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ABSTRACT 

Microwave imaging for medical applications is attractive because the range of dielectric properties of different soft tissues 
can be substantial. Breast cancer detection and monitoring of treatment response are areas where this technology could be 
important because of the contrast between normal and malignant tissue. Unfortunately, the technique is unable to achieve 
the high spatial resolution at depth in tissue which is available from other conventional modalities such as x-ray computed 
tomography (CT) or magnetic resonance imaging (MRI). We have incorporated a soft-prior regularization strategy within our 
microwave reconstruction algorithm and compared it with the images obtained with traditional no-prior (Levenberg-Marquardt) 
regularization. Initial simulation and phantom results show a significant improvement of the recovered electrical properties. 
Specifically, errors in the microwave property estimates were improved by as much as 95%. The effects of a false-inclusion 
region were also evaluated and the results show that a small residual property bias of 6% in permittivity and 15% in conductivity 
can occur that does not otherwise degrade the property recovery accuracy of inclusions that actually exist. The work sets the 
stage for integrating microwave imaging with MR for improved resolution and functional imaging of the breast in the future.

Key words: Breast cancer detection, image reconstruction algorithms, microwave imaging, soft-prior regularization, 
spatial priors

Original Article

Address for correspondence: 
Mr. Amir H. Golnabi

8000 Cummings Hall, Thayer School of Engineering, 

Hanover NH 03755-8000 USA.

E-mail: agolnabi@dartmouth.edu

Introduction

Microwave imaging (MI) for biomedical applications is 
based on recovering the electrical properties (permittivity 
and conductivity) of tissue. Early studies showed a 
significant dielectric property contrast between normal 
and malignant breast tissues;[1-3] however, more recent 
data have indicated that the properties of the normal 
breast are more variable than originally thought and that 
the contrast may not be as great for some types of breast 

tissue.[4] This is particularly true for radiographically 
denser breast with higher concentrations of fibroglandular 
tissue.[4] Notwithstanding, early clinical MI studies on 
patients with suspected tumors have demonstrated 
significant discrimination between those with malignant 
cancers versus those with benign lesions and other normal 
tissues.[5] In addition, the non-ionizing and non-compressive 
nature of MI makes the technique potentially attractive for 
cancer screening.[6]

MI mainly consists of solving two problems: the forward 
problem and the inverse problem. The forward problem 
involves computing the output (i.e., the scattered field) 
from known inputs (i.e., the low-power, non-ionizing 
microwave exposure) and system properties (i.e., the 
dielectric property distribution of the tissue being imaged), 
whereas the inverse problem estimates the properties of 
an unknown volume (i.e., the dielectric properties of the 
tissue) from known input (i.e., the low-power, non-ionizing 
microwave exposure) and measured field values. Since the 
inverse electromagnetic problem is non-linear, the image 
reconstruction process is solved iteratively.[7,8] Moreover, 
because of its ill-posed nature Gauss-Newton schemes are 
well suited to the application but require some form of 
regularization to impose additional constraints.[8] Although 
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regularized Gauss-Newton methods can be susceptible 
to convergence to local minima, we have found that log 
transformation serves to mitigate these effects.[9,10] Indeed, 
recent studies of convergence indicate that our Gauss-
Newton algorithm reaches the same image (i.e., solution) 
for widely different initial estimates suggesting that it is 
not easily trapped by local minima.[11] Completely different 
approaches to inverse problem solution such as genetic 
algorithms and stochastic processes are also possible and 
have been applied successfully to MI as well.[12-14] 

Regularization may also involve a priori information 
about the tissue being imaged, which can be necessary to 
ensure convergence of the reconstruction algorithm to the 
correct electromagnetic property distribution.[15] In MI 
applications, a number of studies have investigated the 
incorporation of different types of priors ranging from the 
internal and/or external shape of the body to information 
about tissue dielectric properties including their upper and 
lower bounds.[16-25] For example, Crocco et al assumed that 
the object was homogeneous and that the permittivity value 
of the target was known.[26] In their shape reconstruction 
simulation study, El-Shenawee et al, used estimates of 
inclusion properties and location, and exact knowledge 
of the number of targets to aid convergence to a viable 
solution.[27]

