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Abstract

We test whether locomotor posture is associated with body mass and lower limb length in

humans and explore how body size and posture affect net joint moments during walking.

We acquired gait data for 24 females and 25 males using a three-dimensional motion cap-

ture system and pressure-measuring insoles. We employed the general linear model and

commonality analysis to assess the independent effect of body mass and lower limb length

on flexion angles at the hip, knee, and ankle while controlling for sex and velocity. In addi-

tion, we used inverse dynamics to model the effect of size and posture on net joint moments.

At early stance, body mass has a negative effect on knee flexion (p < 0.01), whereas lower

limb length has a negative effect on hip flexion (p < 0.05). Body mass uniquely explains

15.8% of the variance in knee flexion, whereas lower limb length uniquely explains 5.4% of

the variance in hip flexion. Both of the detected relationships between body size and posture

are consistent with the moment moderating postural adjustments predicted by our model. At

late stance, no significant relationship between body size and posture was detected.

Humans of greater body size reduce the flexion of the hip and knee at early stance, which

results in the moderation of net moments at these joints.

Introduction

The loading of the musculoskeletal system during locomotion and the metabolic cost of loco-

motion are primarily determined by muscle force production required to support, propel, and

control the balance of the body and move the limbs [1–11]. The force that has to be generated

by muscles during terrestrial locomotion is primarily affected by morphological and gait char-

acteristics, terrain, and surface properties [4,9,12–15]. Body mass and lower limb length were

shown to be positively related to muscle force requirements. With greater body mass, muscles

have to produce greater forces to support the body weight [3,16], whereas longer lower limb

prolongs the moment arms of the joint reaction forces and increases the moment of inertia of

the lower limb segments [17]. The reported negative effect of lower limb length on metabolic

cost of locomotion [18–20] is likely a consequence of the covariation between lower limb

length and parameters such as step length, stance time [3,9,21], and muscle moment arm
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lengths [22]. Muscle moment arm lengths are negatively related to muscle force production

and consequently to locomotor cost (but see [23]) and bone loading [2,24]. The locomotor

muscle force demands are significantly affected also by gait characteristics such as stance time

[3], posture (i.e., the position of body segments relative to each other and to the ground) [2],

and generally by velocity which affects both the stance time and posture [3,7,25]. Stance time

has been shown to be inversely related to muscle force demands [3,8] as was more extended

posture due to its effect on moment arms of the joint reaction forces [2]. Prolonged stance

time and adoption of more extended posture could thus be viable mechanisms for moderation

of increased muscle force demands of animals with greater body mass and/or lower limb

length [2,3]. Although, such moderating relationship between body size and posture in partic-

ular have been demonstrated at an interspecies level [2,26], the evidence for its presence within

species is contradictory, which may be partly due to insufficient control of other posture-

affecting factors.

Among a phylogenetically diverse sample of mammals ranging from rodents to ungulates,

species of greater body size keep their limbs more extended during the stance phase of locomo-

tion [2,27]. Contradictory results come from studies of taxonomically narrow and phylogeneti-

cally close mammal groups, however, such as within families. The significant relationship

between body size and posture was detected among terrestrial monkeys [28,29]. Particularly,

Polk [28] reported that larger Cercopithecinae monkeys (Chlorocebus aethiops, Erythrocebus
patas, and Papio anubis) had more extended elbow and shoulder joints at mid stance during

walking, whereas Patel et al. [29] reported that older, heavier baboons (Papio hamadryas ursi-
nus) tend to walk with more extended knees. In contrast, no relationship between body size

and posture was detected among cats (Felidae) [30] or elephants (Elephantidae) [31], despite

great variation in body size in both samples (46-fold and seven-fold body size range,

respectively).

The effect of body size on human locomotor mechanics is understudied and unclear. Few

studies have detected a relationship between body size and locomotor posture, but these stud-

ies were either not supported by others or did not control for other factors affecting posture.

In humans, more extended lower limbs during the stance phase of walking were associated

with both greater body mass [32–34] and lower limb length [35]. However, the effect of body

mass was studied either using small sample size [32] or through the comparison of lean and

obese subjects only [33,34], while gait may also be altered by factors other than body mass

(e.g., pain or mass distribution). Moreover, other studies did not detect differences in posture

between lean and obese humans [36–39]. On the other hand, the effect of lower limb length

was studied without controlling for body mass [35], which is usually correlated with lower

limb length. Thus, it cannot be ruled out that part of the detected lower limb length effect

should actually be ascribed to body mass.

Sex could be a confounding factor in studies of human locomotor posture, as human males

and females, who differ significantly in body size, do not differ in lower limb posture during

the stance phase of walking [40–42]. Moreover, some studies have even reported that males,

despite their greater body size, keep their limbs more flexed than females do at least at some

joints during the stance phase of walking [43–46]. Despite these contradictory findings, the

effect of sex was not considered in previous studies of the body size-posture relationship in

humans.

Velocity is another factor affecting walking posture in humans. Generally, velocity has a

positive effect on flexion at the hip and knee and plantarflexion at the ankle during the stance

[44,47–53]. As such, velocity must be controlled for when assessing the relationship between

body size and posture. In previous studies, posture was usually analyzed at a self-selected

Body size and human walking posture
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velocity (e.g., [33]) or at a standard velocity if samples of equal average stature were compared

(e.g., [36]) to account for the velocity effect.

The postural adjustments associated with greater body size were linked to changes in net

joint moments in previous studies. The estimation of the force generated by particular muscles

through forward dynamics simulation requires complex musculoskeletal modeling approach

and estimation of several parameters such as muscle fiber length, tendon rest length, and

force-length properties of tendons and ligaments which are impossible to validate in living

subjects [10] yet have substantial effect on the muscle force estimates [54]. On the other hand,

the net joint moment that reflects the net muscle moment exerted about a particular joint by

all the agonist and antagonist muscles, can be estimated relatively easily through inverse

dynamics [55]. It is thus no surprise that the net joint moments were used as a proxy for mus-

culoskeletal loading in previous studies (e.g., [2,56,57]; but see limitations of this approach in

[55,58] and below). Notably, inverse dynamics studies indicate that the lower peak knee flexion

angle in early stance is associated with a decrease of peak knee flexion moment in obese adults

and children [33,34]. In addition, Gruss [35] characterized the more extended knee position at

late stance in longer limbed individuals as a compensatory mechanism that moderates the

knee flexion moment. Nevertheless, we suggested elsewhere [32] that the net knee flexion

moment at late stance is relatively low and even absent in some individuals. Therefore, it is not

so evident that the relationship between knee angle and lower limb length detected by Gruss

[35] (but not by others [32]) represents a knee moment moderation mechanism.

