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Regulation of ER stress-induced autophagy by
GSK3g-TIP60-ULK1 pathway

Tiejian Nie*, Shaosong Yang'*, Hongwei Ma>*, Lei Zhang', Fangfang Lu', Kai Tao', Ronglin Wang', Ruixin Yang', Lu Huang',
Zixu Mao® and Qian Yang*'

Endoplasmic reticulum (ER) stress is involved in many cellular processes. Emerging evidence suggests that ER stress can trigger
autophagy; however, the mechanisms by which ER stress requlates autophagy and its role in this condition are not fully
understood. HIV Tat-interactive protein, 60 kDa (TIP60) is a newly discovered acetyltransferase that can modulate autophagy flux
by activating ULK1 upon growth factor deprivation. In this study, we investigated the mechanisms by which ER stress induces
autophagy. We showed that ER stress activates glycogen synthase kinase-3 (GSK3p). This led to a GSK3p-dependent
phosphorylation of TIP60, triggering a TIP60-mediated acetylation of ULK1 and activation of autophagy. Inhibition of either GSK34
or TIP60 acetylation activities significantly attenuated ER stress-induced autophagy. Moreover, enhancing the level of TIP60
attenuated the level of CHOP after ER stress, and reduced the ER stress-induced cell death. In contrast, expression of TIP60 mutant
that could not be phosphorylated by GSK3p exacerbated the generation of CHOP and increased the ER stress-induced cell death.
These findings reveal that ER stress engages the GSK34-TIP60-ULK1 pathway to increase autophagy. Attenuation of this pathway

renders cells more sensitive to and increases the toxicity of ER stress.
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In eukaryotic cells, the key place for the canonical synthesis
and maturation of proteins is the endoplasmic reticulum (ER).
Under pathological stress conditions including hypoxia,
energy deprivation, oxidative stress and imbalanced calcium
levels, unfolded proteins will accumulate in the ER and disrupt
ER homeostasis, thus leading to ER stress." ER stress is
implicated in a wide range of diseases, including ischemia—
reperfusion injury, diabetes and neurodegenerative
diseases.?® To cope with the burden of unfolded proteins in
its lumen, the ER activates intracellular signal-transduction
pathways that are collectively termed the unfolded protein
response (UPR).” Emerging evidence indicate that ER stress
can stimulate autophagy.2~'" However, signal events involved
in mediating ER stress-induced autophagy and the role that
autophagy has in ER stress remain to be fully illustrated. Most
studies in this area have focused on the upstream UPR
pathways that may function to enhance autophagy flux under
ER stress,'®™'® yet few details regarding the pathways
downstream of ER to link this organelle to autophagic
machinery have been identified.

Glycogen synthase kinase-38 (GSK3p) activity and ER
stress are highly intertwined.'®2" In addition, studies indicate
that GSK3 also has a vital role in regulating autophagy at
various levels under nutrient starvation.?®> However, it is
unclear that whether GSK3 participates in regulating ER
stress-induced autophagy and what potential pathway may be
required for this regulation. ULK1 is the mammalian counter-
part of the yeast protein kinase Atg1, a key regulator of

autophagy.2®2® Previous studies in yeast cells indicate that
Atg1 kinase activity increases during ER stress,® yet the
signals and pathways that directly modulate ULK1 under ER
stress remain to be clarified. A recent study has revealed that
HIV Tat-interactive protein, 60 kDa (TIP60) directly acetylates
and stimulates ULK1 to elicit autophagy under growth factor
deprivation,?? yet it has not been tested whether this pathway
functions in ER stress.

We show in this current study that ER stress can activate the
GSK3B-TIP60-ULK1 pathway. Activation of this axis is
essential in ER stress-induced autophagy as blocking this
pathway markedly represses the activation of autophagy
under ER stress. Furthermore, engaging this TIP60 pathway is
critical for cells to maintain viability under ER stress as loss of
this pathway increases ER-stress induced death. Thus, this
study identifies GSK3B-TIP60-ULK1 as the key link that
bridges ER stress and autophagy induction.

