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Abstract 

As an advanced function of the human brain, emotion has a significant influence on human studies, works, and other 
aspects of life. Artificial Intelligence has played an important role in recognizing human emotion correctly. EEG-based 
emotion recognition (ER), one application of Brain Computer Interface (BCI), is becoming more popular in recent 
years. However, due to the ambiguity of human emotions and the complexity of EEG signals, the EEG-ER system 
which can recognize emotions with high accuracy is not easy to achieve. Based on the time scale, this paper chooses 
the recurrent neural network as the breakthrough point of the screening model. According to the rhythmic character-
istics and temporal memory characteristics of EEG, this research proposes a Rhythmic Time EEG Emotion Recognition 
Model (RT-ERM) based on the valence and arousal of Long–Short-Term Memory Network (LSTM). By applying this 
model, the classification results of different rhythms and time scales are different. The optimal rhythm and time scale 
of the RT-ERM model are obtained through the results of the classification accuracy of different rhythms and different 
time scales. Then, the classification of emotional EEG is carried out by the best time scales corresponding to different 
rhythms. Finally, by comparing with other existing emotional EEG classification methods, it is found that the rhythm 
and time scale of the model can contribute to the accuracy of RT-ERM.
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1 Introduction
Analysis of EEG in time domain mainly includes two per-
spectives: one is task-related EEG delay characteristics, 
which are mainly analyzed by event-related potentials; 
the other is the memory-related EEG period character-
istics, which are closely related to the memory attrib-
utes in cognitive theory. Previous studies have shown 
that emotions have a short-term memory attribute, that 
is, emotions will continue for some time until the next 
emotional stimulus, and this phenomenon can be meas-
ured using brain electricity [1]. Because short-term EEG 
signals are usually considered to be stable, most studies 
use 1–4-s EEG signals to identify emotional states [2]. 
This article mainly focuses on emotion-related tempo-
ral memory attributes, and explores the correlations 

between different time scales and emotional states under 
different rhythms.

We define the concept of window function on the basis 
of the traditional full-response time-scale analysis, and 
determine the local brainwave component of the time-
varying signal through the continual movement of the 
window function. The wavelet transform method is used 
to extract the EEG signals of different rhythms, and then 
the whole-time domain process of the rhythmic brain 
wave is decomposed into several stable equal-length sub-
processes; then, the subsequent analysis and processing 
are performed. The physiological signal is unstable, for 
example, the long-window physiological signal has great 
variability, while short-term windows cannot provide suf-
ficient information; so, choosing a suitable length of time 
window is crucial for the accuracy and computational 
efficiency of emotion recognition [3]. The windowing 
method can be applied to estimate the start and dura-
tion of different emotional states (such as high arousal). 
Especially, when we use movie clips or music videos 
to induce emotions, different stimulus materials have 
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different durations, and due to the different plots of the 
stimulus material, the induced emotions are fast or slow. 
Therefore, it is more practical and useful to estimate the 
start and duration of different emotional states through 
windowing.

Recurrent neural networks inspired and validated by 
cognitive models and supervised learning methods have 
been proven to be effective methods for simulating the 
input and output of sequence forms (especially data in 
temporal form). For example, in the fields of cognitive 
science and computational neuroscience, many physi-
ological research results have laid the foundation for the 
study of circulatory neural networks [4]. In addition, the 
idea of biological heuristics has also been validated by 
various experiments [5]. Based on the above theoretical 
support, we use the recurrent neural network to simulate 
and identify the emotional EEG signals at multiple time 
scales.

We will discuss the study on physiological characteris-
tics (time characteristics) of emotional EEG first during 
the second section. And then tap, analyze and apply the 
binding relationship between emotion and rhythm, and 
the binding relationship between emotion and time. The 
following sections will elaborate on the relevant technol-
ogies, principles, and methods involved in the model.

2  Method
2.1  Rhythm and time characteristics analysis of EEG
A large number of studies on neurophysiological and 
cognitive science have shown that the brain has time con-
sistency and delay in the process of emotional process-
ing, memory attributes. This paper explores the binding 
relationship between emotion and time scale under dif-
ferent shock rhythms based on LSTM neural networks, 
and then address emotional recognition. The LSTM-
based EEG “time” characteristic analysis mainly includes 
three parts: rhythm signal extraction, time scale division, 
and emotion recognition. The following is a detailed 
explanation.

