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Integration of lipidomics and 
transcriptomics unravels aberrant 
lipid metabolism and defines 
cholesteryl oleate as potential 
biomarker of prostate cancer
Jia Li1,*, Shancheng Ren2,*, Hai-long Piao1, Fubo Wang2, Peiyuan Yin1, Chuanliang Xu2, 
Xin Lu1, Guozhu Ye1, Yaping Shao1, Min Yan1, Xinjie Zhao1, Yinghao Sun2 & Guowang Xu1

In-depth delineation of lipid metabolism in prostate cancer (PCa) is significant to open new insights into 
prostate tumorigenesis and progression, and provide potential biomarkers with greater accuracy for 
improved diagnosis. Here, we performed lipidomics and transcriptomics in paired prostate cancer tumor 
(PCT) and adjacent nontumor (ANT) tissues, followed by external validation of biomarker candidates. 
We identified major dysregulated pathways involving lipogenesis, lipid uptake and phospholipids 
remodeling, correlated with widespread lipid accumulation and lipid compositional reprogramming in 
PCa. Specifically, cholesteryl esters (CEs) were most prominently accumulated in PCa, and significantly 
associated with cancer progression and metastasis. We showed that overexpressed scavenger receptor 
class B type I (SR-BI) may contribute to CEs accumulation. In discovery set, CEs robustly differentiated 
PCa from nontumor (area under curve (AUC) of receiver operating characteristics (ROC), 0.90–0.94). In 
validation set, CEs potently distinguished PCa and non-malignance (AUC, 0.84–0.91), and discriminated 
PCa and benign prostatic hyperplasia (BPH) (AUC, 0.90–0.96), superior to serum prostate-specific 
antigen (PSA) (AUC = 0.83). Cholesteryl oleate showed highest AUCs in distinguishing PCa from non-
malignance or BPH (AUC = 0.91 and 0.96). Collectively, our results unravel the major lipid metabolic 
aberrations in PCa and imply the potential role of CEs, particularly, cholesteryl oleate, as molecular 
biomarker for PCa detection.

Prostate cancer is one of the most frequently diagnosed malignance in males worldwide, especially in developed 
countries1. It was ranked as the most commonly diagnosed cancer and second leading cause of lethal cancer in 
American males of year 20142. The early detection of prostate carcinoma suffers from low specificity and sensi-
tivity of PSA, reflected by unnegligible rate of PCa including high-grade PCa among individuals with a PSA level 
≤ 4 ng/ml as well as relatively high rate of non-malignant cases among men with a 4–10 ng/ml PSA level deter-
mined by biopsy3,4. These pitfalls have led to PSA controversy in considering the cost of substantial over-diagnosis 
and overtreatment following PSA elevation5. Therefore it is critical to develop novel diagnostic biomarkers with 
greater accuracy.

Metabolic reprogramming, including that of lipid metabolism, represents an established signature of can-
cer biology6,7. Bioactive lipids and lipid-modified proteins participate in pathogenesis of multiple cancers via 
lipid signaling networks8. Lipidomics approach, which enables a precise characterization of lipid structures 
and compositions within given cells or organisms, has been widely applied in cancer research9. Facilitated by 
high-throughput lipidomics, the relevance of lipids to cancer pathogenesis in context of, for instance, oncogene 
MYC overexpression10, hypoxia and Ras activation11, have been investigated. Meanwhile, the lipid metabolic 
features associated with breast cancer aggressiveness and progression have been characterized by lipidomics12.
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In-depth delineation of lipid metabolic atlas in PCa is expected to open new insights into cancer tumori-
genesis and progression, and may provide potential biomarker candidates for better diagnosis and prognosis. 
Existing studies have demonstrated that alterations in lipid metabolic enzymes and pathways, including those 
of fatty acids13,14 and cholesterol metabolism15–17, are closely associated with PCa. However, comprehensive elu-
cidation of lipid metabolic events and its regulations in PCa remains largely unexplored, especially in context of 
system-level networks. By far, a panel of lipid metabolites, including (ether-linked) phosphatidylethanolamines, 
fatty acids, lysophospholipids and other phospholipids, have been proposed as potential PCa biomarkers in dis-
tinguishing PCa patients from healthy individuals18–20. Nevertheless, most of them failed to correlate with PCa 
metastasis, aggressivity and benign hyperplasia. Based on metabolic profiling sarcosine has been identified as 
a potential biomarker to distinguish benign, localized and metastatic PCa21. However, the utility of sarcosine 
remains controversial22.

Since the adaptive transformation of lipid metabolism is highly dynamic and involved with complex reg-
ulatory networks, a focus on lipids phenotype per se remains insufficient. Recently approaches by integrating 
multi-omics datasets, i.e., information on genome-, proteome-, metabolome-scale etc., have achieved unprec-
edented insights into complex biological systems. Lipogenic network has been identified associated with hepa-
tocellular carcinoma progression by combined analysis of metabolite and gene expression profiles23. By similar 
approach, the reliance of highly proliferating cancer cells on amino acid glycine has been revealed24.