Although the inductive approach used in these studies identifies interesting statistical rela-

tionships, further insight into their function could be provided by a modeling approach. An

appropriate biomechanical model would allow independent manipulation of the parameters

such as body mass, lower limb length, and posture to identify their particular effect on the net

joint moments. Various models were employed in studies of biomechanics of human locomo-

tion from relatively simple models allowing analyses of basic gait parameters and general ener-

getics of the gait [8,59,60] to very complex musculoskeletal models in which function of

particular muscles is assessed [10,61,62]. In the present study, we will use the link-segment

model [55,63] along with the divergent point (DP) model of Gruben and Boehms [64]. This

modelling approach is complex enough to provide estimates of net joint moments while allow-

ing manipulation of the anthropometric and kinematic parameters, yet it is sufficiently simple

for easy result interpretation. This approach enables us to examine size effects in human gait

and relate these findings to comparative analyses of animal locomotion and scaling [2,27–31].

In the present study, we test the prediction that humans adjust their posture during walking

to minimize the size-related increase of net moments acting on their lower limb joints (Fig 1).

The first goal is to identify postural adjustments that moderate the net joint moments in

human walking. This goal is accomplished by modeling the effect of body size and posture on

net joint moments (Steps 1–3). The second goal is to experimentally test the impact of body

mass and lower limb length on lower limb posture during walking in a non-obese human sam-

ple while controlling for other posture-affecting factors (Step 4). Based on previous studies, we

expect that both body mass and lower limb length will be associated with walking posture in

humans. We further expect that size-related postural adjustments take place at those periods of

stance at which net moments act to flex the hip and knee and dorsiflex the ankle. The general

linear model is used to assess the independent effect of body mass and lower limb length on

the posture of walking humans while controlling for sex and velocity. Finally, we use the results

of our modeling to interpret the results of the analysis of the experimental data. Particularly,

we compare whether the body size-related postural adjustments identified experimentally cor-

respond with moment moderation adjustments predicted by our model.

Body size and human walking posture

PLOS ONE | DOI:10.1371/journal.pone.0172112 February 13, 2017 3 / 26



Materials and methods

Sample

This study was approved by Institutional Review Board of Charles University, Faculty of Sci-

ence, approval number 2011/2. Each participant signed a consent form which was also

approved by the Institutional Review Board of Charles University, Faculty of Science. Forty-

nine volunteers, 25 males and 24 females, participated in this study. Participants were between

19 and 38 years of age, non-obese (body mass index < 30 kg m−2), and had no history of lower

limb or spine injuries or illnesses. Participants were selected with the aim to maximize varia-

tion in body size.

Anthropometry

Two anthropometric parameters representing body size were used in the present study: body

mass and lower limb length. Body mass was measured with a digital weighing scale just prior

to the gait data collection. Lower limb length was determined as the sum of thigh length and

shank length, both measured in Visual3D software (C-Motion, Germantown, MD, USA)

using 3D spatial data acquired via motion capture system (Qualisys, Gothenburg, Sweden)

during the standing trial. Thigh length was defined as the distance between the hip center of

rotation (approximately the center of the femoral head; see below) and the knee center of rota-

tion (midpoint between the lateral and medial epicondylus). Shank length was defined as the

distance between the knee center of rotation and the ankle center of rotation (midpoint

between the distal apexes of the lateral and medial malleolus). These measurements differ from

standard osteometrics, as thigh length is less than femoral bicondylar length and shank length

is greater than tibial maximum length. The sum of these measurements, however, reflects the

lower limb length as determined by standard osteometrics better than other somatometrics

whereby the lower limb length is usually defined as a distance between the greater trochanter

Fig 1. Schematic diagram of the approaches used to accomplish the goals of this study.

doi:10.1371/journal.pone.0172112.g001
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and the most medially prominent point on the malleolus (thus shorter than the sum of the cor-

responding bone lengths). In addition, we measured foot length (M 58) [65] using osteometric

board. Sample statistics of anthropometric parameters are given in Table 1.

Gait analyses

Gait data were collected in the biomechanical laboratory of CASRI—Sports Research Institute

of the Czech Armed Forces. Participants walked on a level treadmill (h/p/cosmos, Nussdorf-

Traunstein, Germany) at their preferred velocity (mean ± standard deviation: 4.99 ± 0.53 km

h−1; range: 3.5–6.0 km h−1) while their kinematic and kinetic data were recorded. Prior to data

collection, participants acclimatized to treadmill locomotion for approximately 25 minutes.

Their preferred velocity was used with the aim of standardizing the effect of velocity on loco-

motor posture. The preferred walking velocity of each participant was established at the end of

the acclimatization session by increasing the speed in 0.1 km h−1 increments from a relatively

slow speed until the participant reported to walk at his or her preferred velocity. The velocity

was then increased by 1.5 km h−1 and thereafter decremented by 0.1 km h−1 until the preferred

velocity was re-established [66]. The mean of the two established velocities was then taken as

the individual’s preferred velocity. Participants rested for at least 30 minutes between establish-

ing the preferred walking speed and gait data collection. Participants wore their own sports

shorts and T-shirts and were provided with uniform neoprene shoes (Hiko Softy, Prague,

Czech Republic) with a thin sole to imitate barefoot walking. Thin sole was used with the aim

to control for the presumed effect of shoes on gait parameters [67–69] and specially to allow

the application of the results also in studies of past human populations [70]. Kinematic data

were collected with a 10-camera three-dimensional motion capture system (Qualisys, Gothen-

burg, Sweden) at a 100 Hz frequency. Vertical ground reaction force and center of pressure

(COP) data were collected with pressure-measuring insoles (Pedar, Novel, Munich, Germany)

at a 100 Hz frequency. Marker trajectories, vertical GRF and COP path were synchronously

recorded for 10 seconds. The data from pressure-measuring insoles were used only for deter-

mination of the timing of the vertical GRF peaks. In addition, the mean vertical GRF was used

as an input parameter in our model of an average walking human (see below).

A modified calibrated anatomical systems technique (CAST) [71] was used to track the

lower limbs’ kinematics (Fig 2). Our model consists of four segments: pelvis, thigh, shank, and

foot. The pelvis was tracked by markers at the anterior superior iliac spines and posterior supe-

rior iliac spines. The thigh and shank were each tracked by four markers attached to a rigid

plate. The foot was tracked by markers at the tuber calcanei and heads of the first and fifth

metatarsal bones. Additionally, the locations of seven bony landmarks (greater trochanter,

medial epicondyle, lateral epicondyle, the most medial point of the ridge of the medial tibial

Table 1. Sample statistics of anthropometric parameters.