2.1.1  Rhythm signal extraction
The EEG signal can be divided into several bands in the 
frequency: δ (0.5–4  Hz, generally appears when infants 
or adults are in a state of quietness, lethargy, fatigue, etc.), 
θ (4–8  Hz, generally appears when the person gradu-
ally becomes sleepy from the awake state, or the emo-
tion gradually becomes calmer), α (8–13  Hz, generally 
appears when people are awake, relaxed, or closed eyes), 
β (14–30  Hz, generally appears when people are alert 
or focused), γ (> 30  Hz, generally appears in short-term 
memory process, multisensory information integration 
process, etc.) [6].

We use the discrete wavelet transform to extract the 
rhythm of the full-band EEG signal. The formula is as 
follows:

Among them, ψj,k(t) = |a|−
1
2ψ

(

t−b
a

)

= 2
j
2ψ
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)

j, k ∈ Z , j and k are scale parameters. With the change of 
j, ψj,k(t) is at different frequency bands in the frequency 
domain. With the change of k, ψj,k(t) is at different time 
bands in the time domain.

Different from the analysis of wavelet parameters with 
different rhythms, we consider the time properties of 
different rhythms. Therefore, to reconstruct the wavelet 
coefficients, the time domain signals corresponding to 
different rhythms are obtained. The formula is as follows:

2.1.2  Division of time scales
To satisfy the different time scale analysis requirements, 
the rhythm signal is segmented by a rectangular window 
function. The time scales for the segmentation are: 0.25 s, 
0.5 s, 0.75 s, 1 s, 2 s, 3 s, 4 s, 5 s and 6 s, as shown in Fig. 1.

2.2  Long–short‑term memory neural network
Recurrent neural networks (RNNs) are a very effective 
connection model. On the one hand, it can learn input 
data at different time scales in real time. On the other 
hand, it is also possible to capture the model state infor-
mation of the past time through the loop of the unit in 
the model, and it has the function of the memory mod-
ule as well. The RNN model was originally proposed by 
Jordan [7] and Elman [8], and subsequently derived many 
different variants, such as time delay neural network 
(TDNN) [9] echo oscillating network (ESN) [10], etc. Due 
to the special design of recursion, RNN can theoretically 
learn history event information of any length. However, 
the length of the standard RNN model learning history 
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Fig. 1 Block diagram of window segmentation
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information is limited in real application. The main prob-
lem is that the given input data will affect the status of 
the hidden layer unit, which will affect the output of the 
network. With the increase of the number of cycles, the 
output data of the network unit will be influenced by 
exponential growth and decrease, which is defined as the 
gradient disappearance and gradient explosion problem 
[11]. A large number of research efforts have attempted 
to solve these problems; the most popular is the long–
short-term memory neural network structure proposed 
by Hochreiter and Schmidhuber [12].

The LSTM network structure is similar to the stand-
ard RNN model except that its hidden layer’s summa-
tion unit is replaced by a memory module. Each module 
contains one or more self-connected memory cells and 
three multiplication units (input gates, output gates, and 
oblivion gates). These multiplication units have writing, 
reading, and reset functions. Since these multiplication 
units allow the LSTM’s memory unit to store and retrieve 
long-term information from the network, the gradient 
disappearance problem can be mitigated.

The learning process of LSTM is divided into two steps, 
forward propagation and back propagation. The back 
propagation process of LSTM calculates the loss function 
based on the output of the model training and the real 
tag, and then adjust the weight of the model. Currently, 
two well-known algorithms have been used to calculate 
and adjust the weights in the back-propagation process: 
one is real-time recurrent learning (RTRL); and the other 
is back propagation through time (BPTT). In this article, 
we use BPTT for training because it is easy to be under-
stood and has lower computational complexity.