Soft-prior regularization can be used to combine the 
functional information available through MI (i.e. property 
contrast) with the high spatial resolution of MR or x-ray 
CT to recover more accurate dielectric properties. The 
spatial prior is considered “soft” because it does not force 
the property estimates inside an identified region to be 
constant. Rather, the known boundary data are used to 
adjust the regularization to smooth the property estimates 
within a pre-defined region but not across its boundaries 
(to preserve property changes at its interface with other 
tissues). The approach has been developed successfully 
in a similar imaging system that represents a combination 
of NIR tomography and MRI methods for breast cancer 
detection.[28] 

In this investigation, we develop the analogous image 
reconstruction strategy for MI that exploits structural 
information as a soft-constraint in the microwave property 
estimation process and compare its performance with a 
standard no-prior (Levenberg-Marquardt) regularization. 
The soft-prior algorithm encodes spatial information 
from different regions of the tissue being imaged into a 
regularization matrix that associates points within the 
same region of the reconstruction mesh to minimize 
variation within each zone. The focus of the study is to 
evaluate quantitatively the accuracy of the microware 
property estimates recovered with and without soft-prior 
regularization in a series of simulation and phantom 

Golnabi, et al.: Comparison of no-prior and soft-prior regularization in biomedical microwave imaging

experiments including under conditions of false inclusions. 
While MI studies published in the literature have considered 
priors in various forms, the spatially encoded regularization 
matrix used here has not been previously implemented or 
otherwise systematically evaluated when applied to property 
estimation governed by the time harmonic wave equation. 
Further, the property accuracy improvements observed with 
the approach when used with MI phantom data offer the 
first evidence that the technique produces quantitatively 
superior results under experimental conditions. 

Breast MR is widely used clinically and despite pressures 
from healthcare cost containment, the number of breast 
MR imaging studies is likely to continue to grow in the 
future because of their exquisite soft tissue delineation. 
However, breast MR has a substantial false positive rate 
for cancer.[29] As a result, significant opportunities exist 
to supplement the diagnostic information derived from 
MR with another modality such as co-registered MI which 
may be used as complementary image data to improve the 
specificity of breast MR, especially if the MI properties in 
areas of contrast enhancement can be accurately estimated. 
Indeed, this same soft-prior technique resulted in a 26% 
decrease in the root mean square (RMS) error of the 
absorption and reduced scattering coefficient images when 
prior structure of a phantom was used to guide the NIR 
property estimation[30] and the prospect of attaining similar 
positive results with MI has motivated the algorithm 
development and evaluation described here.

Materials and Methods

Image reconstruction without priors
Reconstruction algorithms in MI are based on 

determining the distribution of the constitutive parameters 
within tissue where the dielectric properties are embedded 
in a constitutive equation involving the squared complex-
valued wave number which can be written as

 ( ) ( ) ( )ωσωμωεμωω ,,, 00
22 rjrrk rrr

−=        .......(1)

where r  is the position vector in the imaging domain, ω 
is the angular frequency, j is the imaginary unit, μ0 is the 
free-space permeability, ε is the permittivity, and σ is the 
conductivity. In our algorithm, calculation of the forward 
solution is based on the 2D form of Maxwell’s equations 
and is computed using a finite difference time domain 
(FDTD) algorithm,[31] whereas the reconstruction process 
is based on a Gauss-Newton iterative approach with a 
variance stabilizing transformation in which the measured 
electric field vector, )( 2kEc



, is matched iteratively with the 
computed electric field vector, )( 2kEm

r
, calculated using the 

forward model for a given distribution of the constitutive 
parameters stored in the vector 2k .[9,32] In the 2D FDTD 
method, a frequency domain field response is produced 
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for each transmitter and the individual field values are 
extracted at each receiver location.[33] The length of the 
vector 2k  is N, the number of reconstruction parameters. 
In order to overcome the ill-posedness of the problem, 
constraints on the reconstructed image are required. In our 
algorithm, Tikhonov regularization[8] is used to stabilize the 
reconstruction procedure, albeit with added smoothing. 
The objective function is 
 2
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where c and c are the log magnitudes and m and c
are the phases of the measured and computed field values, 
respectively,[9,32,33]

 λ is the weighting coefficient, also 
known as the Tikhonov regularization parameter, and L is 
a positive definite, dimensionless regularization matrix. 2
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In our previous and current studies, the choice of λ is 
derived empirically. After some manipulation, equation 2 
can be solved for the iterative property update, 2

k  

 
[ ] )(

)(
)( 2

0
2

2

2
2 kkLL

k
k

JkLLJJ T
cm

cm
TTT −− λ 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

Φ−Φ
Γ−Γ

=Δ+ η
η

η
ηλ

 
 

........(4)

where J is the Jacobian matrix, which has dimensions 
NO 22   and consists of derivatives of the log magnitude 

and phases of the computed field values with respect to the 
property values at each of the N reconstruction parameter 
mesh nodes. 2

k  is the vector 2k at iteration   and is 
updated as

 .222
1 ηηη kkk Δ+=+                                                 .......(5)

This implementation is referred as a Gauss-
Newton iterative algorithm with a variance stabilizing  
transformation.[10,33] In addition, a dual-mesh approach is 
used where the forward solution is computed on a rectangular 
uniform FDTD lattice, while the electromagnetic property 
parameters are reconstructed on a triangular element mesh 
placed concentrically within the antenna array.