Results

ER stress induces TIP60 phosphorylation by activating
GSK3. Tunicamycin (TM), the inhibitor of N-acetylglucosa-
mine transferases, has been widely used to induce ER
stress.?® We treated Hela cells with TM and showed that
exposure to TM leads to a time-dependent increase in the
levels of ER stress markers — GRP78 and PERK,?” and causes
PERK to migrate at slower rate, consistent with its
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Figure 1  GSK3p-dependent phosphorylation of TIP60 under ER stress. (a) Time-dependent activation of GSK3/ and TIP60 phosphorylation. HeLa cell lysates treated with
TM (10 g /ml) induced a time-dependent increase in the level of GRP78 and PERK (bottom panel). The same lysates were blotted for total and phosphorylated TIP60 (S86) and
GSK3 (Ser9) (top panel). (b) The effect of GSK3 inhibitor on TM-induced TIP60 phosphorylation. Hela cells were co-treated with TM (10 4.g /ml) and DMSO (mock) or GSK3/
inhibitor SB216763 (10 pM) for 24 h. The lysates were blotted for TIP60 as indicated. TIP60 Ser86 phosphorylation levels were calculated and normalized to total TIP60. Data
represent the mean + S.E.M. of three independent experiments (**P< 0.01; NS, not significant (two-way analysis of variance (ANOVA) followed by Tukey’s test)). (¢) The effect of
GSK3p knockdown on TM-induced TIP60 phosphorylation. HeLa cells were transfected with control (NC) or GSK3/ small interfering RNA (siRNA) for 48 h were treated with TM
(10 ug/ml) for 24 h. The endogenous GSK3 level (third panel) and total and phosphorylated TIP60 levels were determined. Data represent the mean + S.E.M. of three
independent experiments (**P<0.01; NS, not significant (two-way ANOVA followed by Tukey’s test)). (d—f) HeLa cells were treated with TG (1 M). The lysates were blotted as
indicated. In (e and f), the detection of phosphorylated TIP60 (S86) was carried out as described in (b and ¢) after 16 h of TG exposure. Asterisk indicates the nonspecific band.
Data represent the mean + S.E.M. of three independent experiments (**P<0.01; NS, not significant (two-way ANOVA followed by Tukey’s test))

phosphorylation and activation (Figure 1a), suggesting that TM
effectively induces cellular ER stress. Using this cellular model,
we tested the levels of GSK3B and TIP60. TM treatment
induced a decrease in GSK3p phosphorylation at Ser9 and an
increase in TIP60 phosphorylation at Ser86 in a time-
dependent manner (Figure 1a).The TIP60 Ser86 phosphoryla-
tion level was clearly reduced when cells treated with a
combination of TM and GSK3 inhibitor SB216763 (Figure 1b).
To further confirm that GSK3B is responsible for TIP60
phosphorylation under ER stress, we knocked down endogen-
ous GSK3 levels by transfecting cells with siRNAs specific for
GSK3 and then treated cells with TM. Compared with the
negative control siRNA, GSK3g-specific siRNAs reduced the
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level of GSK3p protein and completely abolished TM-induced
TIP60 Ser86 phosphorylation (Figure 1c). Similar results were
obtained when cells were treated with another ER stress
inducer, thapsigargin (TG), the inhibitor of sarco/ER CaZ*
ATPase (SERCA),?® which further validated the GSK3B-TIP60
regulation pattern under ER stress (Figures 1d—f). Taken
together, these findings indicate that ER stress can induce
GSKBB-dependent TIP60 Ser86 phosphorylation.

