGM (15)

Fresh biopsy (VGM
limited to

dermal portion)

Independent
samples

2-channel
microarray GSE12391 Scatolini et al. 2010 [12]

PN (17), CMM (20)
Manual

microdissection of
FFPE sections

Paired lesions RNAseq phs001550.v2.pl
Bastian:

Shain et al., 2015 [13]
Shain et al., 2018 [14]

1 Benign nevi (BN), dysplastic nevi (DN), cutaneous malignant melanoma (CMM), progressing nevi (PN), radial
growth phase melanoma (RGM), vertical growth phase melanoma (VGM).

The two microarray datasets (Krueger and Scatolini) were obtained as pre-processed
expression values. Probe names for both datasets were converted to gene names using the
DAVID Web Services to ensure that the annotations for each dataset were consistent with the
official gene names and up-to-date gene mappings for each probe [15]. Only probes with an
existing, gene-level annotation in DAVID were considered in the analyses. Multiple probes for
the same gene were averaged to obtain gene-level data. These analyses were repeated with a
probe-level approach and resulted in similar sets of differentially expressed genes.

Krueger and colleagues performed quality control, assessed for spatial artifacts, pro-
cessed the data, and provided the log2 GCRMA expression values [11], where probe
intensities were normalized using the GCRMA method [16]. Genes were included for
differential expression analysis with a log2 GCRMA expression cutoff of at least five
GCRMA-normalized expression units. For the Krueger dataset, the BN and DN samples
were analyzed on a different date from the CMM samples. The batch effects could con-
found the comparison between BN/DN and CMM samples. Instead, this study focused on
substantiating these genes through their overlap with genes that were identified in the two
other independent datasets.

Scatolini and colleagues performed quality control and processing and provided the
log10 of the red to green signal ratio [12]. Signal was obtained in comparison to a universal
human reference (BD™ Human Universal Reference Total RNA, Clontech, Palo Alto, CA,
USA). These values were changed to log2 for the differential gene expression analysis. Genes
were included for differential expression analysis with an absolute log2 red to green signal
ratio cutoff of at least one. The distribution of the log2 GCRMA values was compared to the
log2 red to green ratio, and a lower expression cutoff was used for the two-channel data given
the lower range in expression values compared to the one-channel microarray data.

The RNAseq dataset from Bastian and colleagues was obtained as raw FASTQ files [13].
We used FastQC version 0.11.5 to assess the FASTQ quality (https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/). Trimming was performed using TRIMMOMATIC Illu-
minaClip with the following parameters: seed mismatches 2, palindrome clip threshold 30,
simple clip threshold 10, leading quality value 10, trailing quality value 10, sliding window
size 4, minimum window quality 15, and minimum read length of 50 [17]. Quality was then
re-visualized after trimming (Supplementary Figure S1). Read mapping was performed
with Salmon version 0.11.3 [18]. Short sequencing reads from the X and Y chromosomes
may mismap due to the high degree of sequence homology. To account for this mismap-
ping, female samples were mapped to the GENCODE GRCh38 reference genome with the
Y-chromosome hard-masked, and male samples were mapped to the GRCH38 reference
genome with the Y-chromosomal pseudo-autosomal regions hard-masked [19,20]. Raw

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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read counts were summed across all transcripts of the same gene to give a gene-level
expression, and genes were only included if they had a known gene-level annotation. Gene
expression data were filtered to retain only genes with greater than five reads in at least one
sample. The untransformed read counts were then log10 counts per million transformed
via the voom function [21] from the limma [22] in Bioconductor in R [23] to normalize the
variance across expression values.

2.2. Differential Expression Analysis

Multidimensional scaling and differential expression were implemented using the
limma package for each dataset independently. The final number of genes assessed for
each dataset was 16,649 for Krueger, 16,003 for Scatolini, and 19,323 for Bastian. A total of
11,009 genes were shared across all three datasets. The discrepancy in the genes present in
the resulting lists is primarily caused by genes that are filtered out by low expression in
each dataset. A design matrix was created with lesion type as the predictor value and used
to fit the linear model for differential gene expression in each dataset. A linear mixed effects
model, which accounts for within-subject correlation, was performed at the gene level using
the duplicateCorrelation function for the Bastian dataset. Linear predictors from pairwise
comparisons were compared using empirical Bayes statistics with the eBayes function.
Genes were considered to be significantly differentially expressed if they had a Benjamini–
Hochberg-adjusted p-value of less than 0.05, corresponding to a 5% false discovery rate
(FDR), and an absolute log2 fold change (log2(FC)) greater than 1.5. Overlapping gene lists
were compiled for genes that were significantly differentially expressed with estimated fold
changes in the same direction (e.g., up- or down-regulated) in at least two of the following
comparisons: DN vs. CMM (Krueger), DN vs. VGM (Scatolini), or PN vs. CMM (Bastian).