In our original reconstruction algorithm, the regularization 
matrix L in equation (4) was set to the identity matrix, 
which applied the same weight to the values at all nodes 
within the imaging domain. In addition, 2

0k  was set to 2
k  

leading to a simplified version of the update equation:
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corresponding to the Levenberg-Marquardt algorithm.[7]

Soft-prior encoding of spatial information
We have modified our reconstruction algorithm based on 

the update equation (6) to include prior spatial information 
on the boundaries within the tissue (or phantom) being 
imaged following the methods reported in.[28,30,34-36] Soft- 
prior regularization penalizes the variation within regions 
that are assumed to have the same or similar dielectric 
properties. In addition, when two different regions share 
the same boundary, the smoothing across their common 
interface is restricted.[30] In the current implementation, 
we incorporate prior information about the structure of 
tissue through the regularization matrix, "L", in the update 
equation (4). According to information known about the 
tissue’s structure (derived from a high spatial resolution 
source such as MR images), each node in the reconstruction 
mesh is assigned a region number. Given two nodes, i and 
j, in the reconstruction mesh with their associated regions, 

iR  and jR , the corresponding entry in the L matrix is 
defined as
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where Ni is the number of nodes in region iR . Based on 
this construction of L, LTL in equation (4) approximates 
a second-order Laplacian smoothing operator inside each 
region, which limits the smoothing across the boundaries 
of distinct regions.[37,38] Since the structure of the tissue 
being imaged does not change during the iterative image 
reconstruction algorithm, both the regularization matrix L 
and Laplacian smoothing operator LTL, can be calculated 
once and stored at the beginning of the procedure to 
avoid redundant calculations (making the algorithm more 
efficient). 

Imaging system
In order to evaluate the soft-prior implementation 

relative to the no-prior case based on actual measured data 
from phantom experiments, we have used our prototype 
breast imaging system for data acquisition. The imaging 
array consists of 16 monopole antennas located on a 15.2 
cm diameter circle. The coupling liquid comprises an 
86:14 glycerin:water mixture that is sufficiently lossy at 
these frequencies to attenuate unwanted reflections from 
the tank walls and base. The operating frequency ranges 
from 500 MHz to 3.0 GHz. Each channel operates in both 
transmit and receive modes at a single frequency which is 
serially scanned over a user-defined band (e.g. from 1100 to 
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1700 MHz) at a user-specified increment (e.g. 100 MHz) 
depending on the measurement data of interest. The 
antennas sequentially transmit a signal, while the other 
15 act as receivers. As a result, 240 (16 transmitter × 15 
receivers) measurements of the scattered field are obtained 
at each frequency and used in the reconstruction process. 
The measured field component at each receiver is parallel 
to the axis of the antenna array representing a transverse 
magnetic (TM) polarization which is assumed during the 
2D image reconstructions reported here. A more complete 
description of our clinical imaging system can be found in 
Meaney et al.[39] 

Error analysis
Since the true values of the dielectric property distribution 

are known in simulations and phantom experiments, the 
relative error between the true property distribution and 
the estimated values can be computed as

∑
=
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where recon
nV )(  is the reconstructed dielectric property value 

(either permittivity or conductivity) at node n (in the 
reconstruction mesh), whereas exact

nV )( is the true value of 
the selected dielectric property at that location. To account 
for the fact that nodes in the reconstruction meshes are not 
uniformly distributed, a weighting factor has been added at 
each location computed as 

 
/A,Aw nn = where nA  is the area of 

the elements surrounding node n and A is the total imaging 
area. Because of the iterative nature of the reconstruction 
procedure, a stopping criterion is needed to terminate the 
algorithm. Since the algorithm typically converges within 
15 iterations, we allowed all reconstructions to execute 
for 20 iterations as a simple way to ensure convergence in 
each case and verified that the squared error (i.e. equation 
(2)) was below a threshold (relative to the squared error 
produced by the initial estimate) of 0.2 in each case.