GSK3g-TIP60 axis regulates ULK1 acetylation and acti-
vation under ER stress. To determine the role of GSK3p
and TIP60 in ER stress-induced activation of autophagy, we
first detected the acetylation of ULK1.The Atg13 Ser318
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Figure 2 Acetylation of ULK1 by TIP60 under ER stress. (a) TM-induced acetylation of ULK1. Endogenous ULK1, which was immunoprecipitated from cell lysates that were
harvested after 24 h TM (10 xg /ml) treatment, was blotted with an antibody against acetylated lysine. The same membrane was reprobed with anti-ULK1 antibody. The total cell
lysates was blotted with anti-P-Atg13 (S318) antibody and anti-Atg13 antibody. Ratio of acetylated ULK1 to total ULK1 and phosphorylated Atg13 to total Atg13 were calculated.
Data represent the mean + S.E.M. of three independent experiments (*P< 0.05 (Student's ttest)). (b) The effect of GSK3 inhibitor on TM-induced acetylation of ULK1. HeLa
cells were treated as described in Figure 1b. The total and acetylated ULK1 levels were determined following immunoprecipitation as described in (a). Total cell lysates were
blotted as indicated. Data represent the mean + S.E.M. of three independent experiments (**P<0.01; NS, not significant (two-way analysis of variance (ANOVA) followed by
Tukey’s test)). (c) The effect of TIP60 knockdown on TM-induced ULK1 acetylation. HeLa cells transfected with control (NC) or TIP60 small interfering RNA (siRNA) for 48 h were
treated with TM (10 n.g /ml) for 24 h. The lysates were analyzed for total and acetylated ULK1. Total cell lysates were blotted as indicated. Data represent the mean + S.E.M. of
three independent experiments (**P< 0.01; NS, not significant (two-way ANOVA followed by Tukey’s test)). (d) The effect of modulating TIP60 on TM-induced ULK1 acetylation.
HeLa cells transfected with Vector, wild type (WT) or S86A TIPG0 were treated with TM (10 ..g /ml) and analyzed for ULK1 acetylation after immunoprecipitation. Total cell lysates
were blotted as indicated. Data represent the mean + S.E.M. of three independent experiments (*P< 0.05; **P< 0.01; NS, not significant (two-way ANOVA followed by Tukey’s
test)). (e-h) HeLa cells were treated with TG (1 pM). The lysates were blotted as indicated. The detection and analysis of acetylated ULK1, phosphorylated Atg13 (S318) and
phosphorylated TIP60 (S86) were carried out as described in (a—d) after 16 h of TG exposure. Data represent the mean + S.E.M. of three independent experiments. (e) *P<0.05
(Student's t test); (f-h) *P<0.05; **P<0.01; NS, not significant (two-way ANOVA followed by Tukey’s test)
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phosphorylation immunoblot was used to analyze the ULK1
kinase activity as reported before.?®* Both TM and TG
treatment increased the acetylation level of ULK1, a
modification correlated with its activation as evidenced by
increasing level of Atg13 Ser318 phosphorylation (Figures 2a
and e). We then treated cells with a combination of ER stress
inducers and GSK3g inhibitor SB216763, immunoprecipated
ULK1 and analyzed its acetylation. The Atg13 Ser318
phosphorylation level was detected in the meantime. This
analysis showed that SB216763 completely abolishes TM- or
TG-induced ULK1 acetylation and activation (Figures 2b

e
TG - +
AcK ~ #% 150KDa
ULK1
(IP/IB) - == 150KDa
p-Atgl13(S318)  w 70KDa
Atgl3 m= ws 70KDa
f sBae763 - - + +
™ - + - +
AK - 150KDa
ULK1
(D) % % == == 150KDa
p-Atgl3(S318) « « %% . 70KDa

Atgl3 " S s s 70KDa

P-TIPGO(S8G) ™= « == 60KDa

TIPG( e S e 60K Da

NC

+
AcK -
(Ili’I/JIII% S s s s 150KDa

P-Atg13(S318) v ww =« 7T0KDa

siTTP60
+

150KDa

TG

Atgl3 s B o s 70KDa
P-TIP60(S86) ww
TIPGO s s

60KDa
60KDa

Myc-TIP60
Vector WT S86A
+ + +

- . * 150KDa
ULK1 g
AP/B) W e S e e 150KDa
p-Atgl13(S318)

Atgl3 W S s S8 o s 70KDa

TS e & 62xDa

TG
AcK

- -— w 70KDa

Myc

Figure 2 Continued

Cell Death and Disease

Acetylated ULK1 level

Acetylated ULK1 level

Acetylated ULK1 level

Acetylated ULK1 level

and f). Next, we transfected HelLa cells with siRNAs specific
for TIP60 before TM or TG treatment, and performed similar
experiment as described in Figure 2b. Our study revealed
that TIP60 knockdown significantly attenuated TM- or TG-
induced ULK1 acetylation (Figures 2c and g). In addition,
overexpression of wild-type TIP60 further enhanced TM- or
TG-induced ULK1 acetylation and activation; while increasing
the level of TIP60 S86A mutant completely blocked ULK1
acetylation and activation in response to TM or TG treatment
(Figures 2d and h). Thus, ER stress-induced ULK1 acetyla-
tion and activation requires GSK3g and TIP60.
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ER stress-induced activation of autophagy requires the
GSK3g-TIP60-ULK1 signaling pathway. To corroborate
with the ULK1 findings and testify whether GSK38 and
TIP60 contribute to ER stress-induced autophagy, we tested
the lipidation of microtubule-associated protein 1 light chain 3
(LC3) in response to ER stress. While TG is a robust inducer
of ER stress, it also blocks the late stages of autophagy as
the SERCA pump is also needed for fusion of autophago-
somes with lysosomes.®® Thus, TM was mainly used here to
carry out the autophagy assays.