2.3. Regularized Regression Analysis

An elastic net, regularized regression model [24,25] was fit for each dataset using the
glmnet package in R [26]. Models with greater than two groups were fit using a grouped
multinomial regression, whereas those with two groups were fit with a binomial regres-
sion. Principal components analysis was performed on the selected genes to allow for
visualization as a biplot.

The binomial and multinomial regression models were fit with the assumption of
independence between the lesions. One difference in the Bastian binomial regression model
is that the PN and CMM included in this dataset are microdissected from a single lesion.
While the paired samples are adjusted for in the differential expression analysis, the PN
and CMM are treated as two independent groups for the purpose of fitting the regularized
regression model. This could introduce a bias into the analysis as it is not directly equivalent
to the analysis performed on the Krueger and Scatolini datasets. However, given that the
PN and CMM are microdissected from the same lesions, genes that can differentiate these
lesions are expected to limit noise and provide a conservative estimate of the changes that
occur in melanoma progression.

2.4. Assessment of Progression of Genes

Seven genes (CXCL9, CXCL10, FCGR1B, DFNA5, C1QA, PRAME, and SCGB1D2)
were selected for further analysis because they were significant (absolute log2(FC) greater
than or equal to 1.5 and p-value less than 0.05) in the Krueger, Bastian, and Scatolini datasets.
We visualized the trajectory of expression across lesion types of these seven genes in the
Scatolini dataset. The lesion type was presumed to be an ordinal variable where BN = 1,
DN = 2, RGM = 3, and VGM = 4. A linear regression was fit between the lesion type and
the expression value of each gene independently.

2.5. Reactome Over-Representation Analysis

Genes were included in the over-representation analysis if they fit one of the following
criteria: (1) selected as one of the top ten differentially expressed genes in a single dataset,
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(2) selected as a gene in the binomial regression models for each dataset, or (3) selected as
an overlapping, significantly differentially expressed gene for any two of the three datasets.
This list was analyzed with the Reactome over-representation analysis, which performs
a statistical (hypergeometric distribution) analysis to determine if there are more genes in
a given pathway than would be expected by chance. Pathways were included in the final
pathway diagram if they had a Benjamini–Hochberg-adjusted p-value of less than 0.05,
corresponding to an FDR of less than 5%.

All of the analyses described here can be reproduced by the code available at: https:
//github.com/ElizabethBorden/Melanoma_Progression_Gene_Analysis.

3. Results
3.1. Top Ten Differentially Expressed Genes Differentiate Nevi and Melanoma

Differential expression analysis was performed for each of the pairwise compar-
isons from the three available datasets. Within the Krueger dataset, 96 genes were sig-
nificantly differentially expressed between BN and CMM and 37 genes were signifi-
cantly differentially expressed between DN and CMM (Supplementary Figure S2A). In
the Scatolini dataset, 84 genes were significantly differentially expressed between BN
and VGM and 83 genes were significantly differentially expressed between DN and
VGM (Supplementary Figure S2B). In the Bastian dataset, 1855 genes were differentially
expressed between PN and CMM (Supplementary Figure S2C). There were no signifi-
cantly differentially expressed genes between the BN and DN for Krueger or Scatolini
(Supplementary Figure S2A,B). This finding is consistent with the fact that BN and DN are
known to be more similar to each other than to CMM. Additionally, the lack of differential
expression for the BN vs. DN comparison is consistent across both the Krueger and Sca-
tolini datasets, suggesting that the finding is not a feature of the individual datasets. There
were also no significantly differentially expressed genes for DN vs. RGM or BN vs. RGM in
the Scatolini dataset (Supplementary Figure S2). A difference in sample collection method
may contribute to the greater number of differences between DN and VGM compared
to DN and RGM. While the area representative of the lesion was selected from the fresh,
excisional biopsy for the BN, DN, and RGM, only the dermal portion was used for the
VGM specimen. Complete lists of the differentially expressed genes for every comparison
are included in Supplementary Tables S1–S3. Overall, the differential expression analysis
highlights the genetic differences that exist between nevi and CMM.

