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Abstract
Objectives To evaluate if artificial intelligence (AI) can discriminate recalled benign from recalled malignant mammographic
screening abnormalities to improve screening performance.
Methods A total of 2257 full-field digital mammography screening examinations, obtained 2011–2013, of women aged 50–69
years which were recalled for further assessment of 295 malignant out of 305 truly malignant lesions and 2289 benign lesions
after independent double-reading with arbitration, were included in this retrospective study. A deep learning AI system was used
to obtain a score (0–95) for each recalled lesion, representing the likelihood of breast cancer. The sensitivity on the lesion level
and the proportion of women without false-positive ratings (non-FPR) resulting under AI were estimated as a function of the
classification cutoff and compared to that of human readers.
Results Using a cutoff of 1, AI decreased the proportion of women with false-positives from 89.9 to 62.0%, non-FPR 11.1% vs.
38.0% (difference 26.9%, 95% confidence interval 25.1–28.8%; p < .001), preventing 30.1% of reader-induced false-positive
recalls, while reducing sensitivity from 96.7 to 91.1% (5.6%, 3.1–8.0%) as compared to human reading. The positive predictive
value of recall (PPV-1) increased from 12.8 to 16.5% (3.7%, 3.5–4.0%). In women with mass-related lesions (n = 900), the non-
FPR was 14.2% for humans vs. 36.7% for AI (22.4%, 19.8–25.3%) at a sensitivity of 98.5% vs. 97.1% (1.5%, 0–3.5%).
Conclusion The application of AI during consensus conference might especially help readers to reduce false-positive recalls of
masses at the expense of a small sensitivity reduction. Prospective studies are needed to further evaluate the screening benefit of
AI in practice.
Key Points
• Integrating the use of artificial intelligence in the arbitration process reduces benign recalls and increases the positive
predictive value of recall at the expense of some sensitivity loss.

• Application of the artificial intelligence system to aid the decision to recall a woman seems particularly beneficial for masses,
where the system reaches comparable sensitivity to that of the readers, but with considerably reduced false-positives.

• About one-fourth of all recalled malignant lesions are not automatically marked by the system such that their evaluation (AI
score) must be retrieved manually by the reader. A thorough reading of screening mammograms by readers to identify
suspicious lesions therefore remains mandatory.
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Abbreviations
AI Artificial intelligence
CI Confidence interval
CR Computed radiography
DCIS Ductal carcinoma in situ
PPV-1 Positive predictive value of recall
RSI Reference standard information

Introduction

Asmore deep learning–based artificial intelligence (AI) mam-
mography screening tools enter the clinical market, greater
focus will be placed on scientific validation in diverse settings
[1]. In digital mammography reader studies, AI demonstrated
the ability to significantly reduce radiologists’ workload, im-
prove specificity, and reach a cancer detection rate compara-
ble to radiologists [1–6].

However, clinical validation is lacking, and it is not clear how
the power of deep learning should be used to optimize practice
[7]. Most of the previous works were based on retrospectively
selected, cancer-enriched data sets that do not reflect the setting
of a population-based screening program in practice, where can-
cer prevalence is much lower [8]. Translation of retrospective
findings resulting from a particular experimental setting to differ-
ent steps of the screening process remains mainly unclear [9].
Furthermore, only few studies took the localization accuracy of
the AI system into account, to verify that a location-level false-
positive and false-negative finding on the same mammogram do
not result in a true-positive rating on the image level [6, 8, 10].

False-positive results are one negative side effect of mam-
mography screening [11, 12]. As most screening examina-
tions are finally negative, AI might be useful to increase the
specificity and positive predictive value of recall (PPV-1) by
reducing reader-induced false-positive results [10]. In
Germany, independent double-reading with arbitration results
in up to 25% of all examinations being discussed in a consen-
sus conference by the first and second reader together with a
third reader. Most of the cases discussed are dismissed during
the arbitration process leading to recommendation of regular
biennial screening. Finally recall recommendation is given in
41 out of 1000 women screened, to diagnose 6 women with
breast cancer [13, 14]. In contrast, in the Netherlands, a lower
recall rate of 21 out of 1000 women screened is reported
together with a comparable cancer detection rate [15].