Cells were transfected with TIP60-specific siRNAs and then
treated with TM. As autophagy is a dynamic process,
bafilomycin A1, a vacuolar H*-ATPase inhibitor, was used to
inhibit lysosomal events to differentiate changes in autopha-
gosome formation versus autophagosome degradation.®' TM
treatment with control siRNA increased LC3BII. In contrast,
TIP60 knockdown greatly attenuated the effect of TM on
LC3BII induction (Figure 3a). Using a similar approach as
described in Figure 2d, we showed that increasing the level of
WT TIP60 further enhanced the induction of LC3BII following
TM treatment. However, TIP60 S86A mutant greatly reduced
the induction of LC3BII by TM (Figure 3b). To strength these
immunoblot findings, we transfected cells with a GFP-LC3B
and analyzed the effects of modulating TIP60 on the GFP-
LC3B vesicles formation following TM treatment by fluores-
cence microscope. Consistent with the previous western blot
results, TM treatment resulted in an increase in GFP-LC3
puncta formation, suggesting autophagy induction.®®> TIP60
knockdown markedly inhibited TM-induced GFP-LC3 puncta
formation compared with the control group (Figure 3c). Similar
to the findings in Figure 2d,WT TIP60 overexpression caused
more GFP-LC3 puncta formation in comparison with the
Vector group and TIP60 S86A overexpression significantly
reduced the level of GFP-LC3 puncta formation compared with
WT TIP60 group (Figure 3d). To assess whether this process
in dependent on ULK1 activation, we carried TM treatment
after transfecting cells with ULK1-specific siRNAs. The LC3BII
production was greatly decreased after ULK1 knockdown,
while the level of TIP60 and its Ser86 phosphorylation was not
altered (Figure 3e). Taken together, these findings indicate
that TM-induced changes in autophagy require TIP60, the
TIP60 Ser86 phosphorylation and subsequent ULK1
activation.

We then treated cells with SB216763 and showed that
GSKS3g inhibition greatly repressed autophagy induction
under TM treatment (Figure 3f). This finding indicated that
GSK3p is an important sensor kinase that participates in
autophagy induction during ER stress by triggering a specific
signaling axis.

Oxidative stress causes ER stress and activates the
GSK3B-TIP60-ULK1 signaling pathway. To strengthen the
findings made with ER stress inducers — TM and TG -
we examined the role of GSK3B-TIP60-ULK1 axis in
autophagy response provoked by another ER stress inducer.
Many studies have reported that H,O,, a common inducer of
oxidative stress, can also effectively evoke ER stress.®273®
Therefore, we treated HelLa cells with different
concentrations of H,O, and showed that H,O, causes a
dose- and time-dependent increase in GRP78 and a
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mobility shift of PERK (Figure 4a), demonstrating the
induction of ER stress.

Exposing cells to H,O, significantly activated GSK3f
evidenced by its gradual dephosphorylation, led to increased
phosphorylation of TIP60 and enhanced ULK1 acetylation
(Figure 4b). To confirm that these changes are indeed
mediated by ER stress, we co-treated cells with H,O, and
4-phenylbutyrate acid (4-PBA), a well-known chemical
chaperone used widely to specifically attenuate ER stress.%®
The results showed that inhibition of ER stress by 4-PBA
largely reversed the effects of H,O, on the activation of
GSKB3p, phosphorylation of TIP60 and acetylation of ULK1
(Figure 4b). We then conducted the autophagy assays.
Similar to TM treatment, modulating the activity of TIP60 by
WT TIP60 or TIP60 S86A overexpression caused
opposite effects in LC3BII production (Figure 4c), and the
role of TIP60 in autophagy is also ULK1-dependent as
evidenced by ULK1 knockdown (Figure 4d). Moreover,
suppressing the GSK3f activity by SB216763 exhibited the
inhibitory effects in HyO.-induced autophagy induction
(Figure 4e). Thus, different types of ER stressors engage
GSK3B-TIP60-ULK1 pathway to regulate autophagy
induction.

ER stress-induced TIP60 activation modulates the UPR.
Prolonged ER stress is accompanied by a sustained UPR,
and this is known to induce apoptosis-related proteins
including the persistent activation of the PERK-ATF4-CHOP
pathway,>”*® and comprise cellular viability. To evaluate the
role of GSK3B-TIP60-ULK1 pathway on CHOP generation,
we treated cells with TM after transfecting the cells with
Vector, WT TIP60 or TIP60 S86A and determined
the levels of CHOP at different time points. Western blot
analysis revealed that prolonged TM or H,O, treatment
causes an increase in CHOP production. WT TIP60
substantially attenuated TM-induced increase in CHOP
while TIP60 S86A greatly exacerbated their induction by
TM or HxO5 in a time-dependent manner (Figures 5a and b).
Similar results were obtained when TM or Hy0,
exposures were carried out after ULK1 depletion
(Figures 5¢ and d). Taken together, these results suggest
that ER stress-induced activation of the GSK3B-TIP60-ULK1
may be a key cellular mechanism that modulates the UPR
and restrains CHOP generation to maintain cellular
homeostasis.