To demonstrate whether a small number of genes has the potential to distinguish nevi
and melanoma, we tested the ability of the top ten differentially expressed genes to differen-
tiate melanocytic lesions. The top ten differentially expressed genes from any comparison in
each dataset were selected based on the lowest Benjamini–Hochberg-adjusted p-values and
analyzed with both hierarchical clustering and principal components analysis (Figure 1).
For the Krueger dataset, there was clear separation between BN, DN, and CMM, with more
separation between DN and CMM than BN and DN (Figure 1A,B). For the Scatolini dataset,
there was the greatest degree of separation for the VGM, with a large degree of overlap for
the BN, DN, and RGM (Figure 1C,D). For the Bastian dataset, there was clear separation
between the PN and CMM with the ten selected genes (Figure 1E,F). The gene DFNA5 was
found to be upregulated in CMM in the top ten differentially expressed genes for both the
Krueger and Scatolini datasets. These findings demonstrate the potential to identify genetic
differences between nevi and CMM, and specifically highlight the potential for a small
number of genes to accurately differentiate nevi from CMM.

https://github.com/ElizabethBorden/Melanoma_Progression_Gene_Analysis
https://github.com/ElizabethBorden/Melanoma_Progression_Gene_Analysis
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Figure 1. Top ten differentially expressed genes differentiate nevi and melanoma. Differentially
expressed genes from each of the pairwise comparisons between the lesions were ranked based
on Benjamini–Hochberg-adjusted p-values (absolute log2(FC) ≥ 1.5; Benjamini–Hochberg-adjusted
p-value < 0.05; False discovery rate = 5%). Hierarchical clustered heatmap and principal components
analysis with the top ten differentially expressed genes for (A,B) benign nevi (BN), dysplastic nevi
(DN), and cutaneous malignant melanoma (CMM) in the Krueger dataset; (C,D) BN, DN, radial
growth phase melanoma (RGM), and vertical growth phase melanoma (VGM) in the Scatolini dataset;
and (E,F) progressing nevi (PN) and CMM for the Bastian dataset. FC, fold change.



Cancers 2022, 14, 3 7 of 21

3.2. Regularized Regression Models Differentiate Nevi and Melanoma

To isolate the genes best able to predict the different lesion types in melanoma pro-
gression, regularized regression models were applied. Multinomial regularized regression
models were used to study the comparison of BN, DN, and CMM in the Krueger dataset
(Figure 2A, Supplementary Table S4) and the comparison of BN, DN, RGM, and VGM in the
Scatolini dataset (Figure 2B, Supplementary Table S5). In the Krueger dataset, the multinomial
regularized regression model was able to classify BN, DN, and CMM lesions. In the Scatolini
dataset, the regularized regression differentiated DN, and VGM well, but did not show much
differentiation between the BN, DN, and RGM. To focus the modeling on identifying genes
that predict progression from nevi to melanoma, binomial regression models for DN or PN
and melanoma were fit for all three datasets. VGM samples were used for the Scatolini dataset
since the RGM included Clark level I samples, which are melanoma in situ, and Clark level
II samples, which are microinvasive melanoma, so VGM was thought to be more similar
to the CMM from the other datasets. Additionally, there were no significantly differentially
expressed genes between DN and RGM. All three datasets showed separation of the nevi
and melanoma (DN vs. CMM for Krueger, DN vs. VGM for Scatolini, and PN vs. CMM
for Bastian) based on a small number of genes (Figure 2C–E, Supplementary Tables S6–S8).
There were no overlapping genes selected in the binomial and multinomial regression models.
These findings demonstrate that a small number of genes selected by regularized regression
models differentiate nevi and melanoma.
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Figure 2. Regularized regression models differentiate nevi and melanoma. Multinomial regression
models for (A) benign nevi (BN) vs. dysplastic nevi (DN) vs. cutaneous malignant melanoma (CMM)
in the Krueger dataset and (B) BN vs. DN vs. radial growth phase melanoma (RGM) vs. vertical
growth phase melanoma (VGM) in the Scatolini dataset. Binomial regression models for (C) DN vs.
CMM in the Krueger dataset, (D) DN vs. VGM in the Scatolini dataset, and (E) progressing nevi (PN)
vs. CMM in the Bastian dataset.
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3.3. Differentially Expressed Genes between Stages of Melanoma Progression Overlap between
Multiple Datasets

To identify genes with the potential to distinguish DN or PN from CMM, we isolated
those genes that were significantly differentially expressed in a consistent direction across
the DN or PN to CMM comparisons in multiple datasets. There were ten genes in common
between the DN vs. CMM from the Krueger dataset and the DN vs. VGM from the Scatolini
dataset (Figure 3A), 13 genes in common between the DN vs. CMM from the Krueger
dataset and the PN vs. CMM from the Bastian dataset (Figure 3B), and 26 overlapping
genes between the DN vs. VGM in the Scatolini dataset and the PN vs. CMM in the
Bastian dataset (Figure 3C). Seven genes were found to be in common across all three
datasets—CXCL9, CXCL10, FCGR1B, DFNA5, C1QB, PRAME, and SCGB1D2. These are
genes of particular interest for a gene signature of progression from nevi to CMM, given
that they are consistent across all three datasets.