To broaden our understanding of the metabolic alterations of lipid-gene networks in PCa and to identify 
potential biomarkers, 76 PCa and 19 BPH patients were enrolled in this study (Table 1, supplementary Table S1). 
Integrated study of lipidomics and transcriptomics (gene and miRNA expression profiling) was performed in 
paired ANT-PCT tissues from 25 PCa patients (discovery set). The identified biomarker candidates were further 
externally validated in a cohort including 51 PCa patients and 19 BPH patients (validation set). The workflow of 
study design is provided in supplementary information (supplementary Fig. S1).

Results
Global lipidomics analysis of prostatic tissue. Global lipidomics profiling was applied for qualitative 
and quantitative characterization of lipidome in 171 prostatic tissue samples acquired from 76 PCa and 19 BPH 
patients. In total 350 lipid species, spanning 6 cholesteryl ester (CE), 10 ceramide (Cer), 7 diacylglycerol (DAG), 
24 free fatty acid (FFA), 9 hexosylceramide (HexCer), 10 lyso-phosphatidylcholine (LPC), 10 lyso-phosphatidy-
lethanolamine (LPE), 3 LPE with alkenyl substituent (LPE-P), 1 lyso-phosphatidylinositol (LPI), 1 lyso-phosphati-
dylserine (LPS), 1 phosphatidic acid (PA), 37 phosphatidylcholine (PC), 16 PC with alkyl substituent (PC-O), 31 
phosphatidylethanolamine (PE), 20 PE with alkenyl substituent (PE-P), 10 phosphatidylglycerol (PG), 15 phos-
phatidylinositol (PI), 20 phosphatidylserine (PS), 1 PS with alkyl substituent (PS-O), 30 sphingomyelin (SM), 88 
triacylglycerol (TAG, including 1 TG-O) were covered. Typical TICs (total ion chromatogram) of lipid profiles of 
prostatic tissue are provided in supplementary information (supplementary Fig. S2). To enhance in-depth min-
ing of dynamic changes of lipidomic phenotype, radyl substitutes, i.e., acyl/alkyl/alkenyl side-chains were anno-
tated to phospholipid species, and long-chain sphingoid bases as well as N-acyl chains to sphingolipid species. 
Comprehensive information of all lipids is given in supplementary information (supplementary Table S2).

To ensure the reliability of acquired lipidomics data, quality control (QC) samples were used for data evalu-
ation of both discovery and validation sets. Taking discovery set as an example, approximately 93% lipid species 
showed a relative standard deviation (RSD) of intensity in QCs (n =  7) below 10%, and more than 99% below 20% 
(supplementary Fig. S3A). An overview of lipidomic profile in principal component analysis (PCA) score plot 
(supplementary Fig. S3B) with QCs center-clustered also demonstrates satisfactory robustness and reproducibil-
ity of applied method.

Characteristics

Discovery set Validation set

PCa PCa BPH

Total number 25 51 19

malignance grade*

Gleason score < 7 2 6 /

Gleason score =  7 12 31 /

Gleason score > 7 11 14 /

Localized 16 32 /

Locally advanced 4 16 /

Metastatic 3 3 /

Age (year) 69.0 ±  7.2 68.3 ±  7.4 65.2 ±  11.8

 BMI 25.0 ±  3.1 25.2 ±  3.6 23.4 ±  2.6

PSA (ng/mL)
21.7 ±  21.3 23.2 ±  18.7 7.7 ±  11.5

[5.3–93.5] [0.63–100.0] [0.53–42.73]

Lipidomics analysis Yes Yes Yes

Transcriptomics analysis Yes No No

Table 1.  Clinical characteristics and applied analysis of patients enrolled in the study. *malignance 
information concerning metastatic grades of two samples in discovery set was missing.
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Aberrant lipid metabolic phenotype in PCa. To explore the lipidomic profiles in PCa, partial least 
squares-discriminate analysis (PLS-DA) was performed using lipid abundance data. A pronounced separation 
between ANT and PCT samples was revealed by PLS-DA score plot (PC =  2; R2X =  0.53; R2Y =  0.52) (Fig. 1A), 
indicating distinct alterations of lipid metabolism in PCa. Among 140 differential lipid species (p <  0.01), most 
were dominantly elevated in PCa, as illustrated in volcano plot (Fig. 1B), covering a multitude of lipid classes, 
including PC, PE, PG, PI, Cer, DAG, CE and FFA, with 1.65–15.87 folds increase in PCT compared to ANT  
(supplementary Table S3). These observations revealed a prevalent up-regulation of lipid abundance in PCa.