There is no evidence from the literature how AI may help
guiding human decision during the arbitration process on
whether a suspicious mammographic lesion requires further
diagnostic workup. Before using AI prospectively with the
aim to lower false-positive recalls, it seems mandatory to sci-
entifically evaluate its performance retrospectively in a real-
world dataset of consecutive recall examinations from a

population-based screening program. The subset of women
that undergo recall assessments provides particularly high-
quality data with accurate lesion-based ground-truth labels
due to further imaging procedures, histologic workup (if indi-
cated) and 2-year follow-up for interval cancers.

The purpose of the study is to evaluate if a deep learning–
based AI system can discriminate benign from malignant mam-
mographic screening abnormalities that led to recall recommen-
dation following double-reading with arbitration, to reduce as-
sessments of benign findings and increase the PPV-1.

Materials and methods

This retrospective study was conducted with consecutive dig-
ital mammographic screening examinations obtained between
2011 and 2013 at the Reference Screening Unit Muenster,
Germany. The study was approved by the local ethics com-
mittee (Ärztekammer Westfalen-Lippe and University of
Muenster, Germany). Informed consent was not required for
the evaluation of internal anonymized data.

Screening setting

The national mammography screening program inGermany is
based on European guidelines [13]. The target population in-
cludes women aged 50 to 69 years who are invited biennially.
The program comprises masked independent readings of two-
view 2D digital mammograms by two certified physician
readers. Qualifications have been described in detail else-
where [16]. Prior to recall recommendation, suspicious find-
ings of one or both readers have to be discussed in a consensus
conference (arbitration process) by both readers together with
a third physician, who performs the centrally organized as-
sessment [17].

Study setting

During the screening period 2011 to 2013, a total of 41,722
digital mammography examinations were obtained by two
vendors (MicroDose Mammography (L30), Philips Medical
Systems; Inspiration, Siemens Healthineers). Five readers
with more than five years of experience in breast imaging
performed the independent double readings. Recall recom-
mendation was finally given at the consensus conference in
2957 women. Screening data of recalled women (including
breast density, radiological lesion features assessed at the con-
sensus conference and assessment reports), documented at the
time of screening, were retrospectively derived from the
screening documentation software MaSc.

One hundred thirty-four (0.3%) of all recall recommenda-
tions were based on clinical or technical reasons and were
excluded from this study. Two thousand eight hundred
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twenty-three (6.7%) recalls resulted from mammographic ab-
normalities. Of the 2,823 mammographic recalls, 566 were
excluded due to computed radiography (CR) technique (n =
436), breast implants (n = 2), loss to assessment (n = 26), or
missing reference standard information (RSI) (n = 102),
resulting in 2257 examinations included in the study
(Fig. 1). The RSI included assessment participation with bi-
lateral ultrasound plus, if indicated, additional mammographic
views, the completion of follow-up examinations and invasive
procedures (e.g., additional breast surgery after minimally in-
vasive tissue sampling), and the information of the cancer
registry on interval cancers. Interval cancers were defined as
invasive breast cancers and ductal carcinoma in situ (DCIS)
occurring within 24 months after negative screening partici-
pation. Histological evaluation after minimal invasive biop-
sies within the screening program were performed by three
certified pathologists [16], with 5 to > 15 years of experience
in breast pathology.

Performance evaluation of human readers and AI

For study purposes, recalled mammographic lesions were de-
fined malignant (i.e., reader true-positive), if a histologically
confirmed invasive breast cancer or DCIS was diagnosed at
the specific lesion location (defined at the consensus confer-
ence) within the screening program (recall assessment) or the

24-month interval after a negative assessment. Otherwise,
recalled lesions were defined benign (i.e., reader false-
positive).