Sex Stature

(mm)

Body mass

(kg)

Body mass index

(kg m−2)

Lower limb length

(mm)

Shank length

(mm)

Thigh length

(mm)

Foot length

(mm)

Males (n = 25) Mean

(SD)

1821 (80.1) 75.5 (13.05) 22.7 (3.14) 860 (52.0) 433 (27.9) 427 (26.7) 271 (14.7)

Min–Max 1658–1986 53.2–97.1 16.6–29.1 746–976 373–488 373–491 229–293

Females

(n = 24)

Mean

(SD)

1678 (91.0) 61.3 (12.46) 21.6 (3.32) 788 (52.4) 396 (27.6) 391 (29.1) 248 (13.6)

Min–Max 1533–1863 36.3–77.8 15.4–27.5 703–883 345–441 337–441 227–285

Pooled

(n = 49)

Mean

(SD)

1751

(111.6)

68.5 (14.51) 22.2 (3.24) 825 (63.2) 415 (33.0) 410 (32.9) 260 (18.1)

doi:10.1371/journal.pone.0172112.t001
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plateau, the most lateral point of the ridge of the lateral tibial plateau, the distal apex of the

medial malleolus, and the distal apex of the lateral malleolus) per limb in relation to marker

clusters were found by manual palpation and recorded using a digitizing pointer. Our modifi-

cation from the CAST technique consists of the replacement of the marker on the head of the

fibula by a marker on the ridge of the lateral tibial plateau and of the abandonment of the

marker on the second metatarsal head. The joint coordinate system was defined following

Grood and Suntay [72] and International Society of Biomechanics recommendations [73].

The hip center of rotation was estimated by a functional approach developed by Schwartz et al.

Fig 2. Diagram of the experimental setup showing location of the tracking markers (black circles),

recorded bony landmarks (light grey circles), and Pedar unit (at the back of the subject). Note that all the

markers and landmarks were recorded bilaterally. ASIS, anterior superior iliac spine; PSIS, posterior superior

iliac spine; CA, tuber calcanei; FM, head of the first metatarsal bone; VM, head of the fifth metatarsal bone; GT,

greater trochanter; ME, medial epicondyle; LE, lateral epicondyle; MMP, most medial point of the ridge of the

medial tibial plateau; MLP, most lateral point of the ridge of the lateral tibial plateau; MM, distal apex of the

medial malleolus; LM, distal apex of the lateral malleolus.

doi:10.1371/journal.pone.0172112.g002
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[74], the protocol of thigh movement (10 cycles of limited thig flexion-extension, abduction-

adduction, and circumduction) followed Begon et al. [75].

The raw kinematic, vertical ground reaction force, and COP data were filtered using a

fourth-order low-pass Butterworth filter with a 6 Hz cut-off frequency [55] in Visual3D soft-

ware. The stance phase of each stride was delimited using a velocity-based detection algorithm

[76] verified by visual inspection. Averages of three to nine strides per individual were used in

further analyses. Joint flexion angles at the hip, knee, and ankle were used in analyses. The

coordinate system of the pelvis segment was normalized to standing posture prior to joint

angles computation. We avoided any other segment or joint angle adjustments to standing

posture. The joint flexion angles used in this study are thus those between mechanical axes of

segments. Joint flexion angles of the dominant lower limb were processed in the ensuing anal-

yses. The dominant lower limb was defined as that used to manipulate an object or to lead out

as in jumping [77,78] and was identified by questionnaire inquiring as to the preferred lower

limb in different activities (kicking a ball, hopping on one foot, stepping on a chair, and stamp-

ing on an object). Mean joint flexion angles and vertical ground reaction force of the pooled-

sex sample during stance phase are given in Fig 3.

Modeling of body size and posture effect on joint moments

To assess how body size affects net joint moments (our first goal) and anticipate the timing

and magnitude of the expected size-related postural adjustment, we modeled the effect of body

size and postural changes on net joint moments by manipulating body size and posture in an

“average individual” (Fig 1).

Step 1: “Average individual”. First, an average walking individual was constructed using

the mean segment dimensions, vertical GRF, COP path, and kinematics of our human sample

(Fig 3, Table 1, S1 File). The anteroposterior GRF (GRFap) was calculated from the vertical

GRF (GRFvert) estimated with software provided by Novel as follows:

GRFap ¼
GRFvert

tans
ð1Þ

where σ is the angle between the GRF vector and the horizontal. The angle σ was estimated

using the DP model of Gruben and Boehm [64], i.e., the orientation of the GRF vector was

defined by the location of the instantaneous COP and the divergent point (DP) of the GRF

located 54% of the center of mass of the body (COMbody) height vertically above the hip joint,

which is the mean DP location for a sample of walking adult humans reported by Gruben and

Boehm [64]. As documented by previous experimental studies [64,79] this approach should

provide appropriate estimates of the GRF vector orientation and GRF magnitude throughout

the stance (see also our assessment of the DP model accuracy below). The height of the COM-

body used in localization of the DP was calculated from seven body segments (feet, shanks,

thighs, and head-arms-trunk segment) at standing posture following Winter [55].

Step 2: Parameter manipulation. Second, we manipulated body mass, lower limb length

(i.e., the sum of thigh length and shank length), and flexion angles at the hip, knee, and ankle

of our average individual by adding and subtracting two standard deviations (SD) of our sam-

ple (see Table 1 for SD of anatomical parameters; mean flexion angle SD across the joints and

stance phase = 4˚) and calculated the resulting net joint moments (Fig 1). The addition and

subtraction of two SDs was done to get simulations representing the range of a normal human

variation in the manipulated parameters. Each parameter was manipulated independently

while all other parameters, including stance time and relative position of the segments´ COM,

were held constant unless specified below.

Body size and human walking posture
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Body mass manipulation was allowed to affect the GRFvert:

GRFvert ¼ BM � normGRFvert ð2Þ

where BM is the body mass after manipulation and normGRFvert (N kg−1) is the vertical GRF

of our average individual normalized to his body mass. In addition, body mass affected in a

direct proportion also the mass of the lower limb segments.

Lower limb length manipulation was accomplished by simultaneous proportional change

of thigh length and shank length so that the ratio of shank to thigh length remained constant.

This solution is supported by the research of Holliday [80] who showed that the ratio of shank

to thigh length explains only 4% of the variance in lower limb length. Lower limb length

manipulation caused no changes in ankle height or foot length.