Since lipids constitute vital components in cells, in particular, phospholipids (PLs) as membrane scaffold, 
changed cell number in tumor proliferation might lead to altered lipid abundance. Therefore we further investi-
gated relative composition changes in PCa lipidome (Fig. 1C, supplementary Table S3). Diacyl-PC and diacyl-PE 
percentages were significantly increased in PCT whereas ether-linked PCs (alkyl/acyl-PCs, PC-O) and PEs 

Figure 1. Lipidomics revealed aberrant lipid metabolism in PCa. (A) PLS-DA score plot of lipidomic profile 
of 25 paired ANT- PCT tissue composed of lipid variables after unit variance (uv) scaling pretreatment.  
(B) Volcano plot of 140 significantly altered lipids species (p <  0.01). X axis: PCT-to-ANT ratio in log2 scale; Y 
axis: -log10 (p value); statistical significance was determined by Wilcoxon Signed-Rank test. Cer and HexCer 
are summarized as (Hex)Cer. (C) Heatmap visualization of lipid composition in paired ANT-PCT tissue. Lipid 
composition was calculated as percentage of amount of (sub)class within entire lipidome and visualized after 
uv scaling. Each column denotes one prostatic specimen. In total 18 (sub)classes are shown. LPE and LPE-P are 
summed up as LPE(P). The single LPI, LPS and PA species (i.e., LPI 18:0, LPS 18:0 and PA 36:1) are excluded. 
Red and blue asterisks indicate significantly increased and decreased, respectively, in PCT vs. ANT. *p <  0.05; 
**p <  0.01; ***p <  0.001. Statistical significance was evaluated by Wilcoxon Signed-Rank test. (D) Heatmap 
visualization of FA composition in free fatty acid pool. Data shown are paired PCT-to -ANT ratio of FA% within 
FFA after log10 transformation. (E,F) Heatmap visualization of acyl/alkyl/alkenyl chain composition in PC  
(E) and PE (F). Data shown are paired PCT-to-ANT ratio of chain% in PC or PE after log10 transformation. In 
(D–F) each column indicates one individual PCa patient. Ether represents alkyl- in PC (E) whereas alkenyl-
chain in PE (F).
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(alkenyl/acyl-PEs, plasmalogens, PE-P) decreased; percentages of free mono- and poly-unsaturated fatty acids 
(MUFA and PUFA) were elevated, while percentage of free saturated fatty acids (SFA) were reduced. We then 
investigated distribution of fatty acids (FAs) or radyl residues in lipid pools including FFA and PL categories (PC, 
PE, PI, PS, PG). In FFA, SFA% was significantly attenuated (PCT/ANT =  0.8, p <  0.001) whereas MUFA% and 
PUFA% were enhanced (PCT/ANT =  1.5 and 1.4, respectively, both p <  0.001) (Fig. 1D, supplementary Table S4).  
In PLs, MUFA-acyl residues were preferably enriched in PCT (PCT/ANT =  1.1–1.4, in 4 PL classes) while 
PUFA-acyl and ether-linked chains were relatively deficient (PCT/ANT =  0.8–0.9 and 0.6–0.8, respectively, in 
4 PL classes) (supplementary Table S4). Detailed fatty chain composition alterations are shown for PC and PE 
(Fig. 1E,F). This shifted composition hinted that dynamic remodeling might take place in PL metabolism in PCa 
tumors.

Network-wide integrated mapping of lipid metabolism in PCa. To uncover potential mechanisms 
underlying above-described disrupted lipid homeostasis in PCa, we mapped lipid metabolic pathways including 
lipidome, transcripts alterations and post-transcriptional regulations. 22684 transcripts and 2080 miRNAs were 
analyzed. Information of lipid related genes and miRNAs is provided in supplementary information Table S5 and 
Table S6. Since fatty acids assemble a variety of lipid categories, metabolism of free fatty acids was initially inves-
tigated. Key genes in de novo lipogenesis (DNL), i.e. ACACA (acetyl-CoA carboxylase alpha), FASN (fatty acid 
synthase), SCD (stearoyl-CoA desaturase) and ELOVL6/7 (ELOVL fatty acid elongase 6/7), exhibited significantly 
increased expression with inverse changes in related miRNAs (Fig. 2A, supplementary Table S5 and Table S6). 
Transcription factor-encoding genes SREBF1 (sterol regulatory element binding transcription factor 1, encod-
ing SREBP-1c) and THRSP (thyroid hormone responsive) showed significantly elevated expression (Fig. 2A,  
supplementary Table S5). These data supported up-regulation of DNL activity, a hallmark of cancer pathogenesis, 
termed “lipogenic phenotype”25, which is associated with overall lipid abundance up-regulation in PCa.

In PUFA homeostasis, PUFA biosynthesis from precursor α -linolenic acid and linoleic acid was unaffected 
in tumor tissues (supplementary Fig. S4). However, expression of SLC27A2/4/5 (solute carrier family 27, mem-
ber 2/4/5), GOT2 (glutamic-oxaloacetic transaminase 2, mitochondrial) and SCARB1 (scavenger receptor class 
B, member 1), encoding fatty-acid-transporter protein (FATP), plasma membrane fatty-acid-binding protein 
(FABPpm) and SR-BI respectively, were significantly elevated in tumor tissues. Conversely, inhibitory miRNAs 
showed reduced expression (Fig. 2A, supplementary Table S5 and Table S6). These data suggested PUFA enrich-
ment (Fig. 1C) predominantly relies on extracellular lipid uptake. Since cellular acquirement of dietary PUFA is 
largely derived from selective PL uptake26, we postulated SR-BI to be the key mediator in PUFA accumulation.