Therefore, each recalled lesion was relocated by one of the
screening readers in the corresponding screening mammo-
grams based on the original screening documentation. The
AI software Transpara (version 1.5.0, ScreenPoint Medical)
was used to obtain a region-based integer-valued score (0, 27,
28,…, 95) for each recalled lesion. This was realized either by
automatically placed lesion marks or, if not automatically
marked by AI, by manually clicking on the lesion in order to
obtain a circle around the lesion (varying lesion-dependent in
size). The software is a commercial product using deep learn-
ing convolutional neural networks to automatically detect re-
gions suspicious of breast cancer in mammograms [3, 4, 18].
Version 1.5.0 of the software was trained and tested based on
a proprietary database of approximately 200,000 2Dmammo-
grams (including 10,000malignant and 5,000 benign), includ-
ing images from devices of five different vendors (Hologic,
Siemens Healthineers, GE Healthcare, Philips, Fujifilm
Healthcare) collected at multiple institutions across Europe,
the USA, and Asia. For each automatically detected finding
in a mammogram, the software (internally) assigns a score
from 1 to 100. For AI findings that are graded 95–100, a score
of 95 is displayed for the user. For AI findings that are graded
1–26 and all regions without AI findings, no score is

Fig. 1 Flow chart of screening
examinations selected for the
study. The ground truth in terms
of cancer presence was
determined based on
histopathology and/or 24-month
follow-up. Recalled malignant:
malignant lesion detected by
independent double reading and
arbitration with recall
recommendation (i.e., reader true-
positive); recalled benign: benign
lesion suspicious for malignancy
after independent double reading
with arbitration (i.e., reader false-
positive); additional malignant:
malignant lesion detected during
assessment or 24-month interval
after negative assessment, not
marked for recall during
consensus conference
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displayed. Recalled lesions for which no score was displayed
were therefore assigned a value of 0 (Fig. 2a–c). If a lesion
was visible in both views (cranio-caudal, medio-lateral-
oblique), the higher score was used for the evaluation. Based
on the (internal) region scores, the software always displays an
overall score between 1 and 10 for the whole examination (not
considered in the evaluation). We performed a lesion-based
analysis using the specific region score of each recalled lesion
to account for potential location-level false-positives and
false-negatives (Fig. 2c–d). For each possible cutoff 0, 1,
27,..., 96, recalled malignant and recalled benign lesions for
which the AI score exceeded the respective cutoff were eval-
uated as AI true-positives and false-positives, respectively.
Recalled malignant and recalled benign lesions for which
the score did not exceed the cutoff were evaluated as AI
false-negatives and true-negatives, respectively.

Further, malignant lesions of recalled patients that were
additionally detected during assessment or the 24-month

interval after a negative assessment (independent of a visibil-
ity on the screening mammogram) were generally evaluated
as false-negatives in all sensitivity calculations (both under
human and AI reading).

As each recalled women can be affected by more than one
mammographic lesion, false-positives can occur both in breast
cancer–negative and in breast cancer–positive women.

Statistical analyses

Following the free-response paradigm [19], the primary end-
points of the study were:

& the proportion of women without any false-positive rat-
ings out of all women (including women with true-
positive lesions), termed non-false-positive rate (non-
FPR), and

Fig. 2 Full-field digital screening mammographic views of two breast
cancer–negative women (a, b) and a breast cancer–positive woman (c–
d) from the study sample. a Recalled density depicted by the right medio-
lateral-oblique view of the screening mammogram. Assessment
confirmed a benign focal asymmetry (reader false-positive). The
software did not mark the lesion and did not display a lesion-specific
score. The score was therefore evaluated as 0. b Recalled round mass,
indistinct margin, located in the medial quadrants of the left breast shown
in the cranio-caudal view. Assessment including minimal invasive biopsy
confirmed a fibroadenoma (reader false-positive). The software did not

mark the lesion and did not display a lesion-specific score (evaluated as
0). c Recalled architectural distortion located in the lateral quadrants of
the right breast shown in the cranio-caudal view. Assessment confirmed
an invasive breast cancer (no special type, pT1c, pN1a, cM0, G1) (reader
true-positive). The software missed the invasive cancer (lesion-specific
score evaluated as 0), but instead marked amorphous calcifications (not
recalled by readers and therefore not included in the evaluation) related to
benign changes (d). The lesion-specific score of the calcification was 42
resulting in a high overall score of 9
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& the related lesion-specific sensitivity, defined as propor-
tion of detected malignant lesions (i.e., true-positives) out
of all malignant lesions.