GSK3B-TIP60-ULK1 pathway is essential for promoting
cell survival and limiting cell death under ER stress.
Because the GSKB3B-TIP60-ULK1 pathway can regulate
CHOP generation, we investigated its role in cell survival
using both TM and H>O, models. We transfected cells with
Vector, WT TIP60 or TIP60 S86A, exposed cells to either TM
or H,O, and measured cellular viability by using the MTT
(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)
assay. Prolonged treatment of cells with either TM or H>O,
led to significant cell death (Figures 6a—-d). WT TIP60
overexpression strongly enhanced cell viability compared
with the Vector, whereas overexpression of TIP60 S86A
caused more cellular death (Figures 6a and b). We
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conducted ULK1 inhibition studies in parallel by transfecting
cells with ULK1-specific siRNAs. ULK1 depletion also exacer-
bated the TM- or HxO.-induced cell death(Figures 6¢ and d).
These findings were consistent with TUNEL assay results
(Figures 6e and f). Therefore, the level of TIP60 activity
modulates cellular sensitivity to ER stress-induced toxicity and
this role of TIP60 is autophagy-dependent.

Discussion

It is well known that ER stress triggers UPR to initiate cellular
attempt of restoring its homeostasis.>® Autophagy is a
conserved cellular catabolic mechanism for degrading and
recycling cytosolic, long-lived or aggregated proteins and
excess or defective organelles, thus promoting the cell survival
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response to nutrient starvation and stress conditions.*®*!  of autophagy in ER stress is somewhat controversial or

Mounting evidence indicates that autophagy is induced by ER dynamic and the signaling mechanisms linking ER stress to
stress in organisms from yeast to mammals. However, the role autophagy remain not fully delineated. On the one hand,
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Figure 4 Hydrogen peroxide (H,O,)-induced ER stress and activation of GSK3-TIP60-ULK1 pathway. (a) H,O-induced ER stress. HeLa cells were treated with H,O, (1 or
3 mM). Cell lysates were gathered at the indicated time points and blotted for the ER stress markers as indicated. (b) H,O,-induced activation of GSK3, TIP60 and ULK1. HeLa
cells were treated with H,O, (1 mM) with or without 4-PBA (2 mM) for the indicated time. Cell lysates were blotted as indicated. Densitometric analyses of the western blots are
shown as curves. Data represent mean + S.E.M. of three independent experiments (*P< 0.05; **P<0.01 (two-tailed Student's t-test)). (c-e) The effect of modulating GSK3-
TIP60-ULK1 pathway on H,O,-induced change in LC3BII. HeLa cells were treated as described in Figures 3b, e and f, except that H,0, (1 mM)and bafilomycin A1 (400 xM) for
another 18 h. The lysates were immunoblotted as indicated. LC3BII level was determined. Data represent the mean + S.E.M. of three independent experiments (*P< 0.05;
**P<0.01; NS, not significant (two-way analysis of variance (ANOVA) followed by Tukey’s test))

<
Figure 3 The essential role of GSK34-TIP60-ULK1 pathway in ER stress-induced autophagy. (a) HelLa cells transfected with control (NC) or TIP60 small interfering RNA
(siRNA) for 48 h were treated with TM (10 xg /ml)and bafilomycin A1 (400 1M) for 24 h. The lysates were blotted for LC3B, total and phosphorylated TIP60. The relative amounts
of LC3BII were calculated from densitometry performed on immunoblots and normalized to the amount of glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Data represent
the mean + S.E.M. of three independent experiments (**P<0.01; NS, not significant (two-way analysis of variance (ANOVA) followed by Tukey's test)). (b) The effect of
modulating TIP60 on TM-induced change in LC3BII. HeLa cells transfected with Vector, Myc-TIP60 (wild type (WT)) or Myc-TIP60 (S86A) for 20 h were treated with TM
(10 g/ ml) and bafilomycin A1 (400 xM) for another 24 h. The lysates were immunoblotted as indicated. Data represent the mean + S.E.M. of three independent experiments
(*P<0.05; **P<0.01; NS, not significant (two-way ANOVA followed by Tukey’s test)). (c) The effect of knockdown TIP60 on TM-induced LC3B puncta formation. HeLa cells co-
transfected with GFP-LC3 (green) and TIP60 small interfering RNA (siRNA) for 48 h were treated with TM (10 g /ml) for 24 h and scored for the number of puncta. Quantification
shown above represents the mean GFP puncta per cell (n=12) from three independent experiments + S.E.M. (*P<0.01; NS, not significant (two-way ANOVA followed by
Tukey’s test); scale bar, 20 zm). (d) The effect of modulating TIP60 on TM-induced LC3B puncta formation. HeLa cells were transfected as indicated and then treated with TM
(10 pg/ml) for another 24 h. LC3B puncta formation was evaluated as described in () (*P<0.05; **P<0.01, NS, not significant (two-way ANOVA followed by Tukey’s test); scale
bar, 20 um). (e) The effect of ULK1 knockdown on TM-induced change in LC3BII. HeLa cells were transfected with control (NC) or ULK1 siRNA for 48 h were treated with TM
(10 g/ ml) and bafilomycin A1 (400 uM) for another 24 h. The lysates were immunoblotted as indicated. Data represent the mean + S.E.M. of three independent experiments
(**P<0.01; NS, not significant (two-way ANOVA followed by Tukey’s test)). (f) The effect of GSK34 inhibitor on TM-induced LC3BII change. Hela cells were treated with TM
(10 pg/ml) with or without SB216763 (10 M) and bafilomycin A1 (400 M) for 24 h. LC3BII level was determined. Data represent the mean + S.E.M. of three independent
experiments (**P<0.01; NS, not significant (two-way ANOVA followed by Tukey’s test))
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ER-induced autophagy may act as a protective mechanism to
backup the ER-associated degradation (ERAD)®*>43 path-
way in helping handle the superfluous cell burden under ER