Results

In the current study, we evaluated MI with soft-prior 
regularization relative to MI with no priors in simulation 
and phantom experiments where the boundaries of different 
regions were known. Figure 1 shows a schematic of the 
imaging geometries considered. The “Simulation Results” 
section reports simulations involving variations in mesh 
resolution and synthetic measurement noise. The effects 
of parameter coupling and arbitrary inclusion geometry 
are also investigated. The “Phantom Experiments” section 
describes analogous results from phantom experiments 
which consider the impact of false inclusions as well.

Simulation results
Simulated measurement data were generated by our 

hybrid boundary element/finite element approach[40] for 

the circular target shape in Figure 1. The images were 
reconstructed at 1300 MHz using update equation (6) 
with no spatial information (on reconstruction parameter 
meshes with 473, 915, 961, and 1725 nodes), and update 
equation (4) with the soft-prior regularization defined in 
equation (7) (on the 915 and 1725 node meshes which had 
external and internal boundaries conforming to the outer 
surface and lower circular inclusion in Figure 1). 

Mesh resolution and noise level
The cylindrical inclusion centered at (x,y) = (0,–3 cm) 

with a radius of 1.4 cm and the dielectric properties of 
Tur , = 51.16 and Tu = 1.44 S/m was embedded in a 

background medium with the dielectric properties of bkr ,
= 15.60 and bk = 0.90 S/m. Noise ranging from –110 dBm 
to –80 dBm was added to the synthetic measurements. 
Figure 2 shows reconstructed images at 1300 MHz (noise 
level of –100 dBm) using the no prior (on 473, 915, and 
961 node meshes) and soft-prior (on the 915 node mesh) 
regularizations, respectively. Without spatial priors, the 
reconstructed images are very similar which indicates 
that increasing the number of nodes or changing their 
distribution to be preferentially greater within the inclusion 
in the reconstruction mesh does not improve the quality 
of the recovered images. Both regularizations recovered 
the inclusion in the permittivity and conductivity images, 
but those from the soft-prior technique are more accurate 
in terms of the recovered property values. In addition, the 
recovered background permittivity and conductivity values 
are more uniform in the soft-prior case. Figure 2 confirms 

Figure 1. Schematic of the imaging domains evaluated. The background 
diameter was 14 cm (antennas are positioned on a 15.2 cm diameter). The 
circular inclusion’s center with radius r = 1.40 cm was located at (0,–3 
cm), whereas the arbitrarily shaped inclusion was located in the upper 
part of the imaging domain. The reconstructed values from the simulation 
experiment with an here arbitrarily shaped inclusion were extracted at 30 
points evenly distributed along the line x = –2 cm
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that these improvements are not due to the reconstruction 
mesh, but to the regularization matrix. The weighted 
permittivity and conductivity errors without priors were 
0.172 and 0.128, respectively, while those with soft-prior 
regularization were reduced by nearly a factor of 8 to 0.028 
and 0.016, respectively. 

In order to compare the reconstructed and the true 
dielectric properties, vertical transects of the permittivity and 
conductivity profiles along the y-axis are shown in Figure 3, 
for added noise levels of –110, –100, –90, and –80 dBm. In this 
case, the measurements ranged in amplitude from –30 dBm 
for the nearest antennas to –87 dBm for those farthest away 
from the transmitter. The signal to noise ratio for the lowest 
amplitude measurements with –80 dBm of added noise was 
7 dB. As expected, artifacts increased in both the permittivity 
and conductivity images without priors as the noise level 
rose, especially in the –80 dBm conductivity images where 
the fluctuations are significant. The soft-prior regularization 
tolerates the added noise much better with relatively minor 
decreases in the recovered inclusion permittivity and only 
slightly greater reductions in conductivity at the highest 
noise level. Using soft-priors, the reconstructed permittivity 
values were underestimated (~10--15%) in the inclusion at 
all noise levels. Notwithstanding, the method clearly detected 
the inclusion given the large property contrast with the 
background. In addition, even when considerable noise was 
added to the measured data (–90 dBm), the algorithm with 
soft-prior regularization recovered the inclusion conductivity 
very accurately, and started to underestimate (~15%) its 
property values only at even higher noise levels (–80 dBm).