Notice that the non-FPR is in principle a specificity mea-
surement adapted to the situation of (possibly) multiple le-
sions per patient. The primary endpoints were estimated as a
function of the classification cutoff for the AI score. A two-
sided 95% confidence interval (CI) according to Tango [20]
was obtained to estimate the difference in the non-FPRs
resulting under human and targeted AI reading based on the
cutoff of 1 that led to the lowest decrease in the lesion-specific
sensitivity, while increasing the non-FPR under AI reading as
compared to human reading. The non-FPRs were compared
using McNemar’s Test. Furthermore, a 95% CI for the differ-
ence in the lesion-specific sensitivities was calculated by non-
parametric bootstrap. A 95% CI for the difference in the PPV-
1 was determined using the Kosinski method [21]. Sensitivity
and non-FPRwere additionally analyzed in the two subgroups
of women with reader-identified mass- or calcification-related
lesions (with these lesions potentially showing additional le-
sion type characteristics, e.g., calcification + asymmetry).

Women with at least one lesion not presenting as mass or
calcification, respectively, were not included in the subgroups.

Statistical analyses were performed with R, version 4.0.2.
p values were interpreted in Fisher’s sense, representing a
metric weight of evidence against the null hypothesis of no
effect. p < .05 was considered noticeable.

Results

In total, 2257 women recalled for further assessment of
295 malignant and 2289 benign mammographic lesions
were included (Fig. 1). Nine of these women were affected
by 10 additional malignant lesions, 5 of which were detect-
ed during assessment, and 5 of which were detected as
interval cancers during the 24-month follow-up interval
(outside the screening program). Out of all recalled wom-
en, 293 were breast cancer positive (13.0%) and 1964 were
breast cancer negative (87.0%). A screening-detected
breast cancer (i.e., detection of at least one malignant le-
sion already identified during the arbitration process or
during assessment) was diagnosed in 288 of the breast

Table 1 Characteristics of the study sample and mammography data included in the study

Variable All recalled women included Women with
screening-detected
breast cancer

Women without breast
cancer (incl. 2-year follow-up)

Women with an interval
cancer (in 2-year follow-up)

Number (N) 2257 288 1964 5

Age (years)

50–54 1180 (52.3) 86 (29.9) 1093 (55.7) 1 (20.0)

55–59 409 (18.1) 67 (23.3) 340 (17.3) 2 (40.0)

60–64 384 (17.0) 70 (24.3) 314 (16.0) 0 (0.0)

65–69 284 (12.6) 65 (22.6) 217 (11.0) 2 (40.0)

Screening round

First 949 (42.0) 71 (24.7) 877 (44.7) 1 (20.0)

Subsequent 1308 (58.0) 217 (75.3) 1087 (55.3) 4 (80.0)

Mammography device

Philips Microdose (L30) 1512 (67.0) 190 (66.0) 1318 (67.1) 4 (80.0)

Siemens Inspiration 745 (33.0) 98 (34.0) 646 (32.9) 1 (20.0)

Breast density category analogue to BI-RADS 4th ed.

