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Abstract: Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid, noteworthy for its involvement
both in the modulation of various biological processes and in the development of many diseases.
S1P signaling can be either pro or anti-inflammatory, and the sphingosine kinase (SphK)–S1P–S1P
receptor (S1PR) axis is a factor in accelerating the growth of several cells, including endometriotic
cells and fibrosis. Gynecologic disorders, including endometriosis, adenomyosis, and uterine fibroids
are characterized by inflammation and fibrosis. S1P signaling and metabolism have been shown
to be dysregulated in those disorders and they are likely implicated in their pathogenesis and
pathophysiology. Enzymes responsible for inactivating S1P are the most affected by the dysregulation
of S1P balanced levels, thus causing accumulation of sphingolipids within these cells and tissues.
The present review highlights the past and latest evidence on the role played by the S1P pathways in
common gynecologic disorders (GDs). Furthermore, it discusses potential future approaches in the
regulation of this signaling pathway that could represent an innovative and promising therapeutical
target, also for ovarian cancer treatment.

Keywords: endometriosis; adenomyosis; uterine fibroids; ovarian cancer; sphingosine 1-phosphate
pathway; S1P receptor modulators

1. Introduction

Inflammation and fibrosis are common features in gynecological pathologies such as
endometriosis, adenomyosis, and uterine fibroids.

Sphingosine 1-phosphate (S1P) is a circulating sphingolipid, which originates from
sphyngomyelin catabolism [1]. S1P is formed intracellularly by sphingosine kinase (SK);
when exported, it acts through G protein-coupled S1P receptors (S1PRs), which medi-
ate the majority of S1P actions. The metabolism of S1P is impaired in endometriosis and
adenomyosis, with a significant remodeling of S1PR expression. In fact, S1P has a role in me-
diating the profibrotic action of transforming growth factor β (TGFβ1) [2] initially formed,
at the site of inflammation, via monocytes and lymphocytes. TGFβ1 stimulates a profibro-
genic phenotype with the formation of an extracellular matrix by myofibroblasts that are
non-muscle contractile cells triggered in response to injury. Epithelial-to-mesenchymal tran-
sition (EMT) and resident fibroblast differentiation into myofibroblasts are the mechanisms
which have been suggested to justify the presence of myofibroblasts at the endometriotic
lesion level [2]. The S1P pathway and metabolism are also dysregulated in uterine fibroids
and in cultures of human leiomyoma cells, inducing the expression of fibrotic markers [3].
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In this pathology, similar to TGF-β1, activin A, beside its profibrotic role, thanks to a
functional crosstalk with S1P, may promote the fibrotic phenotype [4]. Furthermore, S1P
is abnormally produced in ovarian cancer patients, and it may promote the migration,
consequent invasion, and the growth of cancer cells as well as tumor angiogenesis, all three
processes in which S1P is involved [5]. For this reason, S1P could become a likely molecular
target for ovarian cancer treatment.

This comprehensive review aims at exploring various and distinctive perspectives of
the relationship between S1P and these common gynecologic disorders (GDs), considers the
underlying processes and complex interactions, and sheds light on the role of S1P in their
clinical consequences. Lastly, we will discuss new and previously established diagnostic
and therapeutic consequences tailored to the context of this relationship.