We next inspected the metabolic landscape of the PCa lipidome, including phospholipids, ether lipids, sphin-
golipids, glycerolipids and cholesterol (Fig. 2B, supplementary Fig. S5). The most notable disruption occurred in 
phospholipid pathway (Fig. 2B). Expression of related genes and miRNAs participating in biosynthesis pathways 
of PA and downstream PLs, including those of CDP-choline, CDP-ethanolamine, and CDP-DAG pathways, were 
significantly altered in PCT. Genes including GPAM (glycerol 3-phosphate acyltransferase), MBOAT2 (mem-
brane bound O-acyltransferase domain containing 2), LCLAT1 (lysocardiolipin acyltransferase 1), AGPAT3 
(1-acylglycerol-3-phosphate O-acyltransferase 3), CDS1 (CDP-diacylglycerol synthase), CHKA (choline kinase 
alpha), CEPT1 (choline/ethanolamine phosphotransferase 1), EPT1 (ethanolaminephosphotransferase 1) and 
PCYT2 (phosphate cytidylyltransferase 2) showed significantly increased expression (Fig. 2B, supplementary Table 
S5). These alterations revealed a strengthened biosynthesis of PLs via the de novo pathway (Kennedy pathway)27 in 
PCa (Fig. 2B). Since a reprogrammed composition in membrane phospholipids was observed in PCa (Fig. 1D–F), 
we further studied alterations of the remodeling pathway (Lands’ cycle)28. Phospholipase A2 (PLA2)-related 
genes, PLA2G2A/4E/12A (phospholipase A2, group IIA /IVE/XIIA), exhibited significantly increased 
expression, while hsa-miR-92b-3p was reduced. LPCAT1/3 (lysophosphatidylcholine acyltransferase 1/3)  
and MBOAT2 (membrane bound O-acyltransferase domain containing 2) expressions were significantly 
up-regulated whereas LPCAT2 (lysophosphatidylcholine acyltransferase 2) was down-regulated (Fig. 2B, supple-
mentary Table S5). LPCAT1 is an essential enzyme in dipalmitoyl-PC synthesis; whereas MBOAT2 and LPCAT2 
preferentially utilize 18:1-CoA and 20:4-CoA donors, respectively28. Since PUFA-acyl chains are predominantly 
located at the sn-2 position28, this activated remodeling characterized by coordinated actions of PLA2s and lys-
ophospholipid acyltransferase (LPLATs) (i.e. enhanced hydrolysis by PLA2s and selective reacylation by LPLATs), 
contributed to increased MUFA% and reduced PUFA% in PLs in PCa (Fig. 1E,F and supplementary Table S4). 
Liberated PUFAs from PLs served as the direct source of enriched free PUFA (Fig. 2A). This remodeling pattern 
was also observed in ether lipid pathway (supplementary Fig. S5) as revealed by alterations of a same set of genes 
expressions in relation to PLA2s and LPLATs, and was in accordance with reduction of ether-linked chain% in 
PLs (Fig. 1E,F and supplementary Table S4).

Most prominent CEs accumulation in PCa and its association with cancer progression. On the 
basis of the landscape that lipids were prevalently up-regulated in PCa, we further sought to determine the most 
elevated lipids in PCa and to identify potential lipid biomarker candidates according to scheme shown in Fig. 3A. 
Collectively 9 lipids were selected which simultaneously met the following criterions, i.e., (i) p value <  0.01;  
(ii) top 20 AUC of ROC curve; and (iii) top 20 of PCT/ANT folds change in lipid abundance. They were 5 CEs, 2 
Cers, 1 FFA and 1 TAG (supplementary Table S7). ROC curves (Fig. 3B) and Z-score plot (Fig. 3C) of these lipids 
were generated and converged upon CEs. AUCs of the 5 CE species were 0.90–0.94, showing high discriminant 
power in distinguishing PCa from non-tumor (Fig. 3B, supplementary Table S7). CEs also exhibited greatest 
expression increases (10.5–45.5 folds) in PCT compared to ANT (supplementary Table S7). These results suggest 
that CEs may serve as potential biomarker candidates for PCa diagnosis.

We then explored links between lipid metabolites and PCa progression. Histopathological paradigms regard-
ing to Gleason Score (GS) grades and metastatic grades, i.e., localized, locally advanced and metastatic grade, 
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were investigated for potential lipidomic linkage. Among differentially expressed lipids, 9 lipid species (2 CEs, 6 
PUFAs and 1 PG) significantly correlated with GS grades (supplementary Table S8a) whereas 10 species (3 CEs 
and 7 TAGs) significantly correlated with metastatic grades (supplementary Table S8b). Accumulation of CE 
24:4 and CE 22:6 were significantly correlated with both GS and metastatic grades and exhibited most potent 
increases during PCa progression (Fig. 3D–I, supplementary Table S8). CE 24:4 level showed 48.5 folds increase 
in GS >  7 tumors and 149.9 folds increase in locally advanced as well as metastatic tumors compared to paired 
ANT (Fig. 3E,F, supplementary Table S8). The increase of CE 22:6 level were 23.6 and 46.7 folds, respectively 
(Fig. 3H,I, supplementary Table S8). These findings further supported CEs as potential biomarker candidates for 
PCa diagnosis and disease progression.