Estimation parameter coupling 
In order to study the effects of no prior and soft-prior 

regularization on reconstruction parameter coupling, 
two simulation experiments were performed in the same 
background medium (ε

r,bk= 15.60 and bk = 0.90 S/m). 
In the first case, no permittivity contrast existed in the 
inclusion region (dielectric properties were εr,Tu =15.60 and 
Tu = 1.44 S/m). The second experiment had no conductivity 
contrast in the inclusion (dielectric properties were 
ε

r,Tu = 51.16 and Tu= 0.90 S/m). Figure 4 shows transects 
of the 1300 MHz reconstructed permittivity (top row) and 
conductivity (bottom row) profiles along the y-axis for the 
first and second experiments (in the left and right columns 
of the composite figure), respectively (with added noise of 
–100 dBm).

While both methods (no-priors and soft-priors) handle 
the no-permittivity contrast case [Figure 4a] effectively, 
the soft-prior regularization is clearly superior when no 
conductivity contrast exists in the inclusion [Figure 4b]. 
The soft-prior regularization profile almost overlaps 
the exact solution, whereas the no-prior regularization 
curve has significant differences with the exact solution. 
Quantitatively, the permittivity--conductivity parameter 
coupling is only about 5% with the soft-prior regularization 
in both Figure 4 cases. Here, we consider the permittivity-
-conductivity parameter coupling to be the relative error 
(equation 8) between the true values and the recovered 
properties in the region of the inclusion in the no-contrast 
images (i.e., reconstructed permittivity in the inclusion in 
Figure 4a (top row, left column) and conductivity in Figure 

Figure 2: Simulated 1300 MHz reconstructed permittivity (top) and conductivity (bottom) images (a) without priors on the 473 node mesh, (b) without priors 
on the 961 node mesh, (c) without priors on the 915 node mesh with preferential node deployment in the inclusion, and (d) with soft-prior regularization 
on the 915 node mesh.
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experiments were performed at 1100, 1300, 1500, and 1700 
MHz. The geometry used in this study was the same as the 
simulations with the circular inclusion described in the 
“Mesh Resolution and Noise Level” section. Specifically, 
a 1.4 cm radius, thin-walled plastic cylinder filled with a 
mixture of 55% glycerin and 45% water was offset along 
the y-axis in the background medium (86:14 glycerin:water 
mixture) by 3 cm. 

No-Prior versus soft-prior regularization
Figure 7 shows the images obtained with the two 

regularizations. In both instances, the inclusion is evident. 
Several background artifacts appear in the no-prior images, 
which are more pronounced in the conductivity parameter. 
Incorporating the spatial priors substantially improves the 
quality of both the permittivity and conductivity images. 
Weighted permittivity and conductivity errors decrease 
from 0.329 and 0.302 to 0.015 and 0.045, respectively, when 
the spatial structure of the phantom is incorporated through 
soft-prior regularization. Figure 8 shows the reconstructed 
dielectric properties from the two approaches along the 
y-axis relative to the exact values.

Clearly, the soft-prior regularization dramatically reduces 
the spatial oscillations within the background, but it also 
recovers the dielectric properties in the inclusion more 
accurately. Improvements are even more pronounced in the 
conductivity images in which case the recovered inclusion 
values are over-estimated and displaced (toward the 
boundary) without priors. These artifacts are eliminated 
when the spatial structure of the phantom is incorporated 
through soft-prior regularization. 

Choice of soft-prior coeffi cient
In all previous results, the soft-prior coefficient, λ 

in equation 4, was set to unity as a default, but in this 
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4b (bottom row, right column)) when using the soft-prior 
regularization.

Arbitrarily shaped inclusion
An arbitrarily shaped inclusion [Figure 1] with the 

dielectric properties of εr,Tu = 40.0 and Tu = 1.30 S/m was 
embedded in a background medium with the dielectric 
properties of ε

r,bk = 15.60 and bk = 0.90 S/m. With the 
addition of –100 dBm of noise to the data, the images 
were reconstructed at 1300 MHz both with and without 
priors, as shown in Figure 5. Figure 6 shows transects of the 
reconstructed permittivity (left) and conductivity (right) 
profiles along the line x = –2 cm using the two regularizations 
along with the exact solution. While the LM regularization 
images show an object at roughly the correct location, both 
the permittivity and conductivity component of the soft-
prior images recover the complex shape and properties 
exactly. In addition, the level of artifacts in the background 
is significantly reduced with this approach. 