2. Sphingosine 1-Phosphate

S1P is a lipid second messenger, formed by the metabolism of sphingomyelin, in-
volved in the regulation of an array of cellular responses, ranging from proliferation, to
differentiation, to migration, and cellular survival [6,7]. S1P is generated inside the cells
through the ATP-dependent phosphorylation of sphingosine and by the sphingosine ki-
nases (SphK1 and SphK2) isoenzymes [8]. Being isoenzymes, they promote the catalysis
of the same reaction, but they differ in their substrate affinity, tissue allocation, and lo-
calization inside the cell. While SphK1 is present, under physiological conditions, in the
cytoplasm and then, once activated, it is transferred to the plasma membrane. SphK2 is
located inside the nucleus. Even though the two isoenzymes show high homology, they
have different functions. In fact, SphK1 displays pro-survival actions, whereas SphK2 has a
pro-apoptotic purpose [9]. Different enzymes control the intracellular S1P concentration,
mainly SphKs (for its production), sphingosine phosphatase (SPP), and sphingosine lyase
(SPL) (for its degradation); more importantly, their ratio is accurately regulated [10]. While
SPP dephosphorylates and re-transforms S1P into sphingosine, SPL is able to metabolize it
to hexadecenal and phosphoethanolamine, which are then used for the de novo synthesis
of phosphatidylethanolamine [10].

After its production, S1P can play its role either as an intracellular messenger, or in
paracrine/autocrine pathways, by binding to its membrane receptors 1–5 (S1PR1–5). Once
exported to plasma or lymph, S1P may propagate the signals [11]. In fact, among all cell
types, only blood cells (erythrocytes and platelets) and endothelial cells (vascular and
lymphatic) are able to release and export S1P into plasma where, due to their nature, they
are bound to proteins (mainly serum albumin) and lipoproteins (primarily high-density
lipoproteins) [12]. Human plasma concentrations of S1P average 191–711 nM, whilst on
the contrary, tissues and cells comprise only low S1P levels [13]. S1P signaling can be
either pro or anti-inflammatory, depending on the background and the tissue source, due
to the extensive expression of S1P and S1PRs, which are ubiquitously expressed in different
tissues [14]. Growing experimental evidence has shown that S1P is a key molecule that
controls different physiological processes, vital for both normal and pathological condi-
tions, including fibrosis (such as fibrosis of lung, heart, skeletal muscles, liver, and kidney),
multiple sclerosis (MS), cardiovascular diseases (CVDs) [7], and some forms of cancer [15]
(Figure 1). Similarly, the SphKs–S1P–S1PRs pathway plays a role in increased endometriotic
cell growth. Mainly, S1P promotes fibrosis in various cells, such as macrophages, fibrob-
lasts [16,17], and skeletal muscle precursors [18], by acting together with other compounds,
such as pro-inflammatory cytokines such as tumor necrosis factor α (TNF-α) [19], which
in turn stimulate the synthesis of interleukin-1β (IL-1β) and TGF-β in various cells [3].
According to these findings, the regulation of S1P signaling could represent a possible
novel therapeutic target [20]. As S1P is implicated in several immune functions, treatments
focused on the S1P pathway may also be used to handle autoimmune diseases other than
MS [11]. Lastly, therapies targeting S1P and S1P signaling pathways may also be used to
treat other different immune-mediated conditions (such as post-stroke or post-infectious)
and inflammatory diseases beyond their application in different autoimmune disorders [21].
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apoptosis or proliferation. S1P can also be exported and can bind S1P receptors in autocrine or
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many normal and pathophysiological processes.

Given the well-known role of the SphK–S1P signaling axis in many diseases, SphK
inhibitors, S1P receptor antagonists, and S1P-blocking antibodies can be used as promising
candidates in therapy. In spite of a high level of interest in this field worldwide, few
inhibitory compounds have been tested so far. The first FDA-approved S1PR-targeted drug
was fingolimod (FTY720) a therapeutic agent in MS. It is an antagonist of S1PR1 expressed
on lymphocytes, able to reduce their migration into the CNS, thereby diminishing disease
evolution [7]. Fingolimod can cause adverse side effects since it can interact with other
S1PRs, different from S1PR1, which are expressed in various tissues, including cardiac
myocytes. Nowadays, many clinical trials are in progress to validate the efficacy of the
next generation of S1PR-targeted compounds. Siponimod, one of these molecules, also
efficacious in MS, is a selective S1PR1 and S1PR5 antagonist, which achieved FDA approval
in 2019 [22,23]. At the moment, more studies with longer follow-up are required to evaluate
its benefit and to observe long-term undesirable effects.