CEs accumulation may be attributed to SR-BI mediated CEs uptake. These findings led us to 
investigate the mechanisms of disruption in cholesterol homeostasis (Fig. 3J), which is modulated by processes 
including cholesterol biosynthesis, esterification, catabolism (steroidogenesis), influx, and efflux16,29. Gene 

Figure 2. Network-wide integrated pathways depicting fatty acid de novo biosynthesis/elongation/desaturation 
and uptake routes of extracellular PUFA (A) as well as phospholipid metabolism (B). Red, blue, black and grey 
colored are significantly increased, significantly decreased, unchanged, and undetected metabolite, or gene, or 
miRNA, respectively. In italics are gene names. LCFA, long chain fatty acid. Statistical significance was evaluated 
by Wilcoxon Signed-Rank test.
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expression of HMGCR (HMG-CoA reductase), the major committed gene in cholesterol synthesis (mevalonate 
pathway) was not changed (supplementary Fig. S5). In interconversion of free and esterified forms of cholesterol, 
SOAT1 (sterol O-acyltransferase 1) expression significantly increased whereas LIPE (lipase, hormone-sensitive) 
decreased (Fig. 3J). There was significantly increased gene expression of the ATP-binding cassette transport-
ers, ABCG1 (ATP-binding cassette, sub-family G, member 1) and ABCA1 (ATP-binding cassette, sub-family A, 
member 1), which are involved in lipid efflux30,31. In cholesterol influx, SCARB1 and related miRNAs32 includ-
ing has-miR-125a-5p/455-3p/455-5p were significantly increased and decreased, respectively (Fig. 3J). SCARB1 
encodes SR-BI, which is a key transporter in selective CEs uptake from high-density lipoproteins (HDLs) and is 
highly expressed in steroidogenic tissues33. These data suggested that, elevated esterification, attenuated lipolysis 
and enhanced influx via SR-BI might contribute to aberrant CEs accumulation. In particular, increased SCARB1 
is highly correlated with CEs accumulation (91.7% of overall prediction accuracy, evaluated by binary logistic 
regression analysis). Immunoblot showed that SR-BI was overexpressed in multiple PCa primary tumor tissues, 
compared to matched normal adjacent tissues (Fig. 3K). These data suggested SR-BI to be a key player in aberrant 
deposition of intratumoral CEs.

Validation of CEs as PCa biomarkers. Finally, we validated CEs accumulation in an external valida-
tion cohort. CEs remarkably accumulated in PCT versus ANT and BPH tissues (Fig. 4). Six CE species showed  
7.2–28.8 folds increase in PCT compared to paired ANT (all p values <  0.001), and 17.0–76.3 folds increase in 
PCT compared to BPH (all p values <  0.001). CEs robustly distinguished PCa from the non-malignant group 
(BPH and ANT) (AUCs =  0.84–0.91) (Table 2). The utility of CEs to discriminate PCT from BPH was weighed 
against that of PSA. CEs exhibited AUCs of 0.9–0.96, superior to PSA (AUC =  0.83) with greater specificity 
(0.81–1.0 vs. 0.69) (Table 2). Particularly, cholesteryl oleate (CE 18:1) showed highest AUCs in discriminant clas-
sification of PCT vs. non-malignance (AUC =  0.91, sensitivity =  0.78, specificity =  0.90) and PCT vs. BPH (0.96, 
0.90, 0.94) (Table 2). In addition, authentic standard of stable isotope labeled cholesteryl oleate is commercially 
available, which is a prerequisite for accurate absolute quantification and is required in large-scaled validation. 
Therefore, cholesteryl oleate represents the most promising marker and may serve as a complement to PSA in 
PCa detection. Our findings from both the discovery and validation cohorts indicate CEs may be potential bio-
markers for PCa diagnosis, with the most prominent potential of cholesteryl oleate.

Figure 3. CEs strikingly accumulated in PCa tumor tissues and significantly associated with prostate 
malignity progression. (A) Scheme of selecting most prominently elevated lipid species in PCa. (B) ROC 
curves of selected 9 lipids for differential diagnosis of PCT vs. ANT. (C) Z-score plot of selected 9 lipids. Z-value 
was calculated as (X-X)/SD after uv scaling. Blue dot and red circle represent ANT and PCT respectively. (D,G) 
Box plot of normalized intensity of CE 24:4 (D) CE 22:6 (G) in paired ANT and PCT. Intensity of CE species 
was normalized to internal standard (IS) TAG (15:0/15:0/15:0). (E,H) Box plot of PCT-to-ANT ratio of CE 24:4 
(E), CE 22:6 (H) in Gleason Score (GS) stages, i.e., GS <  7, GS =  7 and GS >  7. (F,I) Box plot of PCT-to-ANT 
ratio of CE 24:4 (F), CE 22:6 (I) in metastatic grades, i.e., localized, locally advanced +  metastatic. (J) Integrated 
pathway depicting dysregulated cholesterol homeostasis in PCa. Red, blue and grey colored are significantly 
increased, significantly decreased and undetected metabolite, or gene, or miRNA, respectively. In italics are gene 
names. Statistical significance was evaluated by Wilcoxon Signed-Rank test. (K) Immunoblot of endogenous 
SR-BI in four paired PCT (T) and ANT (N) samples. β -actin was used as a loading control.
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Discussion
Systematic elucidation of lipid metabolism and its underlying regulatory mechanism in tumorigenesis and pro-
gression is of critical significance. In this study, We investigated lipid metabolic alterations in PCa by integra-
tion of lipidomics and transcriptomics. Direct comparison of adjacent nontumor and tumor tissue counterparts 
enabled diminished potential effect derived from individual difference, thereby to facilitate the identification of 
etipathologically-relevant differential molecules. The availability of strictly enrolled tissue samples in prostatic 
specimen biobank allowed simultaneous profiling of lipidome, transcriptome and histopathological evaluation 
of same specimen. Although a large body of studies has been reported concerning lipid metabolism in PCa, they 