To further substantiate the association of these genes with melanoma progression, the
expression of each of the genes identified across the three datasets was compared to the
lesion types from the Scatolini dataset, since the Scatolini dataset had the greatest number
of lesion types between BN and invasive melanoma (BN, DN, RGM, and VGM). All seven
genes tested showed a significant correlation with the progression from BN to DN to RGM
to VGM (Figure 4A–E). Melanomagenesis is explained through a linear model under the
assumption that the relationship between each pair of lesion subtypes is the same, resulting
in a single coefficient that describes the increasing trajectory in progression. CXCL9 showed
the greatest degree of change across the lesion types with a linear regression coefficient of
1.06. CXCL10, FCGR1B, DFNA5, C1QB, and PRAME also showed positive associations
with progression, with coefficients of 0.82, 0.79, 0.65, 0.59, and 0.56, respectively. SCGB1D2
showed a decrease in expression with melanoma progression with a coefficient of −0.32,
consistent with a prior study [27]. The change in expression of these genes among lesions
in the spectrum of melanoma progression provides additional evidence that these genes
are strong candidates for indicating melanoma progression.

3.4. Genes Associated with Melanoma Progression Show Significant Enrichment of Multiple
Pathways Related to the Immune System

To assess the broader biological implications of the genes associated with melanoma
progression from each analysis, over-representation analysis was performed with Reactome
to identify the pathways over-represented or enriched in this gene set (Figure 5). All
genes included in the Reactome analysis are listed in Supplementary Table S9. There was
significant enrichment of genes in multiple immune-related pathways, including chemokine
receptors bind chemokines, interleukin (IL)-10 signaling, IL-4 and IL-13 signaling, metal
sequestration by antimicrobial proteins, cytokine signaling in immune system, signaling
by interleukins, and immune system. Smaller sets of genes were related to the regulation
of insulin-like growth factor transport and uptake by insulin-like growth factor binding
proteins (IGFBP), post-translational protein phosphorylation, and activation of matrix
metalloproteinases. Five out of the seven significantly differentially expressed genes in
all three datasets fell under one of these significantly enriched pathways. The two genes
that did not, PRAME and SCGB1D2, are not annotated in the Reactome database. The
Reactome enrichment analysis was also performed with a more conservative set of genes
that included only those genes that were significantly differentially expressed in at least two
datasets. All of the pathways identified with the full set were also significantly enriched
in the reduced set except for post-translational protein phosphorylation. Overall, these
results indicate that, in addition to overlapping genes selected across the datasets, there are
overlapping pathways that are modulated in melanomagenesis, most notably, immune-
related pathways.
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Figure 3. Differentially expressed genes between nevi and melanoma overlap between multiple
datasets. Overlapping, significantly differentially expressed genes between (A) dysplastic nevi (DN)
vs. cutaneous malignant melanoma (CMM) in the Krueger dataset and DN vs. vertical growth phase
melanoma (VGM) in the Scatolini dataset, (B) DN vs. CMM in the Krueger dataset and progressing
nevi (PN) vs. CMM in the Bastian dataset, and (C) DN vs. VGM in the Scatolini dataset and PN
vs. CMM in the Bastian dataset. The bars represent the log2(FC) of the gene in each dataset. Genes
with a log2(FC) above zero are upregulated in melanoma, and genes with a log2(FC) below zero are
upregulated in nevi. Genes were overlapping if they had an absolute log2(FC) ≥ 1.5, a Benjamini–
Hochberg-adjusted p-value < 0.05, and the log2(FC) was in the same direction for both datasets.
Genes that were significant across all three datasets are highlighted in yellow. FC, fold change.
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the linear regression is included in the red text. p-values indicate the significance of the association between the lesion type 

Figure 4. Linear change in expression of CXCL9, CXCL10, FCGR1B, DFNA5, C1QB, PRAME, and
SCGB1D2 across lesions in the spectrum of melanoma progression. Linear regression between lesion
type and indicated gene expression in the Scatolini dataset. (A) CXCL9, (B) CXCL10, (C) FCGR1B,
(D) DFNA5, (E) C1QB, (F) PRAME, and (G) SCGB1D2. The bold line in the box plot indicates the
median; the upper and lower limits of the boxes indicate the 75th and 25th percentiles, respectively.
The lower and upper whiskers indicate the minimum and maximum. Dots outside of the box and
whiskers indicate outliers. The red line demonstrates the linear model fit between lesion type and
gene expression; the equation of the linear regression is included in the red text. p-values indicate
the significance of the association between the lesion type and expression of the gene of interest.
BN, benign nevi; DN, dysplastic nevi; RGM, radial growth phase melanoma; VGM, vertical growth
phase melanoma.
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Figure 5. Genes associated with melanoma progression show significant enrichment of multiple
pathways related to the immune system. Pathway enrichment was performed using Reactome’s
over-representation analysis on a combination of genes identified by the following analyses: (1) top
ten differentially expressed gene in melanoma progression in at least one dataset (Figure 1); (2) gene
identified in at least one binomial regression model distinguishing nevi vs. cutaneous malignant
melanoma (CMM) (Figure 2C–E); and (3) a significantly differentially expressed gene between nevi
and CMM in at least two datasets (Figure 3). Genes colored in red and bolded represent genes that
were differentially expressed between nevi and CMM in at least two datasets (Figure 3). A pathway
was considered to be enriched if it had a Benjamini–Hochberg-adjusted p-value < 0.05 (corresponding
to a false discovery rate < 5%). The eleven significantly enriched pathways identified are each
represented as a circle, with nested circles indicating pathways that are subsets of one another. IL-10,
interleukin-10, IL-4, interleukin-4, IL-13, interleukin-13.