Concerning the endothelium, S1PR1-biased agonists may have vascular protective
actions in dysmetabolic conditions such as diabetes and metabolic and cardiovascular
diseases. S1PR1 degradation may cause endothelial positive effects such as NO synthesis,
augmented barrier function, and endothelial cell survival, thereby preserving the vascu-
lature [24]. Other S1PRs have been targeted by small antagonists in in vivo and in vitro
models of inflammation and fibrosis [25,26].

Taking into account the crucial role of SphK/S1P in cancer evolution, and despite a
wealth of literature, to date, no SphK/S1P inhibitor has been employed for cancer therapy.
This could be due to the fact that cancer is a multifaceted disease that involves impairments
in multiple systems. For this reason, even after the blockade of the SphK–S1P axis, cancer
cells may still survive because of other pathways that can evade its inhibition [27,28].

Investigations on sphingolipids and hence its metabolites Sph and S1P have in recent
years expanded greatly; therefore, they should be taken into consideration as likely new
biomarkers for autoimmune or inflammatory conditions as well as for benign or malignant
tumors [29], but more research would benefit from greater attention by researchers and
should be implemented.

3. S1P Pathway and Common Gynecologic Disorders (GDs)
3.1. S1P and Endometriosis

Endometriosis is characterized by the presence of endometrial glands, and stroma in
ectopic sites, predominantly the ovaries, pelvic peritoneum, and rectovaginal septum. It
affects up to 6–10% of women in their prime reproductive age and it may cause dysmenor-
rhea, dyspareunia, irregular uterine bleeding, chronic pelvic pain, and/or infertility [30].
Nowadays, endometriosis is under-diagnosed, and it takes a long time for a diagnosis to
be made [31]. This pathology is a debilitating condition, causing a significantly low quality
of life (QoL) for individuals who are affected by it [32]. The capability of endometrial cells
to survive, multiply, and form ectopic endometrial tissues and stroma might be influenced
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by hormonal factors, altered immunological factors, and genetic factors [33]. Endometri-
otic tissue’s eutopic endometrium shows a decreased expression of 17-β hydroxysteroid
dehydrogenase (17βHSD) type 2 as well as an increased expression of the aromatase en-
zymes [34]. Hence, a robust increase in the locally bioavailable estradiol level can be
considered as a hallmark of the disease. Prostaglandin E2 production is stimulated by
estradiol, and this leads to the stimulation of aromatase activity, thus providing a promising
therapeutic target [35]. Furthermore, evidence has highlighted a profile of progesterone
resistance along with estrogen dependence in the physiopathology of endometriosis [36,37].
Endometriotic lesions showed an overall decrease in progesterone receptor expression,
dependent on eutopic endometrium, and an absence of progesterone receptor-β [38]. In
the luteal phase, a dysregulation of progesterone responsive genesis is noticeable when
analyzing endometrial expression [39,40]. A not complete shift of the endometrium from
the proliferative to secretory phase has substantial molecular implications for improving the
survival and implantation of refluxed endometrium [41]. Mechanisms such as angiogenesis,
inosculation, and vasculogenesis may contribute to the vascularization of endometriotic
lesions [42]. Hypoxia is mainly responsible for the genesis of a new microvascular network,
which is modulated by several pro- and anti-angiogenic factors [43]. Among them, S1P,
acting as a pro-angiogenic factor, seems to play a major role in vascular growth thanks to
the activation of SPHK1 by different stimuli such as VEGF, which induces endothelial cell
growth [44]. S1P is highly concentrated in the peritoneal cavity, and it increases during
menstruation because of menstrual blood reflux. Actually, S1P, derived from erythrocytes
during embryogenesis, is essential for the growth of the vascular system and then in the
postnatal period, both erythrocytes and the endothelium release S1P into the blood stream
in order to preserve vascular homeostasis [45].