LSTM model has been widely applied to a series of 
tasks that require long-term memory, such as learning 
context-confirmed statements [13] and requiring precise 
timing and counting [14]. In addition, the LSTM model 
is also widely used in practice, such as protein structure 
prediction [15], music generation [16], and speech recog-
nition [17].

3  LSTM‑based EEG emotion recognition model
Different from the analysis part, in this part, we directly 
use the optimal time and rhythm characteristics obtained 
from the analysis to construct an EEG emotion recog-
nition method (RT-ERM) based on the “rhythm–time” 
characteristic inspiration, and then conduct emotion 
recognition. The analysis framework is shown in Fig.  2. 
The input is original multi-channel EEG signal, and the 
output is the emotion classification which is based on the 
valence and arousal.

Step 1:
The RT-ERM method receives the multi-channel origi-

nal EEG signals:

where n is the number of brain leads, N  is the number of 
sample points, and xCHi(t) is the brain electrical signal of 
the i th channel.

Then, we use the open source toolbox EEGLab to per-
form the technique of artifact removal and blind source 
separation based on independent component analysis for 
multi-channel EEG signals. The most representative sig-
nal in each brain power source expressed in S(t).

Step 2:
Furthermore, the EEG signal is down-sampled to 

256  Hz to obtain the preconditioned EEG signal, as 
follow:

where F(t) is the preconditioned EEG signal, M is the 
number of channel sample points after downsampling. 
Rhythm extraction is performed on the preprocessed 
EEG signal to obtain a rhythm signal of interest:

where κ represents the emotion-related rhythm obtained 
from the analysis.

Step 3:
Let tS be the time scale and sR be the sampling fre-

quency, cut and merge the rhythm signals as follow:

where E = n ∗ tS ∗ sR , T is obtained by dividing the total 
sample time by tS, and the EEG data vector of the ith 
time node as follows:

Step 4:
After being cut and merged, the signal Iκ(t) is input 

into the LSTM model for recognition learning.

(3)
X(t) =

[

xCH1(t), xCH2(t), . . . , xCHn(t)
]

∈ Rn×N

(4)
F(t) =

[

f CH1(t), f CH2(t), . . . , f CHn(t)
]

∈ Rn×M ,

(5)
Fκ (t) =

[

f CH1
κ (t), f CH2

κ (t), . . . , f CHn
κ (t)

]

∈ Rn×M ,
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2
κ (t), . . . , I

T
κ (t)

]

∈ RE×T ,
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I iκ(t) =

[
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. . . , f CHn
κ (ts ∗ sR ∗ (i − 1), tS ∗ sR ∗ i)

]
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Step 5:
Finally, the results of the emotion classification based 

on the valence and arousal of emotion are obtained using 
the output of the LSTM network.

4  Results and discussion
4.1  Data description
EEG data: The performance of the proposed emotional 
recognition model is investigated using DEAP Dataset. 
DEAP [18] is a multimodal dataset for analysis of human 
affective states. 32 Healthy participants (50% females), 
aged between 19 and 37 (mean age 26.9), participated 
in the experiment. 40 1-min-long excerpts of music vid-
eos were presented in 40 trials for each subject. There 
are 1280 (32 subjects × 40 trials) emotional state sam-
ples. Each sample has the valence rating (ScoreV, inte-
ger between 1 and 9, dividing the emotions into positive 
emotions and negative emotions according to the degree 
of pleasure that causes people’s emotion) and the arousal 
rating (ScoreV, integer between 1 and 9, reflecting the 
intensity of emotions that people feel) [19]. During the 

experiments, EEG signals were recorded with 512-Hz 
sampling frequency, which were down sampled to 256 Hz 
and filtered between 4.0 and 45.0 Hz, and the EEG arti-
facts are removed.

Sample distribution: Based on the above DEAP data-
set, the proposed model is learned and tested for classi-
fying the negative–positive states (ScoreV ≤ 3 or ≥ 7) and 
passive–active states (ScoreA ≤ 3 or ≥ 7), respectively. 
The sample size of negative state is 222; the sample size 
of positive state is 373; the sample size of passive state is 
226; and the sample size of active state is 297.