Nevertheless, foot length is positively correlated with both body mass (r2 = 0.603) and lower

limb length (r2 = 0.639) in our sample. Moreover, each of these size parameters have similar,

Fig 3. Determination of gait events used to track the peak net joint moments. (A) Illustrative joint

moments at the hip (solid line), knee (dashed line), and ankle (dotted line) with peak moments indicated. (B)

Sample mean angular displacement of the hip (solid line), knee (dashed line), and ankle (dotted line) with gait

events used to track peak moments indicated (open diamond, A-plant; crosses, K-flex and K-ext; filled circle,

H-ext). (C) Sample mean vertical ground reaction force (solid line) and estimated antero-posterior ground

reaction force (dashed line) with gait events used to track peak moments indicated (filled circle, H-flex; open

diamond, A-dors). See text for definitions of peak moments and gait events.

doi:10.1371/journal.pone.0172112.g003
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significant effect on foot length even when the other size parameter is controlled for by multiple

regression analysis as revealed by standardized coefficients (βbody mass = 0.421; βlower limb length =

0.499). Thus, to accommodate this relationship between body size and foot length, we addition-

ally manipulated body mass and lower limb length together with foot length. The foot length

was manipulated using regression slopes from the multiple regression analysis (bbody mass =

0.524 mm kg –1; blower limb length = 0.143 mm mm–1). The progression of the COP relatively to

foot length was kept constant, thus at any percentage of stance phase the COP was located at the

same relative distance from the posterior end of the sole in the models with manipulated foot

length and in the model of an average individual.

Joint angle manipulation was limited to the hip, knee, and ankle joints without affecting the

position of the foot and pelvis (relatively to the ground). Although changes in the position of

the foot and pelvis could presumably accompany changes in joints during human walking,

keeping them constant in our model greatly narrows possible postural solutions. Given the

above condition, any change in a joint angle has to be accompanied with a change in the other

joint(s) angle following the relationship:

Do ¼ Dεþ Dg ð3Þ

where ω, ε and γ are the flexion/extension angles at the hip, knee and ankle, respectively (Fig

4). We manipulated each joint by adding/subtracting 2SD (i.e., 8˚) while the change in the

other joint angles was not allowed to exceed the change in the manipulated joint (i.e.,� 8˚).

The solutions of the above conditions are summarized in Table 2. Fig 5 shows positions of the

lower limb segments after the particular manipulations of joint angles in which either one

joint is changed by 8˚and the other two by 4˚ or two joints are changed by 8˚and the remaining

one is not changed.

Step 3: Inverse dynamics. Third, we calculated the net joint moments for the average

individual (S1 File) and all the parameter manipulations. We calculated the coordinates of the

lower limb joints and COMs of the lower limb segments throughout the stance phase with the

origin of the coordinate system at the posterior margin of the foot projected on the ground at

the heel strike. The net joint moments at the hip, knee, and ankle were calculated from these

coordinates using the basic link-segment equations [55]:

X
Fx ¼ m� ax ð4Þ

X
Fy ¼ m� ay ð5Þ

X
M ¼ I0 � a ð6Þ

where SFx is the sum of the reaction forces acting on the segment in the anteroposterior direc-

tion, SFy is the sum of the reaction and gravitational forces acting on the segment in vertical

direction, SM is the sum of the moments acting about the segment COM, m is the segment

mass, ai is the acceleration of the segment COM, I0 is the moment of inertia about the segment

COM, and α is the angular acceleration of the segment. The equations were solved successively

for the foot, shank, and thigh. For calculation of accelerations we assumed stance time to be

0.661 s, which was the mean stance time in our human sample. The relative radius of gyration

and relative position of COM of the lower limb segments and head-arms-trunk segment were

taken from Winter [55].

To account for a possible source of error in our net joint moment estimates associated with

the uncertainty of the DP location after the size and postural manipulations (Gruben and

Boehm [64] reported SD of their mean DP vertical location to be 0.13 of COMbody height) we

Body size and human walking posture
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Fig 4. The pelvic tilt (δ) and foot angle (φ) are not affected by postural changes of the hip (ω), knee (ε),
and ankle (γ) in the present model.

doi:10.1371/journal.pone.0172112.g004

Table 2. Postural changes at the hip, knee and ankle during the joint angle manipulation.

Joint angle manipulation ΔHip angle (ω) (˚) ΔKnee angle (ε) (˚) ΔAnkle angle (γ) (˚)

Hip extension −8 [−8, 0] [−8, 0]

Hip flexion 8 [0, 8] [0, 8]

Knee extension [−8, 0] −8 [0, 8]

Knee flexion [0, 8] 8 [−8, 0]

Ankle plantarflexion [0, 8] [−8, 0] 8

Ankle dorsiflexion [−8, 0] [0, 8] −8

doi:10.1371/journal.pone.0172112.t002

Body size and human walking posture
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Fig 5. Diagram of lower limb postures after joint angle manipulation (gray) in comparison to the original posture (dashed black). The

particular joint angle changes for each manipulation are specified in Table 3. Postures at 0%, 20%, 50%, 80%, and 100% of stance are depicted

from left to right.

doi:10.1371/journal.pone.0172112.g005

Body size and human walking posture
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calculated the net joint moments for all the size and postural manipulations also with the DP

located at 0.8 and 0.26 of the COMbody height above the hip, i.e., at the previously reported

mean ± 2SD DP locations.

Accuracy of the DP model. The accuracy of the DP model was assessed experimentally in

a sample of ten non-obese adults (4 males, 6 females; age: 29.8 ±7.5 years; body mass: 68.3 ±
17.8 kg, stature: 1.676 ± 0.116 m). Each participant provided written informed consent prior to

participation, and the protocol was approved by the University Integrated Institutional Review

Board, Hunter College, City University of New York. The participants walked at their pre-

ferred speed on a walkway while their complete ground reaction force data were recorded by a

force plate (AMTI, Watertown, USA) at 1000 Hz, synchronously with marker trajectories

(whole body Plug-In Gait marker set) by a 6-camera motion capture system (Vicon, Oxford,

UK) at 200 Hz. The marker trajectories, ground reaction force, and center of pressure were fil-

tered using a fourth-order low-pass Butterworth filter with a 6-Hz cut-off frequency

[55,81,82]. Net joint moments were calculated using Eqs 4–6. The height of the COMbody at

the standing posture was estimated using the same approach as in our average individual

model following Winter [55]. The accuracy of the DP model in estimation of the GRFap and

net joint moments was assessed by mean error (ME), percentage mean error (%ME), mean

absolute error (MAE), and percentage mean absolute error (%MAE) as follows:

ME ¼
Pn

i¼1
ðpredictedi � observediÞ

n
ð7Þ

%ME ¼
Pn

i¼1
½ðpredictedi � observediÞ=observedrangei� � 100

n
ð8Þ

MAE ¼
Pn

i¼1
jðpredictedi � observediÞj

n
ð9Þ

Table 3. Effect of 2 SD change of joint angles on peak net moments at the hip, knee and ankle evaluated as a change from the original value in N m

and percentages.