4. Discussion

There is a paucity of studies investigating the gene signatures associated with the
progression from DN and PN to CMM. Differential gene expression analysis identified
shared changes in gene expression and pathways from nevi to CMM across three datasets.
Seven genes were consistently, differentially expressed between DN or PN and CMM
across each of the three datasets: C1QB, CXCL9, CXCL10, DFNA5, FCGR1B, PRAME, and
SCGB1D2. In addition to having consistent up or downregulation from nevi to CMM, these
genes demonstrated linear change from BN to DN to RGM to VGM. Thus, these genes
represent the top candidates for a gene signature indicating progression from nevi to CMM,
based on our analyses.

The significantly, differentially expressed genes and genes selected in binomial regression
models between nevi and CMM demonstrate a striking enrichment in immune system-related
pathways. Given the immune system’s ability to sense dangerous changes within the body,
the immune system is well positioned to detect and react to the progression from nevus to
CMM. Thus, the enrichment in immune-related pathways distinguishing nevi from CMM is
not surprising. Given possible opposing functions of the same gene depending on which cell
type it is expressed in, complexities of each pathway, and the interplay of numerous pathways,
it is not possible to extrapolate whether these changes in gene expression result in an overall
immune-activating or immunosuppressive environment. It is also important to note that
many of these genes also have functions outside of the immune system and the cell of origin
is not known in the bulk RNAseq or microarray data. Our study demonstrates an association
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of changes in immune-related pathways with the progression from nevi to CMM. Many of
the enriched pathways are related to chemokines and cytokines, which are responsible for cell
signaling and communication in the immune system.

Many genes in the significantly enriched pathways have been previously associated
with cancer. A review of prior literature on these genes is provided in Table 2, where studies
in melanoma were prioritized and studies in other cancers were included where studies in
melanoma were unavailable. The genes from the pathway analysis can be broadly divided
into immune- and non-immune-related genes. Within the immune-related genes, enriched
pathways were identified for chemokines, peptide ligand-binding receptors, various in-
terleukin signaling pathways, cytokines, and metal sequestering antimicrobial peptides.
Within the cluster for chemokines and peptide ligand-binding receptors, CXCL8, CXCL9,
and CXCL10 have been previously shown to have increased expression in CMM compared
to nevi, in agreement with our study [28–30]. CXCL8, CXCL9, CXCL10, CCL27, and C3AR1
have known immunomodulatory roles in melanoma [31–36]. In the interleukin-4 and
interleukin-13 signaling pathway, CXCL8 and MMP3 have published roles in melanoma
growth and metastasis [33–35,37]. Within the cytokine signaling pathway, GBP5 and
KPNA2 have known roles in the immunomodulation and progression of melanoma, respec-
tively [38–41]. Additionally, GZMB-expressing cells are increased in DN (severe atypia)
and CMM compared with BN and DN (mild atypia) [42]. Within the metal sequestra-
tion by the antimicrobial peptides pathway, the S100 family genes S100A7, S100A8, and
S100A9 have been linked to tumor growth and metastasis in multiple cancers, including
melanoma [43,44]. These genes are distinct from S100B, which is used in the diagnosis of
melanoma by immunohistochemistry. Within the immune system broadly, a large number
of genes were identified with known roles in cancer, including AIM2 [45], C1QA [46], and
DFNA5 (also known as GSDME) [47], which have been identified to have a mechanistic
role in melanoma tumor growth. Additionally, our study identified genes without reported
expression in CMM and nevi or biological function related to melanoma progression, in-
cluding CCL3L3, NPY1R, IL11A, FCGR1B, OAS2, ASB11, FCGR3A, and GLA. Overall, our
study has identified many immune genes that are known to be associated with melanoma
progression and new genes of interest that are likely associated with melanoma progression.