1 38 (1.7) 7 (2.4) 31 (1.6) 0 (0.0)

2 588 (26.1) 85 (29.5) 502 (25.6) 1 (20.0)

3 1491 (66.0) 172 (59.7) 1315 (67.0) 4 (80.0)

4 140 (6.2) 24 (8.3) 116 (5.9) 0 (0.0)

Surgical therapy

Breast conserving therapy – 248 (86.1) – 0 (0.0)

Mastectomy – 21 (7.3) – 0 (0.0)

No surgery – 4 (1.4) – 0 (0.0)

Missing – 15 (5.2) – 5 (100)

Data are presented as absolute frequencies with percentages in parentheses

The ground truth in terms of cancer presence was determined based on histopathology and/or 24-month follow-up
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cancer positive women. Four of these women (2 of which
were recalled for a malignant lesion, 2 of which were
recalled for benign lesions only) were affected by at least
one additional malignant lesion detected during assess-
ment. An interval cancer occurred in 5 women, which were
all recalled for a benign lesion only. Of the 2584 recalled
lesions, 295 were malignant (11.4%), corresponding to 286
of 293 breast cancer positive women, and 2289 (88.6%)
were benign, corresponding to 1,964 women without and
43 women with breast cancer. Patient- and lesion-specific
characteristics are summarized in Tables 1 and 2. Four of
five malignant lesions diagnosed during interval (80%)
were considered to be true interval cancers without signs
of malignancy on the screening mammogram (Table 3).

Performance of original human reading

The lesion-specific sensitivity of independent double reading
with arbitration was 96.7% (295 of 305 malignant lesions). In
total, 11.1% (250 of 2257 women) had no false-positive rat-
ing. The PPV-1 was 12.8% (288 of 2257 women) (Table 4).

Performance of targeted AI reading

The distribution of recalled malignant and benign lesions as a
function of the AI score is shown in Fig. 3. Of the 295 reader-

detected malignant lesions, 105 (35.6%) were rated with a
score exceeding 90, whereas 278 (94.2%) were rated higher
than 0. The remaining 17 reader-detected malignant lesions
(5.8%) were all rated with a score of 0 (see, e.g., Fig. 2c). In
contrast, 761 (33.2%) of the 2289 recalled benign lesions
(reader false-positives) were assigned a score of 0 (see, e.g.,
Fig. 2a–b) and 1528 (66.8%) were rated higher than 0. When
activating the lesion localization function of the AI system,
223 of the 295 recalled malignant lesions (75.6%) and 522 of
the 2289 recalled benign lesions (22.8%) were automatically
marked.

The lesion-specific sensitivity and corresponding non-FPR
of the AI system resulting under varying cutoffs for the AI
score are shown in Fig. 4. Consistent with the results from
Fig. 3, a cut off of 1 yielded the lowest decrease in the
lesion-specific sensitivity from 96.7% (295 of 305 malignant
lesions) to 91.1% (278 of 305 lesions), while increasing the
non-FPR from 11.1% (250 of 2257 women) to 38.0% (857 of
2257 women) (difference: 26.9%; 95% CI 25.1–28.8%; p <
.001) as compared to human reading (Table 4). The non-FPR
improvement achieved by AI translated into an increase of the
PPV-1 from 12.8% (288 out of 2257 women) to 16.5% (272
of 1649 women) (Table 4) and a reduction of 30.1% (592 of
1969 women) of reader-induced false-positive recalls.

Of the 295 reader-detected malignant lesions, 17 (5.8%)
were missed by the AI system, corresponding to 17 women.

Table 2 Characteristics of the mammography lesions of the study sample

Variable All recalled lesions Recalled
benign lesions

Recalled
malignant lesions

Malignant lesions
detected during
assessment or interval

Number (N) 2584 2289 295 10

Category analogue to BI-RADS 4th ed.