Manipulated parameter ΔJoint angle (˚) ΔPeak net joint moment (N m)

Hip Knee Ankle

Hip Knee Ankle Flex Ext Flex Ext Plant Dors

Hip ext −8 −4 −4 −12.5 (23%) 9.5 (12%) −1.9 (10%) 1.8 (6%) −2.5 (19%) 4.8 (5%)

Hip flex +8 +4 +4 13.3 (25%) −9.7 (12%) 1.9 (10%) −1.9 (7%) 2.7 (20%) −4.8 (5%)

Knee ext −4 −8 +4 1.7 (3%) 0.3 (0%) −18.6 (97%) 16.9 (60%) 0.0 (0%) 0.0 (0%)

Knee flex +4 +8 −4 −2.2 (4%) −0.8 (1%) 18.4 (96%) −16.3 (58%) 0.0 (0%) 0.0 (0%)

Ankle plant +4 −4 +8 15.5 (26%) −8.9 (11%) −16.7 (87%) 15.0 (52%) 2.7 (19%) −4.8 (5%)

Ankle dors −4 +4 −8 −14.2 (29%) 9.0 (11%) 16.6 (87%) −14.5 (53%) −2.6 (20%) 4.8 (5%)

Hip ext + knee ext −8 −8 0 −7.3 (13%) 6.5 (8%) −13.7 (71%) 12.4 (44%) −1.7 (13%) 3.2 (3%)

Hip flex + knee flex +8 +8 0 7.2 (13%) −7.1 (9%) 13.6 (71%) −12.2 (44%) 1.7 (13%) −3.2 (4%)

Hip ext + ankle dors −8 0 −8 −17.5 (32%) 12.5 (16%) 9.8 (51%) −8.6 (31%) −3.3 (25%) 6.5 (7%)

Hip flex + ankle plant +8 0 +8 19.6 (36%) −12.3 (15%) −9.9 (52%) 8.6 (31%) 3.7 (27%) −6.3 (7%)

Knee ext + ankle plant 0 −8 +8 11.4 (21%) −5.7 (7%) −23.5 (123%) 21.4 (76%) 1.8 (13%) −3.2 (3%)

Knee flex + ankle dors 0 +8 −8 −11.1 (20%) 5.4 (7%) 23.3 (122%) −20.4 (73%) −1.8 (13%) 3.2 (3%)

In joint moment changes, positive values indicate increase of the peak and negative values indicate decrease of the peak; ext, extension; flex, flexion; plant,

plantarflexion; dors, dorsiflexion; the resulting posture for each manipulation is shown in Fig 5.

doi:10.1371/journal.pone.0172112.t003

Body size and human walking posture

PLOS ONE | DOI:10.1371/journal.pone.0172112 February 13, 2017 12 / 26



%MAE ¼
Pn

i¼1
½jðpredictedi � observediÞj=observedrangei� � 100

n
ð10Þ

where predictedi is the estimated parameter value in the ith individual, observedi is the parame-

ter value calculated from the complete GRF data, observedrangei is the range of the variable

within stance phase calculated from the complete GRF data (e.g., difference between flexion

and extension peak of the net hip moment calculated from the complete GRF data), and n is

the sample size [83]. The individual net joint moment range was used in computation of %ME

and %MAE since results of previous studies [84,85] suggest that the joint moment ranges are

more consistent between different kinematic models (we used PiG model for DP accuracy test

and CAST model for the main data collection) than the peak joint moments. For GRFap, the

range was used for consistency of the %ME and %MAE computation.

The ME, %ME, MAE, and %MAE of the parameter estimates are presented in Table 4. The

DP model consistently underestimates the GRFap peaks and the peak knee flexion moment,

overestimates the peak knee extension moment and the hip moment peaks, and provides

excellently accurate estimate of the ankle moment peaks.

Analysis of experimental data

To evaluate the independent impact of body mass and lower limb length on lower limb posture

during walking (our second goal) we analyzed the experimental data using general linear

model (Fig 1).

Step 4: General linear model. The relationship between body size (body mass and lower

limb length) and posture (joint flexion angles) was analyzed at events of expected peak net

joint moments. Six gait events (two per each joint) were selected to track the expected peak net

joint moments (Fig 3): the first peak of the vertical GRF to track the peak net hip flexion

moment (H-flex), maximal hip extension to track the peak net hip extension moment (H-ext),

maximal knee flexion at the first half of stance to track the peak net knee flexion moment (K-

flex), maximal knee extension at the second half of stance to track the peak net knee extension

moment (K-ext), maximal ankle plantarflexion at the first half of stance to track the peak net

ankle plantarflexion moment (A-plant), and the second peak of the vertical GRF to track the

peak net ankle dorsiflexion moment (A-dors). Relationships between variables were analyzed

using Pearson product-moment correlation coefficients. Because velocity is positively corre-

lated with the hip and knee flexion angle at early stance events, our attempt to control for

Table 4. Errors of estimates of the peak GRFap and peak net joint moments (mean (SD)).

Parameter Peak Mean error %Mean error (%) Mean absolute error %Mean absolute error (%)

GRFap (N) posterior 18.0 (15.0) 7.1 18.9 (13.7) 7.8

anterior −15.9 (13.1) −6.3 15.9 (13.1) 6.3

Ankle moment (N m) plantarflexiona −0.9 (0.8) −0.8 1.0 (0.6) 0.9

dorsiflexion 0.4 (1.0) 0.5 0.8 (0.6) 0.9

Knee moment (N m) flexion −7.2 (5.9) −18.0 7.4 (5.7) 18.3

extensionb −4.7 (3.9) −17.7 4.9 (3.7) 18.0

Hip moment (N m) flexion 5.6 (8.0) 5.8 7.9 (5.5) 8.9

extension −11.9 (10.2) −13.2 12.1 (9.8) 13.5

asample size is reduced to n = 8 because ankle plantarflexion moment was present only in eight subjects
bsample size is reduced to n = 7 because knee extension moment was present only in seven subjects

doi:10.1371/journal.pone.0172112.t004
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velocity using preferred velocity was not successful. Velocity was thus inserted into our general

linear model analyses as an extra variable to enable controlling for its effect. The general linear

model with type VI sums of squares and commonality analysis was used to evaluate the inde-

pendent influence of each body size variable on joint flexion while controlling for the other

size variable, sex, and velocity. Commonality analysis [86,87] (see the recent applications and

examples in [88]) was used to determine the unique effect of each variable in the model and

the common effect of the body size variables. Statistical analyses were performed using Statis-

tica 10 (StatSoft, Tulsa, OK, USA) and Excel 2013 (Microsoft, Redmond, WA, USA).