Figure 4. Box plot of metabolite level of 6 CE species in BPH, paired ANT and PCT tissues in validation 
set. CE was quantified by normalization to CE 13:0. (A) CE 18:1; (B) CE 20:1; (C) CE 22:6; (D) CE 24:4;  
(E) CE 24:5; (F) CE 28:5. Statistical significance was determined by Wilcoxon Signed-Rank test (PCT vs. ANT) 
or Mann-Whitney test (BPH vs. ANT, BPH vs. PCT).

discriminant diagnosis Variable AUC Std. Error

95% Confidence 
Interval

Sensitivity SpecificityLower Upper

PCT vs. (BPH +  ANT)

CE 18:1 0.91 0.03 0.86 0.97 0.78 0.90

CE 20:1 0.89 0.03 0.83 0.96 0.73 0.96

CE 22:6 0.86 0.03 0.79 0.92 0.73 0.81

CE 24:4 0.88 0.03 0.82 0.95 0.67 0.97

CE 24:5 0.88 0.03 0.81 0.94 0.71 0.94

CE 28:5 0.84 0.04 0.76 0.91 0.67 0.91

PCT vs. ANT

CE18:1 0.90 0.03 0.83 0.96 0.75 0.90

CE20:1 0.88 0.04 0.81 0.95 0.73 0.94

CE22:6 0.82 0.04 0.74 0.90 0.61 0.90

CE24:4 0.87 0.04 0.79 0.94 0.67 0.96

CE24:5 0.86 0.04 0.78 0.93 0.71 0.92

CE28:5 0.81 0.04 0.73 0.90 0.67 0.90

PCT vs. BPH

PSA 0.83 0.07 0.70 0.97 0.94 0.69

CE18:1 0.96 0.02 0.91 1.00 0.90 0.94

CE20:1 0.94 0.03 0.88 0.99 0.80 1.00

CE22:6 0.95 0.03 0.90 1.00 0.88 0.94

CE24:4 0.93 0.03 0.86 0.99 0.90 0.88

CE24:5 0.93 0.03 0.87 0.99 0.86 0.94

CE28:5 0.90 0.04 0.82 0.98 0.88 0.81

Table 2.  Statistical information of ROC analysis in validation set for discriminant diagnosis of PCT vs. 
combined BPH and ANT tissues, as well as PCT vs. ANT using CE species; and for discriminant diagnosis of 
PCT vs. BPH tissues using CE species and PSA.



www.nature.com/scientificreports/

8Scientific RepoRts | 6:20984 | DOI: 10.1038/srep20984

are predominantly performed on the genetic level and limited to a few lipid metabolites. To the best of our knowl-
edge, this is the first report of network-wide mapping of lipid metabolism in PCa by integrating lipidomics and 
transcriptomics data.

Firstly, a prevalence of abundance up-regulation was depicted in PCa lipidome (Fig. 1B), which was associ-
ated with exacerbated DNL (Fig. 2A) and phospholipids biosynthesis Kennedy pathway (Fig. 2B). “Lipogenic 
phenotype”25 is universally present in neoplastic transformation or progression of many human malignances and 
may be regulated by SREBP-1c and AMPK34. Fueled by activated DNL, biosynthesis of structural phospholipids 
for membrane architectures was enhanced in PCa (Fig. 2B). Besides provision of FA precursors for membrane 
biogenesis and energy storage required in highly proliferative tumor cells, neoplastic lipogenesis per se possess 
oncogenic nature in tumor growth and survival25.

Secondly, reprogrammed composition patterns were identified in FFA pool and membrane phospholipids 
(Fig. 1D–F), which was closely related to the activated PL remodeling (Fig. 2B). PL remodeling affects membrane 
fluidity and may be implicated in cancer cell signaling via caveolin or lipid rafts, and may affect chemotherapy 
outcomes35. The proportion of sn-2 arachidonoyl (20:4) containing PC in membrane component was reported 
inversely related to Akt (protein kinase B) activity by suppressing its phosphorylation36. Thus decreased PUFA% 
in PLs detected in our study (Fig. 1E,F and supplementary Table S4) might also impact the proliferation and 
survival of PCa tumor cells via Akt pathway. The major player in PL remodeling, PLA2s, participate in tumor pro-
liferation, invasion, metastasis and angiogenesis through cascade signaling37. The sPLA2 (secretory PLA2) over-
expression in androgen-independent PCa is previously reported38. Free PUFA was found enriched in both terms 
of abundance and its proportion (Fig. 1C), which may be largely from increased influx of lipoprotein PLs via 
SR-BI followed by enhanced PLA2s-mediated hydrolysis (Fig. 2A). In arachidonic acid (AA) metabolism, genes 
ALOX15B (arachidonate 15-lipoxygenase, type B) and PTGES3 (prostaglandin E synthase 3), involved in COX 
(cyclooxygenase) and LOX (lipoxygenase) pathways showed significantly increased expression in PCa (supple-
mentary Fig. S4), probably suggesting an enhanced synthesis of downstream bioactive metabolites. Interestingly, 
PUFA showed a high correlation with PCa aggressiveness (supplementary Table S8a). It may be attributed to 
pro-inflammatory eicosanoids derived from AA metabolism (prostaglandins and leukotrienes), which mediate 
cross-talk between neoplastic transformed cells and surrounding cells39.