stress. On the other hand, it can initiate programmed cell death
if ER stress cannot be relieved.'®***® Our current investiga-
tion is the first to demonstrate that the GSK3g-TIP60 axis, at
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Figure 5 The role of TIP60 and ULK1 in ER stress-induced changes in C/EBP Homologous Protein (CHOP). (a and b) The effect of modulating TIP60 on TM- or hydrogen
peroxide (H,Os)-induced changes in CHOP levels. Hela cells were transfected as indicated for 20 h and then treated with TM (10 g /ml) or H,0, (1 mM). Cell lysates were
blotted for CHOP, Myc and glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The right curves show the quantification of relative levels of CHOP. Data represent the
mean + S.E.M. of three independent experiments (*P< 0.05; **P< 0.01 versus Vector; *P<0.01 versus wild type (WT) (two-way analysis of variance (ANOVA) followed by
Tukey’s test)). (¢ and d) The effect of ULK1 knockdown on TM- or H,O,-induced changes in CHOP levels. HeLa cells were transfected with control (NC) or ULK1 small interfering
RNA (siRNA) for 48 h were treated with TM (10 g /ml) or H,O, (1 mM). CHOP level was determined. Data represent the mean + S.E.M. of three independent experiments
(*P<0.05; **P<0.01 (two-tailed Student's ttest))

>
Figure 6 The role of TIP60 and ULK1 in ER stress-induced cellular apoptosis. (a, ¢ and e) The effect of modulating TIP60 and ULK1 on TM-induced changes in HeLa cell viability.
HelLa cells were transfected with Vector, Myc-TIP60 (wild type (WT)) or Myc-TIP60 (S86A) for 20 h or transfected with control (NC) or ULK1 small interfering RNA (siRNA) for 48 h and
then treated with TM (10 g /mi)for another 24 h. Cell viability was analyzed with MTT (a and ¢), or imaged with TUNEL assay (scale bar =20 um). (e) Data represent the mean +
S.E.M. of three independent experiments (*P<0.05; **P<0.01 (two-way analysis of variance (ANOVA) followed by Tukey’s test)). (b, d and f) The effect of modulating TIP60 and
ULK1 on hydrogen peroxide (H,05)-induced changes in HelLa cell viability. HeLa cells were transfected as indicated and then treated with H,O, (1 mM) for 18 h. The measurement of
MTTand TUNEL assay were carried out as described above in (a, ¢ and €) (scale bar =20 um). Data represent the mean + S.E.M. of three independent experiments (**P< 0.01
(two-way ANOVA followed by Tukey’s test)). (g) Model for the role of GSK3p-TIP60-ULK1 pathway in autophagy induction and cell survival under ER stress
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least in part, accounts for ER stress-induced activation of Interfering with this pathway by inhibiting either GSK3g or
autophagy. This involves ULK1 activation. We found that TM or TIP60 function can substantially attenuate the ER stress-
H>0, treatment induces TIP60 phosphorylation via GSK3g. induced increase in autophagy. Increase in TIP60 activity
Activated TIP60 then acetylates ULK1 to promote autophagy. further enhances ER stress-induced autophagy. Thus, the
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GSK3B-TIP60 signal appears to be both necessary and
sufficient to modulate ER stress-induced autophagy.