Results

Effect of body size on net joint moments

The effect of 2 SD increments of body size on peak net joint moments is presented in Table 5

and Fig 6. Body mass has a positive, almost directly proportional effect on all peak net

moments at all three joints: a 43% (= 2 SD) increase in body mass leads to 41–43% increase in

the peak joint moments. The effect of lower limb length on peak net joint moments is only

roughly proportional at the hip and knee but disproportionally low at the ankle. A 15% (= 2

SD) increase in lower limb length increases the peak hip moments by 17–20%, peak knee flex-

ion moment by 18% and peak ankle moments by 1–2%, whereas it decreases the knee exten-

sion moment by 13%. Thus, the lower limb length per se has a positive effect on net moments

at the hip and ankle and on the knee flexing moment, but a negative effect on the knee exten-

sion moment at late stance. The inclusion of the foot length prolongation in body size manipu-

lations has a little effect on the resulting peak hip moments (about 1%) and knee flexion

moments (4%), but it increases the magnitude of the ankle moments by 14% and 9% in body

mass and lower limb manipulation respectively. Nevertheless, the most pronounced effect of

foot length prolongation is on knee extension moment that increases by 28% and 18% in body

mass and lower limb manipulation, respectively.

Effect of posture on net joint moments

The effect of posture on net joint moments at the hip, knee, and ankle is shown in Table 3 and

Fig 7. The greatest postural effect on net joint moment was observed at the knee (up to 23.5 N

m) followed by the hip (up to 19.6 N m) and ankle (under 6.5 N m). The relative effect at the

knee (up to 123%) is 3.5 times greater than that at the hip (up to 36%) and 4.5 greater than that

at the ankle (up to 27%). Hip extension results in the reduction of the hip flexion moment

(13–32%) and ankle plantarflexion moment (13–25%), whereas it increases the hip extension

Table 5. Effect of 2 SD increase of body mass and lower limb length on peak net moments at the hip, knee and ankle evaluated as a change from

the mean value in N m and percentages.

Manipulated parameter ΔParameter ΔPeak net joint moment (N m)

Hip Knee Ankle

Flex Ext Flex Ext Plant Dors

Body mass +29 kg (41%) 22.5 (41%) 33.6 (42%) 8.3 (43%) 12.0 (43%) 5.5 (41%) 38.8 (42%)

Lower limb length +126 mm (15%) 10.9 (20%) 13.7 (17%) 3.4 (18%) −3.8 (13%) 0.2 (2%) 1.1 (1%)

Body mass + foot length +29 kg (41%); +15 mm (6%) 21.9 (40%) 34.4 (43%) 7.4 (39%) 19.8 (71%) 7.3 (55%) 51.7 (56%)

Lower limb length + foot length +126 mm (15%); +18 mm (7%) 10.6 (19%) 14.7 (18%) 2.6 (14%) 1.5 (5%) 1.5 (11%) 10.0 (11%)

Notes: positive values indicate increase of the peak moment, negative values indicate decrease of the peak moment; flex, flexion; ext, extension; plant,

plantarflexion; dors, dorsiflexion.

doi:10.1371/journal.pone.0172112.t005
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Fig 6. Effect of body size on net joint moments. The effect of body mass increase (A–C) and lower limb length

increase (D–F) on net joint moments at the hip (A, D), knee (B, E), and ankle (C, F). Manipulated size (gray solid line) is

compared to the original size (black dashed line). The gray dotted lines represent the moments after the size manipulation

estimated using the mean ± 2 SDs divergent point location. The asterisk indicates the peak joint moment of the

manipulated body size is different from the original moment regardless of the divergent point location.

doi:10.1371/journal.pone.0172112.g006

Body size and human walking posture

PLOS ONE | DOI:10.1371/journal.pone.0172112 February 13, 2017 15 / 26



Fig 7. Effect of posture on net joint moments. The effect of hip extension (A–C), knee extension (D–F), and ankle plantarflexion (G–I) on net joint

moments at the hip (A, D, G), knee (B, E, H), and ankle (C, F, I). Manipulated postures (gray area) are compared to the original posture (black dashed

line). The gray area covers all possible postural changes meeting the following conditions: 1) the manipulated joint change is 8˚, 2) the change in other

joints is� 8˚, 3) Δhip angle = Δknee angle + Δankle angle. See the text for details and Table 2 for intervals of angle change in other joints meeting the three

conditions. The gray dotted lines represent the range of moments after posture manipulations estimated using the mean ± 2 SDs divergent point location.

The asterisk indicates the peak moment of the manipulated posture is different from the original moment regardless of the divergent point location.

doi:10.1371/journal.pone.0172112.g007
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moment (8–16%) and ankle dorsiflexion moment (3–7%). The knee extension results in the

reduction of the knee flexion moment (71–123%) and increase of the knee extension moment

(44–76%). The ankle plantarflexion reduces the hip extension moment (7–15%), knee flexion

moment (52–123%), and ankle dorsiflexion moment (3–7%), whereas it increases the hip flex-

ion moment (21–36%), knee extension moment (31–76%), and ankle plantar flexion moment

(13–27%). Thus, the knee joint moment can be most effectively affected by postural changes,

particularly by the changes of the knee angle.

Body size and joint flexion at gait events

Table 6 shows the pairwise Pearson’s correlation coefficients of the body size parameters,

velocity, and flexion angles at the hip and knee at selected gait events. Body mass is positively

correlated with lower limb length (r = 0.7). Furthermore, body mass is negatively correlated

with the knee flexion angle at both analyzed events (r = −0.3) and with ankle dorsiflexion angle

(r = −0.3), whereas lower limb length is correlated only with velocity (r = 0.3) and not with any

joint angle.

The results of the general linear model and commonality analysis are presented in Table 7.

The regression model, which includes body mass, lower limb length, velocity, and sex, explains

51.5% of the variation in the hip flexion angle at the peak hip flexion moment (H-flex) and

43.8% of the variation in the knee flexion angle at the peak knee flexion moment (K-flex). The

model is not significant at later stance events, peak hip extension moment (H-ext), and peak

knee extension moment (K-ext), and at the ankle events. Body mass has a significant negative

effect on knee angle at K-flex (p = 0.001), whereas lower limb length has a significantly nega-

tive effect on hip angle at H-flex (p = 0.033). Body mass uniquely explains 15.8% of the vari-

ance in knee flexion at K-flex. Lower limb length uniquely explains 5.4% of the variance in hip

flexion at H-flex. In addition to the uniquely explained variance, body mass and lower limb

length share 9% of the explained variance at both events. Thus, the body size variables together

account for 16% and 25% of the variance in hip flexion at H-flex and knee flexion at K-flex,

respectively. Nevertheless, velocity is the main determinant of joint angle at both these events,

uniquely explaining 43.2% and 18.6% of the joint angle variance at H-flex and K-flex, respec-

tively. In addition to body mass and velocity, the knee flexion angle at K-flex is also affected by

sex (uniquely explaining 8.7% of variance). At K-flex, females tend to keep the knee more

extended than do males.

Discussion

Our model demonstrates that the size-related increase of net moments at the knee can be effec-

tively compensated by relatively small postural adjustments, especially by changes of the knee

Table 6. Pearson product-moment correlation coefficients between body size parameters, velocity and flexion angles at selected gait events in a

pooled sex sample (n = 49).