Finally and also most importantly, CEs were found most prominently accumulated in PCT, and moreover, 
indicative of PCa progression. It was closely associated with dysregulated cholesterol homeostasis, in particular, 
SR-BI mediated CEs uptake. As a cholesterol reservoir, CEs accumulation avoids potential cytotoxicity of excess 
free cholesterol29 and may participate in intracrine steroidogenesis in castration-resistant PCa (CRPC)40. Elevated 
CEs may reflect enhanced lipid droplet biogenesis, which is implicated in inflammation and neoplastic transfor-
mation41. It was previously reported that CEs accumulation in PCa may be a consequence of PTEN loss and PI3K/
AKT/mTOR pathway activation, further regulating SREBP and increased cholesterol uptake via low density lipo-
protein receptor (LDLr)17. However, in our study, CEs accumulated in PCa biopsies without PTEN loss. Though 
PTEN loss is common in western PCa populations, it is infrequent in Chinese patients42. Therefore, alternative 
mechanisms circumventing PTEN loss but resulting in CEs accumulation may underlie PCa pathogenesis. Based 
on our findings and previous work implicating the role of SR-BI in PCa signaling43, SR-BI may represent a rational 
therapeutic target in PCa treatment.

Identification of novel molecular biomarkers for improved cancer diagnosis and prognosis, especially for 
effective discrimination of benign and malignant tumor, is significant for clinical research. In this study, CE spe-
cies effectively distinguished PCa from non-tumor in discovery set with 0.90–0.94 AUCs (Fig. 3B). It was further 
confirmed in external validation set with 0.84–0.91 AUCs (Table 2). Further, compared to PSA, CEs showed 
better discriminant capacity in classification of benign and malignant disease with 0.9–0.96 AUCs (Table 2). 
Specifically, cholesteryl oleate was highlighted as the most promising molecular marker with highest AUCs in 
distinguishing PCT from non-malignance or BPH (AUC =  0.91 and 0.96, respectively). The identification of 
potential diagnostic role of cholesteryl oleate may improve PCa detection in clinical setting.

In summary, by integrated study of lipidomics and transcriptomics (gene and miRNA expression), we have 
identified aberrant lipid metabolism in PCa carcinogenesis and progression, including widespread up-regulation 
of lipid abundance and reprogramming of lipid composition in distinct lipid pools, driven by activated lipogen-
esis, lipid uptake and phospholipids remodeling. Specifically, CEs were found most prominently accumulated in 
PCa and significantly associated with cancer progression, which was driven by enhanced CEs uptake via SR-BI. 
Further more, CEs were underscored as potential diagnostic biomarkers of PCa in both discovery and validation 
sets. In particular, cholestryl oleate was defined as the most promising marker with highest discriminant capacity 
and could be used as a complement to PSA. This finding may lead to improved PCa diagnosis and prognosis. 
Further studies are warranted to confirm CEs accumulation in large-scaled cohorts with special focus on cho-
lesteryl oleate, and to understand the precise regulatory mechanisms governing CEs accumulation. Besides, tissue 
samples are less-obtainable than biofluids, further studies are needed to know potential of the biofluid CEs as 
potential biomarkers. Additionally, development of non-invasive detection techniques of CEs such as imaging 
technique would be a more useful way for PCa diagnosis.

Methods
Chemicals. Liquid chromatography or mass spectrometry grade acetonitrile, isopropanol, methanol 
(MeOH), and chloroform (CHCl3) were purchased from Merck (Darnstadt, Germany). Ammonium acetate and 
methyl tert-butyl ether were purchased from Sigma-Aldrich (St. Louis, MO, USA). Ultrapure water was prepared 
by Milli-Q system (Millipore; Billerica, MA, USA). Lipid internal standards (IS) of phosphatidylcholine (PC) 
(19:0/19:0), phosphatidylethanolamine (PE) (17:0/17:0), lyso-phosphatidylcholine (LPC) 19:0, sphingomyelin 
(SM) (d18:1/12:0), triacylglycerol (TAG) (15:0/15:0/15:0), ceramide (Cer) (d18:1/17:0), free fatty acid (FFA) 
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16:0-d3, FFA 18:0-d3 and CE 13:0 were purchased from Avanti (Alabaster, AL, USA) or Sigma. Stock solutions of 
all standards were prepared in solvent CHCl3/MeOH =  2:1 and stored in − 20 °C before use.