GSKB3g is a serine-threonine kinase that is involved in a wide
range of cellular processes important for the cellular home-
ostasis of energy and growth.*®*” Previous studies have
demonstrated that GSK3B is activated under ER stress, %"
yet none of these studies has examined the relationship
between GSK3p and ER stress-induced autophagy. Our study
indicates that GSK3B participates in ER stress-induced
autophagy by activating the TIP60-ULK1 pathway. GSK3f
inhibition partially prevented the autophagy induction under
ER stress. Therefore, it is clear from our study that GSK38 is
necessary to sense ER stress and engage autophagic
machinery in eukaryote cells. Taken together with previous
reports,?? it indicates that GSK3B is required for both ER
stress-dependent and -independent induction of autophagy.
The role of GSK3g in cellular viability upon ER stress is
complex. One study reported that GSK3 phosphorylates p53
and inhibits p53-mediated cell apoptosis under ER stress.!”
Other studies reported that GSK3 inhibition represses
caspase-3 activation and subsequent cell death
induced by ER stress.'® Our data show that GSK38 activation
promotes autophagy initiation following ER stress, which
allows cells to recover homeostasis and is clearly
beneficial for cells. Therefore, the exact role of this kinase in
ER stress is complex and may, in part, depend on cellular
context and the distinct targets and signaling pathways
engaged by GSK3g.

To elucidate the potential effect of this autophagy pathway,
we explored the relationship between the UPR and the
GSKB3B-TIP60-ULK1 axis.The UPR primarily consists of three
distinct ER stress transducers: IRE1, ATF6 and PERK.” Itis an
adaptive response that increases the ER folding capacity;
however, it can also induce apoptosis if ER stress cannot be
alleviated.*®*° Activated PERK can phosphorylate elF2a to
reduce the load of newly synthesized proteins through
translation initiation inhibition. In the meantime, phosphory-
lated elF2a induces the expression of a transcription factor —
ATF4.” ATF4 promotes the generation of proteins that help
restore homeostasis in the ER.%° ATF4 also upregulates the
apoptosis-inducing protein — CHOP. Although CHOP is a
short-lived protein, prolonged and strong ER stress parallels
with persistent CHOP expression, thus leading to cell
apoptosis.®”*85! Our data reveal that the activity of GSK3g-
TIP60-ULK1 pathway correlates closely with CHOP and with
cellular viability, and the higher the pathway activity is, the
lower the CHOP level is. Notably, the modulating effect of this
pathway on CHOP level appears to be most pronounced at the
later time point during ER stress, consistent with the possibility
that the dynamic change of autophagy during the late stage of
prolonged ER stress may be part of the critical signal that
exerts significant impact on cellular ability to commit to
apoptotic path.

In summary, ER stress inducers such as TM or H,O,
activate the GSK3g-TIP60-ULK1 pathway to induce autop-
hagy. Losing this pathway renders cells more vulnerable to
TM- or HxO»-induced cell stress and triggers higher level of
apoptosis. Conversely, strengthening this pathway confers
resistance to ER stress-induced apoptosis. The exact
molecular targets by which autophagy relieves ER stress
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remain to be fully identified. Given the well-known function of
autophagy, it is possible that enhanced autophagy flux may, in
parallel to ERAD, help lessen the ER burden by degrading the
misfolded protein and damaged organelles from various
subcellular sources.

Materials and Methods

Plasmids, antibodies and chemicals. The Myc-TIP60 (WT) and Myc-
TIP60 (S86A) constructs were gifts from Dr. Sheng-Cai Lin (State Key Laboratory of
Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China).
The GFP-LC3B construct was purchased from Invitrogen (Carlsbad, CA, USA). The
following antibodies were used: anti-phospho-TIP60 (Ser86) antibody (a gift from Dr.
Xiaotong Li, State Key Laboratory of Cellular Stress Biology, School of Life
Sciences, Xiamen University, Fujian, China); anti-TIP60 (ab14584), anti-GRP78
(ab21685), anti-Atg13 (ab201467) antibodies (Abcam, Cambridge, MA, USA); and
anti-GSK3p (no. 12456), anti-phospho-GSK3p (Ser9) (no. 5558), anti-GAPDH (no.
5174), anti-PERK (no. 3192), anti-ULK1 (no. 8054), anti-LC3B (no. 3868), anti-c-
Myc (no. 2276), anti-acetylated-lysine (no. 9441), anti-CHOP (no. 2895) antibodies
(Cell Signalling Technology, Beverly, MA, USA); anti-phospho-Atg13 (Ser318)
(PAB19948) antibody (Abnova, Taipei, Taiwan). TG (T9033), TM (T7765), SB216763
(S3442) and 4-PBA (SML0309) were purchased from Sigma, St. Louis, MO, USA
and bafilomycin A1 (ab120497) from Abcam.