As endometriosis is recognized as an inflammatory pathology, and growing evidence
has suggested that S1P is implicated in inflammatory diseases, the role of the S1P system
has been investigated in the progress of endometriosis. For this purpose, studies by
Rudzitis-Auth et al., showed that the S1P/SphK1 signaling pathway is implicated in
the pathogenesis of endometriosis, as it promotes the establishment and progression of
endometriotic lesions [46]. In fact, to achieve their scope, the authors used a recognized
mouse model of endometriosis and by the use of SphK1-5C, the specific SphK1 inhibitor,
the growth and vascularization of endometriotic lesions was prevented [46].

In accordance with these results, Yoshino et al. in vivo demonstrated that the SphK–
S1P–S1PR axis takes part in accelerating the inflammation and growth of endometriotic
cells [47] basing their experiments on human cystic fluid of ovarian cysts/tumors and
human endometriotic stromal cells (ESC) derived from endometrioma. S1P levels in
the cystic fluid of endometriomas appeared to be significantly greater compared to its
concentration in nonendometriomas. The same authors also showed that a high amount of
S1P (125 nM) was able to increase the ESC cell number by 20%, whereas a low amount of S1P
(1.25 nM and 12.5 nM) was able to induce IL-6 mRNA production and IL-6 secretion by ESC,
dose-dependently [47]. Furthermore, Bernacchioni et al., through studies on an epithelial-
to-mesenchymal transition (EMT) model of uterine adenocarcinoma cells, demonstrated
that the S1P signaling axis is profoundly altered in endometriosis. In addition, they showed
that S1P is able to mediate the capacity of TGFβ1 to promote fibrosis and EMT markers [2].

These data support the assumption that chronic inflammatory conditions, such as
in endometriosis, correlated with increased levels of TGF-β, and related growth factors,
could alter S1P metabolism and signaling, thus underlining a possible implication of the
bioactive sphingolipid in the pathogenesis, as well as in the pathophysiology, of the disease.
Therefore, in this context, the S1P pathway may be considered a powerful biomarker for
endometriosis and beneficial for diagnostic and therapeutic purposes [2]. Furthermore,
experiments by Ono et al. demonstrated that S1P stimulation in human intra-peritoneal
macrophages (MΦ) determined an increased expression of IL-6 and COX-2, also causing
an extension in the lesion size with CD206+ M2 MΦ. M2 MΦ has already been proven
to contribute to angiogenesis through the production of TGF-β1, thus leading to the
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worsening of endometriosis. The excessive presence of COX-2 expressing MΦ, in patients
with endometriosis, might prevent the deletion of refluxed menstrual blood, which causes
high S1P levels during the non-menstrual phase [48]. Taken all together, these results
revealed that MΦ, in patients with endometriosis, could be stuck in a “vicious cycle”
since the phagocytosis of MΦ is decreased because of the increased expression of COX-2.
However, the overexpression of COX-2 is caused by S1P stimulation and elevated S1P
levels, in the peritoneal cavity, are attributable to the decreased phagocytosis. Therefore,
breaking up this cycle (i.e., by reducing S1P levels via inhibition/neutralization of SK)
could be a potential therapeutic target. Meanwhile, a confirmatory in vivo study indicated
that administration of S1P increased the dimension of the endometriotic-like lesion in a
mouse model of endometriosis [48].

S1P is also known to stimulate the proliferation of endometriotic cells through the over-
expression of the pro-inflammatory cytokine IL-6, related to the formation of endometriotic
lesions [49]. Moreover, in endometriotic lesions, the expression of various enzymes, such as
SphKs, SPP able to dephosphorylate the compound, and SPL able to definitively degrade
it, involved in the cellular conservation of balanced S1P amounts, are shown to be dysreg-
ulated [50] with a concomitant accumulation of sphingolipids within the cells. Since S1P
operates as a chemoattractant for endothelial cells through the S1P1 receptor, by guiding
cells out of tissues, where S1P concentration is relatively low, into circulatory fluids, where
its concentration is elevated, it stimulates cell proliferation as well as cell migration [51].