4a 2371 (91.8) 2221 (97.0) 150 (50.8) –

4b 169 (6.5) 67 (2.9) 102 (34.6) –

5 44 (1.7) 1 (0.04) 43 (14.6) –

Histological type

Invasive breast cancer – – 203 (68.8) 8 (80.0)

Ductal carcinoma in situ – – 92 (31.2) 2 (20.0)

Findings of lesion characteristic at the consensus conference 2985 2571 414

Mass 1098 945 153 –

Calcifications 820 651 169 –

Asymmetry 115 101 14 –

Architectural distortion 220 160 60 –

Density 732 714 18 –

Data are presented as absolute frequencies with percentages in parentheses

Three hundred seventy-seven of the 2584 recalled lesions showed more than one lesion type characteristic at the consensus conference. Five additional
malignant lesions, corresponding to 4 women, were detected during assessment (2 ultrasound detected, presenting as masses and corresponding to 2
women with additional recalled malignant mass lesion; 2 ultrasound detected and 1MRI-detected, all without mammographic sign and corresponding to
2 women with additional recalled benign lesions only) and 5 were detected during the 24-month interval after a negative assessment (4 true interval
cancer; 1 cancer with minimal sign)
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One of these women was affected by a further malignant le-
sion detected by AI, resulting in 16 breast cancer diagnoses
that were lost on the patient level. Missed lesions included 7
(41.2%) DCIS (7.6% of all recalled DCIS lesions) and 10
(58.8%) invasive cancers (5.2% of all recalled invasive le-
sions) and were primarily characterized by mammographic
signs of lower suspicion of malignancy. The majority of these
lesions (70.6%) presented as calcifications (Table 3).

AI performance was highest in the subgroup of 900 women
(39.9%) with mass-related lesions (lesion-specific sensitivity
of original vs. AI reading: 97.8% vs. 96.4% [135 vs. 133 of
138 lesions]; non-FPR: 14.2% vs. 36.7% [128 vs. 330 of 900
women]), while it was low in the subgroup of 660 (29.2%)

women with calcification-related lesions (lesion-specific sen-
sitivity: 98.1% vs. 91.7% [154 vs. 144 of 157 lesions]; non-
FPR: 21.2% vs. 34.8% [140 vs. 230 of 660 women] original
vs. AI reading) (Table 4).

Discussion

We assessed the diagnostic performance of a deep learning
artificial intelligence (AI) system to predict malignancy of
2D mammographic lesions that led to a recall recommenda-
tion by independent double-reading with arbitration based on
a real-world dataset of consecutive examinations from a

Table 3 Characteristics of malignant lesions detected during assessment or interval and of recalled malignant lesions detected or missed by the AI
system using a cutoff of 1

Variable Detected by
readers and AI

Detected by readers
and missed by AI

Detected during
assessment

Detected
during interval

Number (N) 278 17 5 5
Category analogue to BI-RADS 4th ed.
4a 135 (48.6) 15 (88.2) – –
4b 100 (36.0) 2 (11.8) – –
5 43 (15.5) 0 (0.0) – –
AI score* 82 (39.0) 0 (0.0) – –
≥ 1 278 (100) 0 (0.0) – –
< 1 0 (0.0) 17 (100) – –
Marked by AI lesion localization function
Yes 223 (80.2) 0 (0.0) – –
No 55 (19.8) 17 (100) – –
Findings of lesion characteristic at the consensus conference 391 23
Mass 151 2 – –
Calcifications 157 12 – –
Asymmetry 11 3 – –
Architectural distortion 56 4 – –
Density 16 2 – –
Interval cancer classification
True – – – 4 (80.0)
Minimal sign – – – 1 (20.0)
T (tumor)
Tis (in situ) 86 (30.9) 7 (41.2) 2 (40.0) 0 (0.0)
T1 165 (59.4) 9 (52.9) 3 (60.0) 5 (100)
T2 21 (7.6) 0 (0.0) 0 (0.0) 0 (0.0)
T3 1 (0.4) 0 (0.0) 0 (0.0) 0 (0.0)
T4 1 (0.4) 0 (0.0) 0 (0.0) 0 (0.0)
Unknown 4 (1.4) 1 (5.9) 0 (0.0) 0 (0.0)
N (lymph nodes)
N0 231 (83.1) 15 (88.2) 4 (80.0) 5 (100)
N1 32 (11.5) 1 (5.9) 1 (20.0) 0 (0.0)
N2 4 (1.4) 0 (0.0) 0 (0.0) 0 (0.0)
N3 1 (0.4) 0 (0.0) 0 (0.0) 0 (0.0)
Unknown 10 (3.6) 1 (5.9) 0 (0.0) 0 (0.0)
M (metastasis)
Negative 266 (95.6) 16 (94.1) 5 (100) 5 (100)
Positive 2 (0.7) 0 (0.0) 0 (0.0) 0 (0.0)
Unknown 10 (3.6) 1 (5.9) 0 (0.0) 0 (0.0)