Phantom experiments
In order to illustrate differences in no-prior and soft-

prior regularization of experimental data, several phantom 

Figure 3: Comparison of the 1300 MHz reconstructed permittivity (top) and 
conductivity (bottom) values using no-prior (Levenberg-Marquardt, LM) 
and soft-prior regularizations with different levels of added noise: (a) –110, 
(b) –100, (c) –90, (d) –80 dB m.

a b

c d

Figure 4: Comparison of 1300 MHz reconstructed permittivity (top row) 
and conductivity (bottom row) profi les for the no-prior (Levenberg-
Marquardt, LM) and soft-prior regularizations: (a) no permittivity contrast 
(left column), (b) no conductivity contrast (right column)

a b
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section, a more detailed study of the effects of λ as a 
function of frequency is presented. Data from the same 
experimental setup described in the “No-Prior versus 
Soft-Prior Regularization” section was used and images 
were reconstructed at 1100, 1300, 1500, and 1700 MHz. 
The independently measured dielectric properties of the 
coupling medium and the inclusion are reported in Table 1 as 
a function of frequency. A spectrum of soft-prior coefficients 

Figure 6: Comparison of the 1300 MHz reconstructed permittivity (top) 
and conductivity (bottom) profi les along the line x = –2 cm in the fi gure 
5  experiment with arbitrarily shaped inclusion for the no-prior (LM) and 
soft-prior regularizations

Figure 7: 1300 MHz reconstructed permittivity (top) and conductivity 
(bottom) images from a phantom experiment for (a) no-prior and (b) soft-
prior regularizations

was used for the reconstruction procedure, λ = 0.01, 0.1, 
1, 10, and 100, based on testing over an even wider range 
of values in simulation and phantom experiments. Lower 
values, such as 0.001 for λ, allowed the solution to diverge 
in some cases, while higher values tended to suppress the 
recovered inclusion properties. Transects along the y-axis 
of the reconstructed images for r  and   at 1100, 1300, 
1500, and 1700 MHz for the range of soft-prior coefficients 
are shown in Figure 9. The weighted permittivity and 
conductivity errors associated with each image are computed 
and summarized in Table 2. In general, no observable 
difference occurred between the reconstructed values when 
λ=1.0 and λ=10. When λ=0.01 the recovered properties 
in the inclusion are close to the exact values, whereas those 
of the background begin to deviate from the true levels at 
higher frequencies. The λ=100 reconstructions appear to 
estimate the inclusion conductivity values closer to the 
true levels than the corresponding permittivities which are 
noticeably underestimated. The weighted property errors 
are elevated at all frequencies by an order of magnitude 
when compared to the two lower λ cases. These results 
suggest that values in the range of λ=1.0 and λ=10 appear 
to be appropriate soft-prior weighting coefficients over our 
reconstruction frequency range (usually from 1100 to 1700 
MHz). However, the stability of the weighting parameter λ 
investigated here is based on the present set of experiments, 
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Figure 5: 1300 MHz reconstructed permittivity (top) and conductivity 
(bottom) images from a phantom experiment with arbitrarily shaped 
inclusion for (a) no-prior and (b) soft-prior regularizations

a b

a b
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are identified prior to MI property estimation but do not 
actually have contrast, is of interest because of the potential 
of the approach to identify false inclusions based solely on 
the presumed structural information. Figure 10 shows a 
reconstruction mesh with a false inclusion region (radius of 1.4 
cm) centered at (0, 3cm) along with the previous target zone 
[Figure 1]. We used the same measurement data generated in 
the phantom experiments described in the previous section, 
where only a single inclusion at the lower location (0, –3 cm) 
actually existed.

Figure 11 shows the 1300 MHz reconstructed images when 
λ=0.01, λ=0.1 and λ=1.0, respectively. The false region 
appears as a weak increase (∼ 3 to 6%) in the permittivity 
images, but with a more pronounced decrease (~ –4% to 
–20%) in the conductivity images. Transect plots through 
the inclusion in the permittivity and conductivity images are 
presented in Figure 12. Consistent with the images in Figure 
11, the permittivity values within the false inclusion region are 
close to the true background, while the conductivity profile 
is more noticeably affected and exhibits lower values than 
the background liquid, especially when larger values of λ are 
used. Since the contribution from the soft-prior regularization 
is reduced when λ=0.01, the dielectric properties are not 
significantly influenced by the presence of the false inclusion 
region (~ 3% and ~ –4% error in the permittivity and 
conductivity images, respectively). However, for smaller values 
of λ, more artifacts are observed in the background. As the 
soft-prior weighting coefficient increases to λ=1.0, more error 
appears in the false inclusion region (~ 6% and ~ –20% in 
the permittivity and conductivity images, respectively). The 
weighted errors are reported in Table 3. For λ=1, rwerr , = 
0.131 and ,werr = 0.162, which are larger relative to the case 
when the exact spatial structure of the phantom was used (

,werr = 0.015 and ,werr = 0.045), but significantly lower 
than those obtained without priors ( rwerr , = 0.329 and ,werr
= 0.302).