In addition to the immune pathways that show enrichment during the progression of
melanoma, clusters of genes were also identified for post-translational phosphorylation, reg-
ulation of insulin-like growth factor transport, and activation of matrix metalloproteinases.
The genes in matrix metalloproteinases are also contained in immune-related pathways
and are not separated out here. Genes in the regulation of the insulin-like growth factor
transport pathway have known functions in cancer proliferation and migration, including
IGFBP5 [48], PRSS23 [49,50], SCG2 [51,52], and SPP1 [53,54]. The enriched genes in the
non-immune pathways have roles in cell proliferation and migration, and the differential
gene expression observed in CMM is consistent with their known function.
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Table 2. Summary of the reported expression and function of the genes identified in the pathway analysis.

Gene
Datasets *

Direction Reported Expression and Function
K S B

Chemokines Bind Chemokine Receptors

CXCL8 ↑CMM
Protein expression increased in CMM vs. nevi by IHC [28,29]
Promotes melanoma progression and metastasis [33–35]

CXCL9
CXCL10

↑CMM

CXCL9 and CXCL10 increased gene expression in CMM vs. BN by qRT-PCR [30]
CXCL9 and CXCL10 in gene signature that differentiates BN and CMM [55–57]
CXCL9 increased gene expression in melanoma metastases vs. BN [58]
CXCL9 and CXCL10 recruits CXCR3-expressing effector T cells and natural
killer cells into melanoma [59]
CXCL10 binds CXCR3 on tumor cells to promote metastases [36]

CCL27 ↓CMM Recruits T cells in melanoma mouse model [32]
Peptide Ligand-Binding Receptors

C3AR1 ↑CMM Increases melanoma tumor growth by inhibiting neutrophil and CD4+ T cell
responses [31]

IL-4 and IL-13 Signaling Pathways
GATA3 ↓CMM Stabilizes HIF-1α to enhance cancer invasiveness under hypoxic conditions [60]

MMP3 ↑CMM
Protein expressed in CMM lesions, but not normal skin, by IHC and IF [61]
Promotes melanoma tumor growth and metastasis [37]

MMP13 ↑CMM Protein expression in some CMM cases, absent in BN, by IHC [62]
VIM ↓CMM Protein uniformly expressed in BN and CMM melanocytes by IF [63]

Cytokine Signaling

GZMB ↑CMM Increased GZMB-expressing cells in DN (severe atypia) and CMM vs. BN and
DN (mild atypia) by IHC [42]

FCGR1B ↑CMM Induced by interferon-γ [64,65]

GBP5 ↑CMM

Induced by interferon-γ and type 1 interferons
Stimulates assembly of NLRP3 inflammasome [39], which expands
myeloid-derived suppressor cells in melanoma leading to immunosuppression
and increased tumor growth [40]

KPNA2 ↑CMM Promotes proliferation, migration, and invasion in melanoma cells [38,41]

OAS2 ↑CMM
Induced by type 1 interferons and important in anti-viral immune response
Gene expression induced by UVB in human primary melanocytes (qRT-PCR) [66]

Metal Sequestration by Antimicrobial Peptides

S100A7
S100A8
S100A9

↑CMM

S100A7, S100A8, and S100A9 increased gene expression in CMM vs. BN by
qRT-PCR [55–57]
S100A7, S100A8, and S100A9 in gene signature that differentiates BN and
CMM [55–57]
S100A7, S100A8, and S100A9 linked to tumor growth and metastasis in multiple
cancers [43]
S100A9 promotes migration and metastasis of EMMPRIN-expressing melanoma
cells [44]

Immune System

AIM2 ↑CMM Expression in dendritic cells promotes immunosuppressive tumor
microenvironment and increased melanoma tumor growth [45]

ASB11 ↓CMM Downregulated by DNA damage, stabilizes pro-apoptotic protein BIK, which
increases apoptosis [67]

C1QA ↑CMM C1q protein (composed of C1QA, C1QB, and C1QC) expressed by mesenchymal
cells and immune cells in melanoma by IHC [46]
C1qa-/- mice have slower melanoma tumor growth, prolonged survival,
decreased tumor angiogenesis, and decreased lung metastasis [46]
C1q from non-bone marrow-derived cells promotes accelerated melanoma
tumor growth [46]
C1q promotes cell adhesion, migration, and proliferation of melanoma cells [46]

C1QB ↑CMM

DFNA5/
GSDME

↑CMM

Gene expression increased in CMM vs. normal skin by RNAseq [68]
Included in pyroptosis-related gene signature for BN vs. CMM [68]
Triggers pyroptosis and apoptosis [47]
Deficiency in melanoma cells increases in vitro and in vivo tumor growth [47]
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Table 2. Cont.