Currently, the emerging biological understanding, both on humans and on animal
models, is under evaluation in order to assess how to target the SphK1/S1P/S1PRs signal,
since S1P was found to possess a very short half-life, ranging from 1 to 15 min according to
the studies [52,53]. These data indicate that while S1P is quickly eliminated from circulation
by degradative enzymes, it is just as rapidly formed to maintain its high plasma concentra-
tion.

The opportunities for therapeutic application comprise antagonists, S1P transporter
modulators, compounds able to inactivate key enzymes involved in S1P biosynthesis,
biased receptor agonists, and ligand neutralization molecules. Nonetheless, these encour-
aging candidates for endometriosis treatment have to be proven to be safe and to have an
acceptable range of side effects [7].

3.2. S1P and Adenomyosis

Adenomyosis is another benign gynecologic condition that, contrariwise to endometrio-
sis, is identified by ectopic endometrial tissue within the uterine myometrium. Women
suffering from adenomyosis may have abnormal uterine bleeding (AUB), dysmenorrhea,
dyspareunia, or infertility, but one third of them are still asymptomatic [54]. For this reason,
the disease prevalence is unclear, though recent data suggest a prevalence ranging from
20% to 35% [55]. For its management, so far there are no international guidelines to follow,
and this is of extreme importance as the disease requires a lifelong management plan,
including bleeding and pain control, fertility maintenance, and pregnancy outcome [56].
Adenomyosis often co-occurs with other gynecological pathologies, such as endometriosis
and uterine fibroids [57].

To date, the pathogenic mechanisms involved in adenomyosis need to be fully eluci-
dated, but in the last few years, numerous studies have shown that sex steroid hormone
receptors, inflammatory molecules, extracellular matrix enzymes, growth, and neuroan-
giogenic factors are fundamental in its development [54]. As described for endometriosis,
also in adenomyosis the S1P signaling axis shows profound dysregulation. So far, only one
paper has been published on this issue showing that the S1P bioactive lipid could be impli-
cated in the fibrotic signature typical of the disease [58], with an increased expression of
S1P receptor S1P3, and a lower expression of mRNA levels, when compared with a healthy
endometrium. In addition, the same authors demonstrated a correlation with actin-alpha-2
smooth muscle (coded by ACTA2 gene) expression, a gene required in fibrogenesis [58].
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These preliminary data suggest that the S1P pathway could be a possible innovative target
for future adenomyosis therapy.

3.3. S1P and Uterine Fibroids

Uterine leiomyomas, commonly known as uterine fibroids, are the most typical benign
tumor of the uterus, affecting reproductive-age women, with a prevalence estimated at
4.5–68.6% [59]. Irregular and excessive menstrual bleeding, with secondary anemia, pelvic
pain, and pressure are recurrent symptoms associated with uterine leiomyomas; an in-
crease in obstetric complications is also described in affected women. Uterine fibroids stem
from the myometrial smooth muscle cells of the uterus and are delineated by excessive
deposition of extracellular matrix (ECM) proteins, including collagens, fibronectin, and
proteoglycans that identify fibrosis, as well as very high levels of inflammatory media-
tors such as cytokines and chemokines [60,61]; thereby, they are also defined as fibrotic
disease [62,63].

An uncommon myofibroblast and stem cell activation, along with an irregular fibrino-
genesis and inflammatory response, may determine uterine fibroids [64]. Progenitor cells
(PCs) obtained from uterine leiomyomas and normal myometrium were demonstrated to
secrete different amounts of cytokines implicated in acute and chronic inflammation [65];
specifically, upregulation of the latter cytokines evince an imbalance that could stimulate
a microenvironment suitable for uterine leiomyoma onset and growth. In a recent study,
Lazzarini et al. supported the hypothesis that fibroids result from changes occurring
in PCs [66], as only 15 out of 2646 microRNAs (miRNAs) are differentially regulated in
the normal myometrium and leiomyoma and they are implicated in seven dysregulated
pathways. Symptoms such as abnormal bleeding, pelvic pressure, and pain are due to an
overproduction of ECM that causes rigidity of the structure [67,68].