Clinical prostatic specimens. All participants were treatment-naïve and enrolled from Shanghai 
Changhai Hospital (Shanghai, China) with written informed consent. The protocol of the study was approved by 
Institutional Review Board of the Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 
China. All experiments were conducted in accordance with the approved guidelines. All paired ANT and PCT 
tissues were obtained by radical prostatectomy. Among BPH tissues, nine were collected by radical prostatectomy 
from urinary bladder carcinoma patients with concomitant BPH while the remaining ten were obtained from 
BPH patients by laser surgery. Examination of H&E (hematoxylin and eosin stained) slides was performed for 
clinical-histological diagnosis. Sample quality was ensured by examination of H&E slides for high-density foci 
of tumor cells and absence of contamination from histopathologically normal tissue. Detailed information of 
all participants are provided in supplemental data (supplementary Table S1). All prostatic tissues were stored in 
− 80 °C until analysis.

Non-targeted lipidomics. Non-targeted LC-MS based lipidomics analysis of prostatic tissues was per-
formed as previously described with minor modifications44. Briefly, frozen prostatic tissues (8.5 ±  2.0 mg in 
discovery set, 9.4 ±  1.3 mg in validation set) were first spiked with IS solution (in MeOH) containing 8 lipid 
standards: LPC 19:0, SM (d18:1/12:0), Cer (d18:1/17:0), PE (17:0/17:0), PC (19:0/19:0), TAG (15:0/15:0/15:0), 
FFA 16:0-d3 and FFA 18:0-d3. The mixture was homogenized using ball mill (mixer mill MM400; Restch; Haan, 
Germany) followed by addition of methyl tert-butyl ether and one-hour shaking. After phase breaking using 
water, the up-layer was collected and freeze-dried. Samples were dissolved and spiked with CE 13:0 (in validation 
set) prior to analysis. Quality control (QC) samples were prepared by pooling equal amounts of lipid extracts 
from every sample, divided into aliquots.

A hyphenated liquid chromatography-mass spectrometry (LC-MS) system equipped with ACQUITYTM 
ultra-performance liquid chromatography (UPLC) (Waters; Milford, MA, USA) and AB Sciex tripleTOF 5600 
plus mass spectrometer (AB Sciex; Framingham, MA, USA) was employed for global lipidomics profiling. QC 
samples were analyzed every 8 samples within run.

Lipid identities were determined based on accurate mass, chromatographic retention and tandem mass 
spectrometry (MS/MS) fragmentation patterns, facilitated by software LipidviewTM (Version 1.2, AB Sciex). 
Nomenclature and abbreviations of lipid species followed the classification system proposed by LIPIDMAPS45.

Transcriptomics analysis. Transcriptomics analysis was performed by RNA-seq as previously described46.

Immunoblotting. Immunoblot analyses were performed utilizing standard methods. Briefly, cells were 
lysed in RIPA (radioimmunoprecipitation assay) buffer containing phosphatase inhibitors (Sigma). Proteins were 
separated by SDS-PAGE (sodium dodecyl sulphate-polyacrylamide gel electrophoresis) and transferred onto a 
polyvinylidene fluoride (PVDF) membrane (Bio-Rad; Hercules, CA, USA). Membranes were probed with spe-
cific primary antibodies and then with peroxidase-conjugated secondary antibodies. Bands were visualized by 
chemiluminescence (Thermo Scientific; Waltham, MA. USA). Antibodies used in this study were against SR-BI 
(1:300, Origene; TA507135S; Rockville, MD, USA), and β -actin (1:2000, Cell Signaling Technology, 4967; Beverly, 
MA, USA).

Data processing and Statistics. To describe lipid abundance, acquired signal intensity (peak area) of 
all lipid species were normalized to corresponding IS and tissue weights for relative quantification. Specifically, 
CE was quantified by normalization to IS CE 13:0 in validation set. To ensure the reliability of acquired lipid-
omics data, QC samples (n =  7) were used for evaluation of data quality. All lipid variables with a RSD <  20% 
in QCs were used for subsequent analysis. Lipid composition was calculated as percentage of a defined lipid 
(sub)class within entire lipidome. Fatty chain composition of phospholipid categories was calculated based on 
identified radyl substitutes, i.e., acyl/alkyl/alkenyl-side chains in lipid species. SIMCA-P 11.5 (Umetrics; Umeå, 
Sweden) was employed for multi-variable analysis, including principal component analysis (PCA) and par-
tial least squares-discriminate analysis (PLS-DA) with unit variance (uv) scaling. Heatmap visualization and 
statistics including Kruskal-Wallis test and Mann-Whitney test were conducted by the open-source software 
MultiExperiment Viewer (MeV, version 4.9.0)47. Wilcoxon Signed-Rank test and Z-score plot generation were 
performed by MATLAB (MathWorks; Natick, MA, USA). A p-value <  0.05 was set as statistically significant. 
Binary logistic regression analysis, Pearson correlation analysis and generation of ROC curves were performed 
by SPSS 13.0 for windows (IBM, Bethesda, MD, USA). Database resources KEGG48 and miRTarBase49 as well as 
published references were referred to for systematic integration of metabolic pathway networks containing lipid 
metabolites, genes and miRNAs.
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