4.2  Assessment method overview
This section uses four parameters to measure the final 
classification results, the Accuracy, the Sensitivity, the 
Specificity and the macro-F1. Their formula and defini-
tion are as follows:

The accuracy: The accuracy (ACC) measures the over-
all effectiveness of the classification model, which is the 
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Fig. 2 An emotion recognition model inspired by “rhythm–time” characteristic
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ratio of the positive sample size to the total sample size. 
The formula is:

The sensitivity: The sensitivity characterizes the valid-
ity of the classifier’s recognition of positive samples, also 
known as the true positive rate (TPR). The formula is:

The specificity: The specificity characterizes the valid-
ity of the classifier’s recognition of negative samples, also 
known as the true negative rate (TNR). The formula is:

The macro-F1: The macro F1 comprehensively consid-
ers the recall and precision of the algorithm, and can fully 
reflect the performance of the algorithm. The formulas 
are:

Among them, TP indicates that the sample belongs 
to the positive class and is also recognized as a positive 
class, while the negative class sample is distinguished as a 
positive class will be marked as FP. TN means recogniz-
ing the negative class sample correctly and FN is wrong.

In this paper, positive classes correspond to high valence 
(HV) and high arousal (HA) states, while negative classes 
correspond to states of low valence (LV) and low arousal 
(LA). In addition, a tenfold cross-validation method was 
used to verify the validity of the identification, and the 
average (mean) and standard deviation (Std.) of the evalua-
tion index of 10 experiments was calculated.

4.3  Analysis of binding relationship between time 
and rhythm

Based on the analysis method in Sect.  3, the “rhythm–
time” characteristics of EEG under emotional valence 
and arousal are analyzed separately. The following are 
results and discussion of analysis methods.

(8)Accuracy =
TP+ TN

TP+ TN+ FP+ FN
× 100%

(9)Sensitivity =
TP

TP+ FN
× 100%

(10)Specificity =
TN

TN+ FP
× 100%

(11)macro-F1 =
2×macro-P×macro-R

macro-P+macro-R

(12)macro-P =
1

n

n
∑

i=1

Pi =
1

n

n
∑

i=1

TPi

TPi + FPi

(13)macro-R =
1

n

n
∑

i=1

Ri =
1

n

n
∑

i=1

TPi

TPi + FNi

Tables 1, 2, 3, 4 are the recognition results obtained for 
different time scales of the EEG signals corresponding 
to the dimension of emotion valence under θ, α, β, and γ 
rhythms, respectively.

As can be seen from the Tables  1, 2, 3, 4, the four 
rhythms perform different from each other. For the θ 
rhythm, the time scale of 2.0  s gets the highest ACC 
(61.59%), TNR (63.17%) and macro-F1 (60.9783%) which 
corresponds to the best recognition effect; while the time 
scale of 0.25  s obviously reduces the recognition effect. 
For the α rhythm, the time scale of 6.0 s reaches the best 
ACC (61.06%) and TNR (62.1%), 5.0  s reaches the best 
TRP (63.16%), however, 0.25  s represents the greatest 
recognition effect with the highest macro-F1 (61.0404%). 
For the β rhythm, the time scale of 0.75 s performs simi-
lar to the 2.0  s in the θ rhythm, using the highest ACC 
(62.12%), TPR (66.85%) and macro-F1 (63.7077%) to 
gain the best recognition effect. When the time scale is 
smaller than 4.0  s, the β rhythm is better at identifying 
positive sample, and it becomes the opposite after 4.0 s. 
For the γ rhythm, the time scales of 5.0 s have the ACC of 
60.52% and the best macro-F1 of 60.9008%, and the time 
scales of 2.0 s have the highest ACC of 60.54%, the high-
est TNR of 61.58% and the macro-F1 of 60.358%. These 
two scales behave so similarly that we hold the view that 
both of them correspond to the best recognition effect 
and high rhythms are good at recognizing the valence 
emotions (positive and negative emotions).

Tables 5, 6, 7, 8 are the recognition results obtained for 
different time scales of the EEG signals corresponding 
to the dimension of emotion arousal under θ, α, β, and γ 
rhythms, respectively.