Data are presented as absolute frequencies with percentages in parentheses

Ninety-eight lesions detected by readers and AI, and 5 lesions detected by readers and missed by AI showed more than one lesion type characteristic at
the consensus conference. Of the 5 lesions detected during assessment, 2 were ultrasound detected, presenting as masses and corresponding to 2 women
with additional recalled malignant mass lesion. The remaining 3 lesions were ultrasound- (2) and MRI-detected (1), all without mammographic
abnormality and corresponding to 2 women with additional benign findings only. Four out of 5 malignant lesions diagnosed during the 24-month
interval after a negative assessment were true interval cancers not visible on the screening mammogram. For lesions with neoadjuvant therapy (n = 12),
the clinical TNM classifications were used

*Data are median (interquartile range)
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population-based screening program. Using the cutoff with
lowest sensitivity loss, the AI system notably increased the
proportion of women without false-positive ratings from
11.1 to 38.0% and improved the positive predictive value of
recall (PPV-1) from 12.8 to 16.5% as compared to original
human reading with arbitration. The improvement was ob-
served at the expense of a sensitivity reduction on the lesion
level from 96.7 to 91.1% (17 out of 295 reader-detected ma-
lignant lesions were missed by AI).

Several studies demonstrated the ability of AI to achieve
better or comparable diagnostic performance to that of an
average radiologist [10, 18], to improve radiologists’ perfor-
mance when used in decision aid in a single-reading setting [3,
5, 6], or to reduce reading workload [4]. As false-positive
results are an inherent risk of screening, causing additional
diagnostic work-up, anxiety, and distress for the women in-
volved [11, 12], the specificity and PPV-1 are important per-
formance indicators of a screening program [13]. AI might
help to increase these parameters.

Consistent with the literature [14], the majority of recalled
women in our study sample were relatively young (50–54 years)
and had heterogeneous breast tissue (ACR 3). The PPV-1 was
12.8%, which is in the middle field of ranges reported for other
European countries (9.8–29%) [15, 22], and in line with the
PPV-1 of the national screening program [14].

We focused on a lesion-based AI evaluation. More than
90% of recalled lesions were categorized by readers as low
suspicious of malignancy (BI-RADS analogue 4a). The most
frequent lesion characteristics (by decreasing frequency) were
masses, calcifications, and densities. The majority of malig-
nant lesions presented as calcifications and masses. Using a
cutoff of 1, AI missed none of the 44 recalled malignant le-
sions categorized as highly suspicious (BI-RADS analogue 5).
Most of the missed lesions were categorized as BI-RADS 4a
(15 of 17) and presented as calcifications (12 of 17).

When focusing on the subgroup of women with mass-
related lesions, sensitivity dropped from 97.8 to 96.4% (2
out of 135 reader-detected malignant lesions were missed),
while the proportion of women without false-positive ratings
increased from 14.2 to 36.7%.

To our knowledge, this is the first study evaluating targeted
use of AI as a decision tool to discriminate benign from ma-
lignant mammographic lesions to guide indications for further
mammography-related assessment. A particular strength of
the study is the use of high-quality data of consecutive recalls
from a population-based screening program with accurate
lesion-based ground-truth labels obtained from standardized
assessment and 2-year follow-up for interval cancers.

In a related study of Aboutalib et al. [23], a convolutional
neural network was able to discriminate recalled benign mam-
mographic images from negative exams and those with ma-
lignancy, suggesting that certain imaging features, potentially
not identifiable by human readers, might induce false-positive
recalls [23]. Due to the high complexity of deep neural net-
works, they could currently not further visualize these imag-
ing features, providing a thorough clinical interpretation of
them—interpretability of deep learning models is still one of
the key challenges in AI research [24]. Furthermore, they did
not assess how the performance of their system compares to
that of radiologists on the same datasets.