Gene
Datasets *

Direction Reported Expression and Function
K S B

CHIT1 ↑CMM

Produced by macrophages stimulated by interferon-γ and tumor necrosis
factor-α [69]
Increases transforming growth factor-β SMAD signaling [69], which plays role
in melanoma metastasis [70] and angiogenesis in various cancers [71]

CTSB ↑CMM Involved in metastasis [72,73], angiogenesis, and invasion of tumor cells,
including melanoma [74–76]

FCGR3A ↑CMM Expressed on subset of natural killer cells [77]
Mediates antibody-dependent cell-mediated cytotoxicity [77]

GLA ↓CMM Patients with GLA deficiency possibly have increased rate of melanoma [78]

KLRD1 ↑CMM
Protein expressed on tumor infiltrating lymphocytes in CMM by IHC [79]
Regulates natural killer cell cytotoxicity [79]

PYGL ↓CMM

Differentially expressed in BN with and without V600E BRAF mutation by
microarray [80]
Involved in glycogen metabolism, which regulates inflammatory responses and
tumorigenesis [81–83]

RNF182 ↑CMM Suppresses Toll-like receptor-triggered immune response and decreases
production of proinflammatory cytokines [84]

TREM2 ↑CMM
Encodes for innate immune receptor on tumor infiltrating myeloid cells [85]
TREM2 deletion decreases immunosuppressive regulatory myeloid cells within
tumors, which decreases exhausted CD8+ T cell subsets and tumor growth [86]

Regulation of Insulin-like Growth Factor Transport and Uptake by Insulin-like Growth Factor Binding Proteins
IGFBP4 ↑CMM Protein expressed in CMM by IHC [87]

IGFBP5 ↓CMM

Gene and protein expression increased in CMM vs. nevi by qRT-PCR and IHC [48]
Gene expression increased in metastatic melanoma vs. BN by RNAseq [58]
Overexpression inhibits in vitro proliferation, migration, invasion, epithelial to
mesenchymal transition, and in vivo tumor growth and metastasis of melanoma
cell lines [48]

PRSS23 ↑CMM Knockdown decreases cancer cell proliferation in breast and gastric cancer [49,50]

SCG2 ↑CMM

Gene expression increased in VGM and metastatic melanoma vs. normal skin,
BN, and melanoma in situ by microarray [27]
Increases migration of melanoma cells [52]
Plays role in chemoattraction and migration [51]

SPP1 ↑CMM

Increased expression in CMM vs. BN across 5 studies (RNAseq, microarray,
IHC) [58,88–91]
Included in 5 protein assay that distinguishes BN vs. CMM by IHC [89]
SPP1 treatment increases melanoma cell migration, invasion, and proliferation [54]
SPP1 knockdown decreased in vitro and in vivo proliferation, migration, and
invasion of melanoma cells [53]

* K, Krueger; S, Scatolini; B, Bastian; IF, immunofluorescence; IHC, immunohistochemistry; qRT-PCR, quantitative
reverse transcription polymerase chain reaction; RNAseq, RNA sequencing.

Clinical tests that distinguish nevi from CMM include genes identified in our analyses:
PRAME, CXCL9, CXCL10, S100A7, S100A8, and S100A9. While PRAME was not identified
in the pathway analysis, because PRAME is not annotated in the Reactome database,
we found that PRAME RNA expression was increased in CMM compared to nevi in
each of the three datasets. PReferentially expressed Antigen in MElanoma (PRAME)
expression is known to be increased in melanoma compared to nevi by microarray, RT-PCR,
and immunohistochemistry [11,88,92]. Our findings are consistent with a prior study
identifying PRAME protein expression in a portion of melanocytes in a minority of BN
and DN and diffuse expression in melanoma cells in CMM [92]. In support of the utility
of PRAME gene expression as a biomarker of melanoma progression, the Pigmented
Lesion Assay uses the expression of two genes (PRAME and LINC00518) to differentiate
clinically atypical nevi from CMM [93,94]. Similarly, we found LINC00518 expression was
significantly higher for CMM than BN and DN in the Krueger dataset and significantly
higher for VGM compared to RGM in the Scatolini dataset. The myPath Melanoma Test
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utilizes the expression of 14 signature genes, including PRAME, CXCL9, CXCL10, S100A7,
S100A8, and S100A9, and nine reference genes to distinguish BN from CMM [55–57]. Thus,
the association of PRAME, CXCL9, CXCL10, S100A7, S100A8, and S100A9 with melanoma
progression is supported by prior studies and commercially available clinical tests.