Lower limb length Velocity Hip flexion angle Knee flexion angle Ankle flexion angle

H-flex H-ext K-flex K-ext A-plant A-dors

Body mass 0.714 0.220 −0.178 0.089 −0.297 −0.285 0.160 0.337

Lower limb length 0.326 −0.142 −0.099 −0.055 −0.189 –0.0003 0.234

Velocity 0.595 −0.087 0.426 0.198 –0.011 0.152

Gait events: H-flex, peak hip flexion moment; H-ext, peak hip extension moment; K-flex, peak knee flexion moment; K-ext, peak knee extension moment; A-

plant, peak ankle plantarflexion moment; A-dors, peak ankle dorsiflexion moment.

doi:10.1371/journal.pone.0172112.t006
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flexion angle. The hip flexion moment and ankle plantarflexion moment can also be, to some

degree, moderated by postural adjustments, but the hip extension moment and ankle dorsi-

flexion moment are relatively resistant to the changes of posture within the variation in normal

walking adults. The changes of the knee flexion angle have far the greatest effect on net joint

moments in comparison to the changes of the angle at the hip and ankle. Moreover, the

moderation of the particular joint moment by changing the ankle posture has a side effect—

simultaneous increase of the net moment at the other joint(s) (e.g., ankle plantarflexion mod-

erates the knee flexion moment but increases the hip flexion moment and ankle plantarflexion

moment; Fig 7G–7I). The moderation of the knee moments by knee angle adjustment has no

such side effect since the changes of the knee flexion have little effect on the other joint

moments. The hip joint angle adjustment can result in simultaneous moderation of the hip

and ankle moments; however, its effect is far subtler than that of the knee. Based on the results

of our model, it can be predicted that body mass-related and/or lower limb length-related

increase of knee flexion moment at early stance would be most effectively compensated by

knee extension, whereas the body mass-related increase of the knee extension moment at late

stance could be compensated by knee flexion. No change of posture at late stance is expected

to be associated with prolongation of the lower limb, since our model shows that the knee

extension moment at late stance actually decreases with lower limb prolongation.

Previous experimental studies [64,79] reported that the GRF vector consistently intersects

near the DP located above the hip joint during walking in humans. This observation was sup-

ported by strong coefficient of determination (r 2 = 0.996) between the σ angle (the angle

between the GRF vector and the horizontal) calculated from complete force plate data and σ
angle estimated by the DP model [64]. Our test of the DP model accuracy (Table 4) shows that

the DP model provides accurate estimates of the peak joint moments at the hip, knee, and

Table 7. Effect of body mass, lower limb length, velocity, and sex on joint flexion angles at selected gait events using general linear models.

Joint angle Event Model R2 Variablea b U CB,L UB+UL+CB,L

Hip H-flex 0.515*** Body mass −0.069 0.014 0.089 0.156

Limb length −0.034* 0.054

Velocity 7.865*** 0.432

Sex 1.156 0.026

H-ext 0.066

Knee K-flex 0.438*** Body mass −0.239** 0.158 0.091 0.249

Limb length −3.4×10−4 <0.001

Velocity 5.290*** 0.186

Sex 2.179* 0.087

K-ext 0.185

Ankle A-plant 0.151

A-dors 0.149

b, slope adjusted for effect of all other variables in the model; U, proportion of unique variance explained by variable; CB,L, proportion of common variance

shared by body mass and lower limb length; UB+UL+CB,L, proportion of variance explained cumulatively by the body mass and lower limb length; H-flex,

peak hip flexion moment; H-ext, peak hip extension moment; K-flex, peak knee flexion moment; K-ext, peak knee extension moment; A-plant, peak ankle

plantarflexion moment; A-dors, peak ankle dorsiflexion moment;

* p < 0.05;

** p < 0.01;

*** p < 0.001.
athe effect of particular variables is shown only for models that explain significant portion of variation in joint flexion angle.

doi:10.1371/journal.pone.0172112.t007
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ankle, with errors <20% for flexion and extension across all three joints and<1% for the

ankle. The largest errors were evident at the knee (~18% in both flexion and extension) and

hip extension (~13%). The similar magnitude of ME and MAE values (Table 4) indicates that

the DP model consistently underestimated (knee flexion) or overestimated (knee extension

and hip extension) these moments. We were able to lower the error at these moments below

10% by moving the DP location inferiorly (by 11.5% of the COMbody height) and posteriorly

(by 0.8% of the COMbody height), which suggests that the mean DP may be shifted in our sam-

ple in comparison to the previous study [64]. Nevertheless, the %ME and %MAE of these peak

moments are not correlated with body mass, lower limb length, and corresponding peak flex-

ion/extension angle. Since this demonstrates that the accuracy of the model is unrelated to the

parameters tested in this study, the detected errors cannot substantively affect the pattern of

our results.

There are no data available at the moment to infer whether the relative vertical position of

the DP is unaffected by body mass, lower limb length or posture as is presumed in our model.

To account for this uncertainty we estimated the joint moment also with DP located at the pre-

viously reported mean±2SD above the hip and present the results in Figs 6 and 7. In Fig 6 we

show that body mass increases the peak net moments at all the three joints regardless of the rel-

ative DP location. This is true also when foot length is manipulated along with body mass. The

effect of lower limb length on hip moment peaks and knee flexion moment peak is, however,

affected by the relative DP location. If the prolongation of lower limb is associated with the

shift of the DP location closer to the hip, then the peak moments at the hip would not be

increased. On the other hand, a possible association of the limb prolongation with DP shift fur-

ther from the hip would limit the increase of the peak knee flexion moment. Fig 7 shows the

scenario when the posture is associated with the relative DP location. The effect of the hip

extension on peak joint moments is not affected by relative DP location with the exception of

the hip extension moment. The effect of knee flexion on peak joint moments is not affected by

relative DP location. The effect of ankle plantarflexion on peak hip moments and peak knee

flexion moment is, however, affected by the relative DP location; although the relative DP loca-

tion would actually turn the effect to the opposite direction only for few postural combina-

tions. We conclude that our model predictions are relatively robust over the biologically

feasible range of variation in relative DP location.

In our model manipulations, stance time was assumed to be unrelated to changes in body

size parameters. Examination of this assumption by additional general linear model analysis of

our experimental data revealed that body mass is not correlated with stance time after control-

ling for lower limb length, velocity, and sex. This finding corresponds well to previous studies

reporting nonsignificant difference in stance time between lean and obese subjects [89,90].