Accumulating evidence has indicated that Activin A, a new protein with features in
wound repair, fibrosis, cell proliferation, differentiation, apoptosis, and metabolism, is one
of the TGF-β that is overexpressed in uterine fibroids, and it also participates in critical
pathologic processes that contribute to fibrosis [69]. Activin A plays a major role in the
induction of fibrotic phenotypes in uterine fibroid cells [70].

To reinforce these findings, Bernacchioni et al. [3] demonstrated that SphK1 and
SphK2 mRNA levels were significantly higher in uterine fibroids than in adjacent healthy
endometrial tissues. Furthermore, they showed that activin A mRNA levels were higher
in uterine fibroids compared to adjacent myometrial explants. Similarly, S1PR2, S1PR3,
and S1PR5 mRNA levels were significantly higher in uterine fibroids in comparison with
myometrial healthy tissues; both S1PR2 and S1PR3 protein levels were also elevated in the
leiomyoma. These results suggest that S1P signal dysregulation is detectable in uterine
fibroids [3]. Moreover, the fibrotic roles of S1P signaling were tested in uterine fibroids and
myometrial cells. The results indicated that S1P significantly enhanced mRNA expression
of ECM proteins, collagen, and fibronectin in fibroid cells, but not in myometrial cells [3].
Lastly, S1P was also able to increase mRNA expression of profibrotic growth factor activin
A in fibroid cells, at least in part, by overexpressing activin A [3].

Indeed, some therapies for the management of fibroid-related symptoms have been
approved but they are not free from side effects, and they have not been approved for long-
term use in some patients. As mentioned previously, inhibitors of the SphK/S1P/SP1R
signaling pathway are effective in many human and animal models, and the results herein
summarized show a role of S1P and its signaling axis in fibrotic process of leiomyoma and
suggest its potential role as target of fibromatosis and therapy [3,4].

3.4. S1P and Other Gynecological Diseases

Growing evidence also supports the important role of S1P in reproductive functions
and fertility. S1P and other phospholipid-derived mediators seem to play a role in en-
dometrial receptiveness, embryonic spacing, and decidualization based on animal and
human studies.
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Regarding ovarian cells, S1P synthesis is involved in follicular health [71], in ovulation
and the development of corpus luteum [72], and the synthesis of sexual steroids [73]. Hex-
ogen S1P administration seems to protect ovarian cells from either irradiation or cytotoxic
drugs used to treat cancer [74], albeit the deletion of SIP receptors (i.e., S1PR2 or S1PR3)
negatively affects fertility [75], suggesting a pivotal role in follicular function preservation.
S1P appears to be an essential stimulator in the preantral and antral phase of follicular
development, as well as during ovulation and corpus luteum development. Lack of S1P
synthesis, as well as its overproduction, may be implicated in ovarian hyperstimulation
syndrome (OHSS) [5].

