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Abstract

Motivation: Many applications monitor predictions of a whole range of features for biological data-

sets, e.g. the fraction of secreted human proteins in the human proteome. Results and error esti-

mates are typically derived from publications.

Results: Here, we present a simple, alternative approximation that uses performance estimates of

methods to error-correct the predicted distributions. This approximation uses the confusion matrix

(TP true positives, TN true negatives, FP false positives and FN false negatives) describing the per-

formance of the prediction tool for correction. As proof-of-principle, the correction was applied to a

two-class (membrane/not) and to a seven-class (localization) prediction.

Availability and implementation: Datasets and a simple JavaScript tool available freely for all

users at http://www.rostlab.org/services/distributions.

Contact: valerie.marot@tum.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Proteome-wide distributions of biological characteristics are

relevant for many experimental and computational tools. Two

examples pertinent to asses experiments and resources are: what

fraction of the proteins are enzymes? What fraction of sequence var-

iants strongly affects function? Often neither experimental annota-

tions nor computational predictions infer the true distribution.

Here, we introduced a simplified approximation to compensate

bias. To implement this approximation, users only need the confu-

sion matrix describing the performance of a method along with pre-

dictions for entire proteomes or more generally datasets.

2 Materials and methods

2.1 Error correction approximation
First, look up the confusion matrix, i.e. the matrix (or table) describ-

ing the evaluation of a method. For two class-predictions these are

typically the true positives (TP), true negatives (TN), false positives

(FP) and false negatives (FN). The matrix M with elements Mp, o

gives the number of proteins predicted in class p and observed in

class o. Correct predictions are diagonal o¼p. M has the dimension

n (number of classes), e.g. n¼2 for distinguishing secreted from

non-secreted proteins. From this matrix follows a new n*n matrix

M0 representing the confusion ratio for each class with:

M0p; o ¼
Mp;oPn
i¼1 Mp;i

(1)

Each value M0p, o in this new matrix represents the ratio of events

predicted in class p and observed as o over all events predicted in

class p. From this matrix predictions for an entire proteome/dataset

P ¼ (p1, p2,. . ., pn) are corrected to Pc ¼ (c1, c2,. . ., cn) by:

cx ¼
Xn

i¼1

M0
i;x�pi (2)

Each value cx represents the number of events predicted in class x

multiplied by the ratio of events correctly predicted as x (real x)

added to the number of events predicted in every other class multi-

plied by the confusion rate of this other class to x.

2.2 Datasets and prediction methods
Two datasets with experimentally determined localization were

used. (i) The set with all 5563 human protein annotations from

Swiss-Prot (Pundir et al., 2017) was used to build the confusion

matrices for the methods. (ii) All high-confidence annotations were
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extracted from The Human Protein Atlas (Thul et al., 2017) (HPA

‘Validated’ and ‘Supportive’) to evaluate the correction proposed

[Equation (2)]. To avoid overlap, only proteins without Swiss-Prot

annotations were added. This gave 2000 proteins. Three tools:

Hum-mPloc3.0 (Zhou et al., 2017), LocTree2 (Goldberg et al.,

2012) and MultiLoc2 (Blum et al., 2009) were run to evaluate the

error correction (Supplementary Table S1 for class conversion).

2.3 Distance between distributions
The error correction [Equation (2)] was used to compare 7-class dis-

tributions with and without error correction. The Euclidean distance

(square root mean distance for all classes) served as proxy for the

difference between the two.

3 Results and discussion

The approximation for the bias correction in experimental and

computational data was applied to two problems: one was a hypo-

thetical two-class prediction of the fraction of transmembrane pro-

teins; the other illustrated a 7-class classification of protein

localization. The correction was based on performance estimated

using all experimental annotations for human in Swiss-Prot (Pundir

et al., 2017).

3.1 Mistakes may dominate for the non-optimized class
Many methods optimize the prediction of membrane helices. Those typ-

ically focus on membrane proteins. Assume such a method misses less

than 1% of all proteins with membrane helices. Assume the same

method incorrectly finds membrane regions in 10% of the non-

membrane proteins. Organism H might have 20 000 (20k) proteins,

with 5k transmembrane. The prediction method would make 1.5k mis-

takes in the 15k non-membrane (10% error) and 50 in the membrane

proteins. Thus, instead of finding 25% as membrane, methods would

suggest �32% (5000–50þ1500�6450/20000). The error corrected

version would find the correct number 25%. The extreme imbalance in

performance between the class optimized (membrane) and the other

(non-membrane) is not unusual for prediction methods (Chen et al.,

2002; Reeb et al., 2015).

3.2 Distributions approximated better after correction
The error correction was benchmarked on a multi-class problem using

2000 new proteins with experimental 7-class annotations from HPA

(Thul et al., 2017). The problem (predict 7-class distribution) was par-

ticularly interesting because the correct distribution (HPA) differed sub-

stantially from data used for method development, i.e. all methods

optimized a different distribution. On top, none of today’s experimental

distributions might capture the entire proteome.

The comparison between the distributions generated from the raw

method output (Fig. 1, left panel) and through the error correction

[Equation (2); Fig. 1, right panel] clearly showed a substantial improve-

ment (lighter means more correct). Our approximation optimized no

parameter to succeed. It also requires only information made available

by the developers. An interesting effect of the error-correction is that the

best methods might not always give the best error-corrected distribution

(Supplementary Fig. S2).

4 Conclusion

The simplified approximation [Equation (2)] for correcting the bias

in experimental and computational views on complete datasets (e.g.

entire proteome or genome, all patients in a region) is neither limited

to two classes (Fig. 1), nor to proteins, genes, or any other omics.

Instead, it is applicable to all datasets that estimate distributions for

any aspect. The correction only requires that the confusion matrix

reflecting the performance of a method (computational or experi-

mental) correctly reflects unseen data. Nevertheless, our example

also showed that methods might use different distributions and still

improve substantially through applying the approximation.
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Fig. 1. Better estimates of location distribution through error correction.

Values give the Euclidean distance between 7-class distributions from experi-

ment (The HPA) and those predicted directly (left) and predicted with error

correction approximation (right)
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