This study successfully demonstrated a set of seven genes that are candidates for a gene
signature for melanoma progression. Not only did these seven genes show consistency across
three independent datasets, but their expression also showed a linear, correlative relationship
with melanomagenesis through progression from BN to DN to RGM to VGM subtypes. De-
spite these successes, the primary limitation of this study was the inability to generate a gene
signature biomarker for progression across datasets. Methods of biomarker development
can be differentiated from hypothesis testing (i.e., differentially expressed genes) in both
variable selection (genes selected) and variable reduction (linear combination); methods of
biomarker development do not use test statistics or p-values. As previously shown, there is no
unique (one-to-one) correspondence (mathematically) between estimates used in hypothesis
testing (e.g., means, fold-change, odds ratios) and measures of prediction (sensitivity, speci-
ficity) [95]. Because of the differences in hypothesis testing and biomarker development, the
seven differentially expressed genes do not represent a gene signature biomarker. There are
multiple contributory factors that might have impacted the ability to generate a gene signature
biomarker, the most obvious of which are the small sample sizes and different technologies
used to evaluate gene expression. The impact of different technologies can be lessened by
standardizing data either in a similar fashion (as carried out in this manuscript) or standardiz-
ing across studies, which is only possible when study inclusion/exclusion and sample process
are equivalent across studies. Other known considerations for the development of biomarker
signatures include other REMARK criteria [96], including patient-level characteristics; prior
treatments; and study design differences. Another limitation of this study includes that CMM
subtype and thickness were not available in the datasets used, and thus, were not accounted
for in this analysis.

A potentially successful approach for the development of a melanoma progression
biomarker signature, from a design perspective, would be retrospective use of a completed
clinical trial or convenience sample with a follow-on measure of features/genes utilizing
a prospective-specimen-collection, retrospective-blinded-evaluation (PRoBE) design [95].
This approach can be tied to a level-of-evidence described by Simon et.al. [97] when using
archived samples for this purpose; success in accurately predicting progression from
prospective sample collection is the highest level of evidence afforded prognostic and
predictive biomarkers. Biomarker signatures are generally summarized using linear or
non-linear combinations of the chosen features/genes that reduce the dimensionality and
create a single qualitative or quantitative score. These signatures can include a combination
of clinical and molecular features or the molecular features alone, i.e., the Oncotype Dx
Recurrence Score® Test. In order to be approved in a clinical setting, these scores are
necessarily qualitative to remove subjectivity of their application. Performance metrics
for biomarker signatures are typically based on predictive capacity (AUC, Brier score,
misclassification rate) in an independent study sample, often called the “test sample”
after being developed (or “trained”) in an independent set of samples. The accuracy of a
prognostic signature, in our case one that describes melanoma progression, will ultimately
need to be performed prospectively with the goal of clinical utility. Clinical utility can be
demonstrated by classification accuracy, e.g., accurately identify “at risk” individuals with
melanoma progression. Additionally, statistical decision theory allows for simultaneous
evaluation of statistical predictive performance of the biomarker signature as well as clinical
usefulness, described by patient-level benefit of early detection [97].

Given the success and limitations of the analysis of the publicly available data, the
best practices for early biomarker development should include evaluation of the optimal
criteria for sample procurement. For example, prospective sample procurement should
limit nuisance variation (variation that is not of clinical interest), by restricting sample
procurement based on the clinical need to identify a biomarker that distinguishes nevi from
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early CMM. Two considerations include CMM subtype and thickness. The association of
superficial spreading melanoma with DN is higher than other CMM subtypes, with 18–32%
of superficial spreading melanomas arising in the context of DN [98–100]. Patients with
DN are more likely to have a prior diagnosis of superficial spreading melanoma compared
with nodular melanoma [101]. In addition, the association of CMM with DN is higher
in thin CMM [100,101], which represents early disease. Analysis of the seven genes that
were differentially expressed between nevi and CMM revealed consistent directionality
between BN and thin CMM (<0.8 mm Breslow depth) in an independent dataset from Kunz
and colleagues [102]; although, one gene, SCGB1D2, was no longer statistically significant
due to high variance (data not shown). These results support that these genes may be
differentially expressed between nevi and early CMM. To generate a gene signature, future
prospective studies should focus on the comparison between DN and thin, superficial
spreading CMM.

5. Conclusions

Given the need to identify a gene signature biomarker of melanoma progression, we
undertook differential gene expression analysis and regularized regression modeling of
three publicly available datasets to identify genes associated with the progression from
nevi to CMM. In each of the three datasets, the expression of six genes, C1QB, CXCL9,
CXCL10, DFNA5, FCGR1B, and PRAME, was increased in CMM compared to DN or PN,
and the expression of SCGB1D2 was decreased in CMM compared to DN or PN. The
genes identified that distinguish nevi and CMM show significant enrichment in multiple
immune system-related pathways. The biological significance of many of the genes iden-
tified in this study is supported by prior studies demonstrating increased expression in
melanoma and/or functions consistent with melanoma progression. This study demon-
strates (1) a novel application of bioinformatic approaches to aid clinical trials of melanoma
prevention strategies and (2) the feasibility of determining a gene signature biomarker of
melanoma progression in a clinically annotated convenience or retrospectively selected set
of samples, with a prospective study follow-on for clinical utility evaluation.
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