Bioactive sphingolipids are also known to play an important role in the develop-
ment, progression, and metastasization of cancer; in particular, S1P is able to regulate cell
growth [76] and cell trafficking [11] and suppresses apoptosis [77]; thereby, it might play a
pivotal role in cancer and gynecological neoplasia. Overexpression of SphK1 is effective
in promotion, while its inhibition reduces tumor growth, angiogenesis, and chemoresis-
tance in various xenograft models [1]. Going into more detail, the S1P/SphK1 pathway is
involved in the main mechanisms favoring oncogenesis, as well as promoting cell survival,
proliferation, and transformation, apoptosis prevention, and angiogenesis stimulation [78].
Regarding endometrial carcinoma, Knapp et al. [78] showed that it is characterized by
profound changes in the sphingolipid metabolism that might contribute to its progression
and chemoresistance. Sphingolipid metabolism in the human endometrial carcinoma is
significantly up-regulated in comparison with a healthy endometrium. High levels of S1P
are found in endometrial carcinoma, resulting from both the activation of SphK1 and the
abundance of its substrate, sphingosine, and there is evidence that SphK1 inhibitors reduce
cell proliferation and tumor growth both in vitro and in vivo [79]. From experiments by Dai
et al. [80], we became aware that SphK1/S1P/S1PR1/3 signaling plays an important role
in ovarian cancer angiogenesis and the stoppage of this pathway could significantly inhibit
the process. It has already been shown that levels of SphK1 are significantly increased in
ovarian cancer tissue [81]. In addition, plasma S1P levels were found to be elevated in
patients with ovarian cancer and decreased following removal of the tumor [82]. More-
over, SphK1, but not SphK2, expression levels were demonstrated to be correlated with
microvascular density (MVD) of ovarian cancer tissue; the angiogenic potential and the
angiogenic factor secretion of ovarian cancer cells could be mitigated by SphK1 blockage
and were shown to be restored by adding S1P [80]. Indeed, S1P induced the angiogenic
factor expression via S1PR1 and S1PR3 in ovarian cancer cells; in fact, blocking SphK or
S1PR1/3 might functionally inhibit ovarian cancer angiogenesis. It can thus be assumed
that either S1P or S1PR1/3 are responsible for the production of the angiogenic factor and
the angiogenic potential of ovarian cancer: S1P and S1PR1/3 antagonists (i.e., SphKI-II
and VPC23019, respectively) could block, or at least attenuate, the pro-angiogenic effects of
both of them [80].

4. Conclusions

S1P is a bioactive sphingolipid metabolite that plays a crucial role in modulating
various biological processes, as well as in developing many diseases, in particular those
related to fibrosis and inflammation, conditions that characterize the onset of gynecological
diseases such as endometriosis, adenomyosis, and uterine fibroids [7]. Most of the studies,
present in the literature, have underlined a possible pathogenic role of the dysregulation
of S1P levels in endometriotic disease, through a direct or indirect modulation of fibrosis
and activation of chronic inflammatory processes which may involve TGF-β [2,50], and
finally induce proliferation of endometriotic cells and lesion growth [47]. Therefore, the S1P
signaling axis could represent an interesting and powerful biomarker for endometriosis
and a useful target for diagnostic and therapeutic purposes. As for endometriosis, also in
adenomyosis and in uterine fibroids, the S1P signaling axis shows a deep dysregulation [3].
An altered S1P signaling pathway might be implicated in the fibrotic phenotype of ade-
nomyosis and a correlation with actin-alpha-2 smooth expression has been evinced [58].
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Elevated mRNA levels of SphK1, SphK2, activin A, S1PR2, S1PR3, and S1PR5 are present in
uterine fibroids in comparison with healthy controls, as well as increased S1PR2 and S1PR3
protein levels [3]. An altered SphK1/S1P/S1PR1/3 signaling axis could play a crucial
role in ovarian cancer angiogenesis, although further explorations on intracellular S1P
functions should be conducted, keeping in mind its biological action exerted due to S1PR
binding [14,83]. Regulation of the S1P pathway may represent a potential new therapeutic
target, as S1P seems to exert cytoprotective consequences against cancer treatment side
effects (i.e., chemotherapy) [5].

All the in vitro and in vivo studies since S1P was first discovered as a second messen-
ger have shown us much about its mechanisms of action. We are now aware why S1P is so
important for the regulation of many normal and pathophysiological processes, such as
autoimmune or inflammatory disorders, as well as benign or malignant tumors, but further
investigation is needed since its physiologic roles are not yet fully understood. Despite this,
the discovery of S1P intracellular targets will offer a wide range of research opportunities
in order to ascertain the role of S1P as an anti or pro-inflammatory signaling compound
and to translate this information into a novel class of sphingolipid-centric therapeutics.
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