Discussion

We have shown that reconstructed images using 
simulation and measurement data with soft-prior constraints 
significantly improve the accuracy of the recovered 
dielectric properties compared with no prior regularization. 
We also confirmed that this improvement is not due to 

Figure 8: Comparison of the 1300 MHz reconstructed permittivity (top) 
and conductivity (bottom) profi les along the y-axis in the fi gure 7 phantom 
experiment for no-prior and soft-prior regularizations

Table 1. Independently measured dielectric 

properties of the background medium and 

inclusion over the range of frequencies evaluated

Frequency (MHz) 
r,bk


bk


r,Tu


Tu

1100 17.32 0.82 53.46 1.12

1300 15.61 0.9 51.16 1.44

1500 14.37 0.97 48.89 1.77

1700 13.59 1.03 46.43 2.09

Table 2. Weighted r and  errors for a phantom experiment over a range of frequencies from 1100 to 

1700 MHz using fi ve different soft-prior coeffi cients: λ =0.01, 0.1, 1, 10, and 100.

Frequency 

(MHz)

Err w,ε
r

λ =0.01

Err w,
λ =0.01

Err w,ε
r
 

λ =0.1

Err w,
λ =0.1

Err w,ε
r
 

λ =1

Err w,
λ =1

Err w,ε
r
 

λ =10

Err w,
λ =10

Err w,ε r 
λ =100

Err w,
λ =100

1100 0.094 0.145 0.025 0.076 0.019 0.074 0.026 0.068 0.201 0.177

1300 0.133 0.180 0.040 0.056 0.015 0.045 0.012 0.044 0.134 0.165

1500 0.121 0.116 0.050 0.043 0.012 0.011 0.009 0.016 0.106 0.150

1700 0.195 0.167 0.104 0.092 0.023 0.066 0.015 0.067 0.094 0.143

and other situations, for example, with multiple inclusions 
or different contrast levels may lead to different results and 
should be investigated further in the future.

Sensitivity to false inclusions
The behavior of soft-prior regularization in regions, which 
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Table 3. Weighted r and  errors for a phantom experiment using the soft-prior regularization and the 

reconstruction mesh with a false inclusion region for three different soft-prior coeffi cients: λ =0.01, 0.1, 

and 1.0 at 1300 MHz

Frequency (MHz) Err w,εr 

λ =0.01

Err w,
λ =0.01

Err w,εr 

λ =0.1

Err w,
λ =0.1

Err w,εr 

λ =1

Err w,
λ =1

1300 0.232 0.246 0.143 0.159 0.131 0.162

Figure 10: Reconstruction mesh (1196 nodes and 2215 elements) with a 
false inclusion (upper circle)

Figure 11: 1300 MHz reconstructed permittivity (top) and conductivity 
(bottom) images of a phantom experiment using soft-prior regularization 
and the reconstruction mesh with a false inclusion region shown in 
Figure 10

the number or distribution of nodes in the reconstruction 
mesh, but to the regularization matrix which incorporates 
structural priors into the reconstruction procedure. The 
weighted errors for the simulated 1300 MHz images with 
–100 dBm noise decreased by 83% and 87% for r  and 
 , respectively, when the soft-prior regularization was 
used. Comparable error reductions of 95% and 85% were 
observed when using actual measurement data. Moreover, 
soft-prior regularization is considerably more robust in the 
presence of noisy data and an arbitrary-shaped inclusion, 
and is also able to dampen estimation parameter coupling 
effects, especially in the conductivity, much more readily 
than Levenberg-Marquardt regularization without spatial 
information. 

We also studied the range over which the soft-prior 
coefficient was optimal and the algorithm’s behavior 
outside of this span. For a wide operating frequency range 
(1100 to1700 MHz),  =0.1 to  =10 produced similar 
high quality reconstructions with lower values causing 
divergence and higher values producing overly smoothed 
images. In the latter case, the recovered properties of the 

Golnabi, et al.: Comparison of no-prior and soft-prior regularization in biomedical microwave imaging

Figure 9: Comparison of the reconstructed permittivity (top), and 
conductivity (bottom) values from phantom experiment for different 
values of the spatial prior coeffi cient, λ, at (a) 1100, (b) 1300, (c) 1500, and 
(d) 1700 MHz, respectively

a b

c d
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inclusion dropped significantly from the actual values to 
levels closer to the background.