Cell culture and plasmid transfection. Hela cells were maintained in
Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum
(Gibco, Grand Island, NY, USA), 2 mM L-glutamine, 100 IU penicillin and 100 mg/ml
streptomycin at 37 °C in a humidified incubator with 5% COs. Cells were transfected
with expression plasmids using the Lipofectamine 2000 reagent (Invitrogen)
according to the manufacturer’s instructions.

RNA interference. The homo-GSK3p, TIP60 and ULK1 siRNAs were
purchased from GenePharma (Shanghai, China). The siRNA specific for GSK3/
was: 5’-GUCGCCAUCAAGAAAGUAUTT-3'; for TIP60 was: 5-CCACAGGAA
CUCACCACAUTT-3’; for ULK1 was: 5’-UCACUGACCUGCUCCUUAA-3". A non-
targeting siRNA was used as a control with sense (5-UUCUCCGAACGUG
UCACGUTT-3’) and antisense (5'-ACGUGACACGUUCGGAGAATT-3'). Cells were
transfectedwith siRNAs using the Lipofectamine 2000 reagent according to the
manufacturer’s instructions.

Immunoblot analysis. Cells were washed three times with ice-cold PBS,
scraped in cold PBS, collected by centrifugation at 800 g and then incubated in
ice-cold lysis buffer (150 mM NaCl, 50 mM Tris (pH 7.5), 1 mM EDTA, 1 mM EGTA,
2mM DTT, 1% Triton X-100, a protease inhibitor cocktail (Roche, St. Louis, MO,
USA) and a phosphatase inhibitor cocktail (Roche)) for 30 min. Samples were then
clarified by centrifugation and the protein content was measured using a BCA
Protein Assay Kit (Thermo Scientific, Rockford, IL, USA) according to the
manufacturer’s instructions. Equal amounts of protein were separated on 10-15%
polyacrylamide gels, transferred onto PVDF membranes (Millipore, Billerica, MA,
USA) and subjected to western blotting using the standard protocol, and visualized
using the chemiluminescent detection system (ECL; Bio-Rad, Hercules, CA, USA).
Densitometry quantitation of the bands was performed using the ImageJ software
(National Institutes of Health, Bethesda, MD, USA).

Immunoprecipitation. Cell lysates were harvested and protein content was
measured as described above. The lysates containing equal amounts of protein
were immunoprecipitated with anti-ULK1 antibody and protein A/G plus-agarose
immunoprecipitation reagent (SantaCruz Biotechnology, Dallas, TX, USA) overnight
at 4 °C. Thereafter, the precipitants were washed five times with ice-cold lysis buffer,
and the immunocomplexes were eluted with sample buffer containing 1% SDS
for10 min at 100 °C and analyzed by 10% SDS-PAGE using the antiacetylated
lysine and anti-ULK1 antibodies.

MTT assay. Cells were seeded in 96-well plates at a proper density. MTT (5 mg/
ml) (Sigma) was added to each well after the indicated treatment and the plate was
incubated for another 4 h. One hundred and fifty microliters of dimethylsulfoxide
(DMSO) (Sigma) was added to each well after the supernatant was removed. The
plate was mixed thoroughly for 10 min and then the optical density (OD) value was
measured at 490 nm.



TUNEL assay. TUNEL assay was performed using the FragEL DNA
Fragmentation Detection Kit, Fluorescent (Millipore). HelLa cells were seeded onto
poly-lysine-coated chamber slides, transfected and treated as indicated. Then, the
cells were fixed with 4% paraformaldehyde for 20 min, permeabilized with 0.1%
Triton X-100 on ice for 2 min and incubated with TUNEL reaction mixture at 37 °C
for 1 h according to the manufacturer’s protocol. The cells were then stained with
DAPI (Roche) and detected under a laser scanning confocal microscope (Olympus,
Olympus Canada, Richmond Hill, ON, Canada).

Statistical analysis. All data were expressed as the mean + S.E.M. from at
least three independent experiments. One- or two-way ANOVA followed by Tukey’s
post-test was used to compare values among different experimental groups using
the SPSS Statistics 19.0 program. Student's ttest and two-tailed Student's ttest
were used for experiments that contain only two groups. A value of P<0.05 was
considered statistically significant, and a value of P<0.01 was considered highly
significant.
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