In our study, the lesion localization function of the AI system
automatically marked 75.6% of all recalled malignant lesions.
Readers should be aware that subtle mammographic lesions
found by trained readers are not automatically displayed by AI
in about one-fourth of all recalled malignant lesions. Therefore, a
thorough reading of screening mammograms by humans is not
only required by law, but also necessary in view of the study
results. If a suspicious lesion is detected by human reading, the
AI system might be used to modify the final decision depending
on the lesion-based score. This resulted in 5.8% of the reader-

Table 4 Performance measures
of original human reading and
targeted AI reading using a cutoff
of 1 in the total cohort and in
subgroups

Performance measure Original human reading Targeted AI reading Difference (95% CI)

Total cohort (n = 2257 women)
Lesion-specific sensitivity 96.7% 91.1% 5.6% (3.1%, 8.0%)
Non-FPR 11.1% 38.0% 26.9% (25.1%, 28.8%)
PPV-1 12.8% 16.5% 3.7% (3.5%, 4.0%)

Subgroup of women with mass-related lesions (n = 900 women)
Lesion-specific sensitivity 97.8% 96.4% 1.4% (0.0%, 3.5%)
Non-FPR 14.2% 36.7% 22.4% (19.8%, 25.3%)
PPV-1 14.9% 18.9% 4.0% (3.7%, 4.4%)

Subgroup of women with calcification-related lesions (n = 660 women)
Lesion-specific sensitivity 98.1% 91.7% 6.4% (3.1%, 10.8%)
Non-FPR 21.2% 34.8% 13.6% (11.2%, 16.5%)
PPV-1 22.9% 25.1% 2.3% (1.7%, 2.8%)

Lesion-specific sensitivity: proportion of detected malignant lesions; non-FPR: proportion of women without any
false-positive ratings out of all women; PPV-1: positive predictive value of recall; 95% CI: 95% confidence
interval
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detected malignant lesions to be missed (score 0), but in turn
prevented 30.1% of false-positive recalls in our study.

This study is not without limitations. Although we used con-
secutive screens reflecting the screening population of recalled
women in practice, our findings might be limited by the use of

retrospective exams of one screening unit. Furthermore, in clin-
ical practice, it can be expected that the AI systemwould be used
to guide the final decision of radiologists to recall a patient, rather
than as a stand-alone step on which the decision would be based
on. Prospective studies to address this issue are desirable to

Fig. 3 Distribution of recalled malignant (a) and recalled benign (b) lesions as a function of the AI score, representing the likelihood of breast cancer (0,
27, 28, …, 95).
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estimate the effect of using AI in a key decision process of a
mammography screening program.

The retrospective study was not designed to test a potential
increase in cancer detection or false-positive recalls, as AI was
not applied to all cases discussed during consensus conference.
The reported performance measures are therefore related to a
specific study setting.

In contrast to theAI system used in this study, radiologists had
access to prior exams (not processed by the current AI version), if
available, that could have impacted their decision to recall a
patient. Future software developments as the inclusion of priors
might improve the diagnostic performance of the AI system.

In conclusion, the AI system was able to increase discrim-
ination of recalled benign from recalled malignant lesions,
thereby increasing the positive predictive value of recall at
the expense of some sensitivity loss. Whether this loss of
sensitivity can be traded off for a reduction in false-positive
recall is an important clinical consideration which cannot be
answered by the study as those early-stage cancers might be
relevant to improve survival. Application of the AI system to
aid the decision to recall a woman seems, however, beneficial
especially for masses, where the system reached comparable
sensitivity to that of the readers, but with considerably reduced

false-positives. Prospective clinical studies are needed to in-
vestigate to which extent the potential benefits of AI in breast
cancer screening translate into clinical practice.
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