Finally, the sensitivity of the soft-prior approach to false 
inclusion regions was analyzed when using experimental 
phantom data. The results indicate that creating a false 
inclusion region and weighting it with the soft-prior 
regularization does introduce some bias, especially for larger 
weighting coefficients. For these experiments, the effect 
observed was a modest increase of 3--6% in permittivity 
and a more pronounced decrease in conductivity (~–4% to 
–20%) compared to the surrounding background. Overall, 
the deviations were relatively minor, and did not detract 
from the net benefit of improved property recovery in the 
true target zone. However, the false inclusion evaluated in 
the “Sensitivity to False Inclusions” section represents a 
simple example of an extreme case of imperfect shape and 
location of a region. The behavior of the algorithm when 
small errors occur in an actual inclusion boundary is an 
important consideration that warrants further investigation. 
Our initial results indicate that the MI property estimates 
deviate smoothly from the true values as location and 
shape errors increase, but a thorough study of the impact 
of true-inclusion boundary errors remains to be reported 
in the future. The occurrence of multiple inclusions, each 
potentially with its own contrast (that might prove to be 
true or “false”), has also not been studied, but is likely to 
occur during clinical imaging and needs to be understood 
as the MI soft-prior algorithm is refined and developed 
further.

Since we have adapted methods for introducing spatial 
priors that have already been developed for NIR tomography, 
it is interesting to compare the general performances of 
soft-prior regularization with the two forms of data. Both 
imaging methods utilize model-based image reconstruction 
where the properties to be estimated depend nonlinearly on 
the measurements, but the NIR problem is governed by a 
time-harmonic diffusion equation whereas the microwave 

problem obeys a time-harmonic wave equation. No doubt 
the spatial priors dramatically improve the quantitative 
accuracy with which the respective image properties can 
be recovered with the two imaging systems. However, a 
striking difference occurs in the degree to which a false 
inclusion manifests itself and the amount of reconstruction 
parameter coupling that can result. In the NIR case, the 
contrast and coupling effects (on a true inclusion) of 
the false inclusion are much more significant than in 
the corresponding microwave reconstructions where 
very modest influences were observed.[41] Additionally, 
the independence with which contrast in permittivity is 
recovered relative to conductivity; that is, the degree of 
estimated property parameter coupling is much less in the 
microwave case when spatial priors are invoked relative 
to the equivalent NIR problem where property parameter 
coupling is fairly significant (anywhere from 15% to 40% 
or more depending on noise level [28,38] compared to about 
5% here). While these observations and assessments of the 
encoding of spatial priors favor the outcomes attained with 
MI (relative to NIR), some caution is advised not to over-
interpret the results (e.g. in terms of property parameter 
coupling and the effect of false inclusions) because 
quantitative evaluations must be carefully controlled (e.g. 
in terms of contrast, inclusion size, location, etc) in order 
to represent a fair comparison between the two imaging 
techniques. 

Finally, the choice of 1/ Ni as the weighting factor in 
equation (7) has not been optimized or extensively evaluated 
and other options are certainly possible. For example, 
since the elements in the reconstruction parameter mesh 
comprise different areas, a region-specific, area-related 
weighting factor might improve performance and is well 
worth exploring in the future.

Conclusions

We have compared no-prior (Levenberg-Marquardt) 

Figure 12: 1300 MHz reconstructed permittivity (left) and conductivity (right) profi les from a phantom experiment using soft-prior regularization and the 
reconstruction mesh with a false inclusion region shown in Figure 10
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versus soft-prior regularization in microwave image 
reconstruction under a series of representative 
circumstances. The findings have been supported by 
simulation and phantom results which indicate that 
including structural information in the form of a soft-
constraint can significantly improve the recovered images 
both qualitatively and quantitatively. The implementation 
of soft-prior regularization is appealing because it 
demonstrates that current measurement data sets are 
sufficient (in combination with anatomical knowledge) 
to produce high fidelity reconstructions of experimental 
phantom targets which is an encouraging first step. The 
framework presented here sets the stage for extending 
the approach to more complex 2D and 3D phantom 
experiments and eventually to clinical patient data where 
anatomical images might be available from other modalities 
such as MR.
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