Nevertheless, we detected significant although weak correlation between stance time and

lower limb length after controlling for body mass, velocity, and sex (p = 0.011; b = 0.00029 s/

mm; lower limb length uniquely explains 7.4% of variance in stance time). Thus, we simulated

the effect of simultaneous increase of lower limb length and stance time on net joint moments

using the slope from the general linear model. The results show that appropriate increase of

stance time slightly reduces the effect of lower limb length on net hip moments (by 5–6%) and

knee joint moments (by 1–2%). No apparent effect has been detected at the ankle (under

0.5%).

Our experimental results agree with some of our model predictions. Particularly, we

detected that body mass is negatively correlated with flexion at the knee at early stance. Using

our model, this finding can be interpreted as a strategy to moderate the body mass-related

increase of knee flexion moment by knee extension and it also corresponds to the previous

findings in humans [32–34] and other mammals [2,27–29]. On the other hand, we did not
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detect any body mass-related postural adjustments at late stance. In addition, we detected a

significant negative correlation between the lower limb length and flexion at the hip at early

stance. Although this finding can be also interpreted as a strategy to moderate the increase of

hip flexion moment, we point out that the correlation is weak and the lower limb length

uniquely explains only 5.4% of the variance in hip flexion angle.

The moment-moderation efficiency of the detected postural adjustments can be roughly

assessed using our model as a basis. According to our model, the peak knee flexion moment at

early stance increases by 0.29 N m per kilogram of body mass (i.e., the effect of 2 SD change of

body mass on peak knee flexion moment divided by 2 SD of body mass) and decreases by

1.71–2.94 N m per degree of knee extension. The peak flexion moment at the hip increases by

0.87 N m per centimeter of lower limb length and decreases by 0.46–1.10 N m per degree of hip

extension. Thus, to cancel the size-related increase of moments, knee extension would need to

increase at the rate 0.10–0.17˚ kg–1 and hip extension at the rate 0.79–1.89˚ cm–1. The 0.24˚ kg–

1 effect of body mass on knee extension detected in our sample (Table 7) is well above the esti-

mated minimum rates, which indicates that the detected postural adjustments at the knee are

adequate for complete cancellation of the body mass-related knee moment increase. The 0.34˚

cm–1 effect of lower limb length on hip extension detected in our sample is, however, lower

than the estimated minimum rate, which suggests that the limb length-related increase of hip

moment would be only moderated but not cancelled out by the detected hip angle adjustment.

The presumed complete cancellation of the body mass-related increase of knee flexion

moment corresponds well to the results of Gushue et al. [34] who found that obese children

walk with reduced knee flexion at early stance and with no significant differences in the peak

knee flexion moments when compared to lean children. However, in the comparison of obese

and lean adult kinematics, DeVita and Hortobágyi [33] detected differences in all three lower

limb joints. Particularly, the obese walked with reduced flexion at the hip and knee and greater

plantarflexion at the ankle at early stance. In our study, however, only the knee flexion angle is

significantly related to body mass and the hip and ankle angles are not. A possible explanation

could be that reduced hip flexion at early stance not only moderates hip moments, but also

shortens the step, which would negatively affect the velocity and increase the number of steps

to cover a given distance. In the sample of DeVita and Hortobágyi [33], the body mass differ-

ence was likely so great that the joint moment moderation effect of hip extension outweighed

the shortening of the step length. Our sample, however, consists of non-obese individuals

among whom body mass may not be such a limiting factor as to compromise step length.

Thus, in our sample, only longer-limbed individuals can afford to moderate hip moment by

step-shortening changes of posture, whereas individuals of greater body mass moderate only

the knee moment. Nevertheless, it is not clear why longer limbed individuals do not moderate

moment at the knee at early stance.

Although the size-related postural adjustments at the hip and knee moderate the size-

related increase of net joint moments according to our model, the variation in flexion at the

hip and knee explained by body size parameters is not particularly strong. We detected that

part of the variation in hip and knee flexion is accounted for by the effect of velocity, and also

by sex in the case of knee flexion, which corresponds with previous studies [43–53]. The weak-

ness of the relationship, the sex effect, and the persistence of the velocity effect even when

walking at preferred speed likely prevented the detection of the body mass-knee flexion rela-

tionship at early stance in previous studies [32]. Other factors such as individual body mass

history and lower limb musculoskeletal strength could also be of importance. Additionally, the

loads imposed on hip and knee joints by walking may not be sufficient to more closely relate

body size to posture. Our results do not support the conclusions of Gruss [35] that longer

limbed individuals keep more extended knees at late stance to moderate knee moments. Our
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model predicts that lower limb length has a negative effect on knee extending moment at late

stance. Thus, the knee extending moment at late stance is actually lower in longer-limbed indi-

viduals and as such does not need to be moderated. Moreover, our model shows that the knee

extending moments at late stance cannot be moderated by greater knee extension but by

greater knee flexion. Nevertheless, it would be expected that individuals of greater body mass

would moderate the knee moment at late stance because it increases with body mass. Such

negative correlation between body mass and knee flexion at late stance was even previously

reported in humans [32]. Despite that we also detected elevated negative correlation between

body mass and knee flexion in late stance, the relationship was not significant when lower

limb length, velocity and sex were controlled for in the general linear model. We hypothesize

that the knee extending moment at late stance could be beneficial for stabilizing the knee

against the action of the gastrocnemius muscle, which is contracting vigorously to counteract

the dorsiflexion moment at the ankle during the second half of stance [91].

The results of the present study could be of importance for clinicians as the body size should

be considered when analyzing deviations from normal gait patterns. Also, future simulations

of past human locomotion based on kinematics of recent humans should take into account the

link between body size and posture detected here. In the present study, we analyzed the effect

of body size and posture on net joint moments, which only reflects the net effect of agonist and

antagonist muscles. Nevertheless, several combinations of muscle forces can produce the same

net joint moment and also the passive structures such as the ligaments can contribute to the

net joint moment [55,58]. Future studies may build on the present work and use the advan-

tages of musculoskeletal modeling [10,92–95] to analyze the effect of the postural changes on

the muscle force and consequently the locomotor costs [7,9,96,97] and loading of the bones

[98–101]. Also, complex gait modeling approaches [95] may explore the function of the

detected relationship between body size and locomotor posture by determining which optimi-

zation parameters fit best the relationship detected here.

Conclusions

In the present study, we detected that body size is negatively related to flexion at the hip and

knee at early stance of walking in non-obese humans. Body mass is negatively related to the

knee flexion, whereas lower limb length is negatively related to the hip flexion. According to

our model, the detected postural adjustments are sufficient to cancel the size-related increase

of the knee moment and moderate the increase of the hip moment. The variance in flexion at

the hip and knee explained by body size parameters together is less than 25%. Velocity has the

greatest effect on flexion at both the hip and knee, whereas sex is also a significant factor at the

knee. The relatively weak association of body size with posture could be a consequence of the

relatively low mechanical loading of lower limbs during the walking gait.
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