According to the Tables 5, 6, 7, 8, for the θ rhythm, the 
time scale of 0.5  s corresponds to the best recognition 
effect with the highest average ACC (69.1%), the highest 
average TPR (65.5%) and the highest average macro-F1 

Table 1 The classification results of RT‑ERM with different 
time scales for θ rhythm under the dimension of emotion 
valence

Time 
scale (s)

Assessment method (mean ± std.)

ACC/% TPR/% TNR/% Macro‑F1

0.25 56.35 ± 2.4113 52.64 ± 9.4194 59.99 ± 11.5745 54.9165

0.5 59.5 ± 3.5681 59.48 ± 10.2801 59.48 ± 11.3018 59.9822

0.75 58.97 ± 4.8805 57.9 ± 7.0734 59.99 ± 5.8587 58.5105

1.0 58.44 ± 3.6729 58.43 ± 10.1237 58.44 ± 9.2477 58.5264

2.0 61.59 ± 4.8816 60.0 ± 9.7751 63.17 ± 7.4529 60.9783

3.0 59.49 ± 3.1551 56.85 ± 8.7401 62.11 ± 9.9121 58.6328

4.0 59.49 ± 5.5365 57.9 ± 9.7185 61.07 ± 13.3576 59.2665

5.0 58.7 ± 3.9015 61.59 ± 7.0814 55.77 ± 6.7373 59.9094

6.0 58.7 ± 3.9015 61.06 ± 8.5573 56.33 ± 7.8225 59.7188



Page 6 of 8Yan et al. Brain Inf.             (2019) 6:7 

Table 2 The classification results of RT‑ERM with different 
time scales for α rhythm under the dimension of emotion 
valence

Time 
scale (s)

Assessment method (mean ± std.)

ACC/% TPR/% TNR/% Macro‑F1

0.25 60.27 ± 4.1427 61.57 ± 11.2808 58.95 ± 10.4674 61.0404

0.5 58.17 ± 3.1975 56.85 ± 6.5733 59.48 ± 8.5147 57.7809

0.75 59.76 ± 4.4014 59.47 ± 8.4918 60.01 ± 7.5027 59.6736

1.0 58.43 ± 3.8471 60.0 ± 10.3032 56.84 ± 11.7183 59.3884

2.0 60.53 ± 5.1299 59.47 ± 7.0977 61.59 ± 10.7938 60.3727

3.0 58.97 ± 3.7542 58.96 ± 9.3483 58.95 ± 9.3551 59.0652

4.0 58.17 ± 2.9786 61.05 ± 8.5364 55.27 ± 8.2255 59.4217

5.0 59.22 ± 8.087 63.16 ± 14.6947 55.26 ± 9.1902 60.5821

6.0 61.06 ± 3.4886 59.99 ± 10.3256 62.1 ± 9.6398 60.8203

Table 3 The classification results of RT‑ERM with different 
time scales for β rhythm under the dimension of emotion 
valence

Time 
scale (s)

Assessment method (mean ± std.)

ACC/% TPR/% TNR/% Macro‑F1

0.25 60.29 ± 4.7628 58.94 ± 8.086 61.57 ± 5.7827 59.6931

0.5 57.91 ± 2.0398 54.75 ± 6.7467 61.06 ± 6.3283 56.5961

0.75 62.12 ± 5.7946 66.85 ± 9.1329 56.31 ± 11.7915 63.7077

1.0 59.47 ± 2.6751 58.42 ± 7.9748 60.52 ± 5.8853 59.0577

2.0 60.02 ± 3.4931 58.94 ± 9.3506 61.05 ± 5.8641 59.5255

3.0 58.18 ± 2.9866 56.32 ± 7.4668 60.0 ± 9.4722 57.6223

4.0 61.07 ± 6.5296 58.99 ± 13.0313 63.16 ± 9.7131 60.1829

5.0 59.48 ± 3.3671 51.62 ± 9.3297 67.38 ± 7.7268 56.0941

6.0 57.79 ± 2.4043 52.31 ± 9.2681 63.28 ± 7.6005 55.4205

Table 4 The classification results of RT‑ERM with different 
time scales for γ rhythm under the dimension of emotion 
valence

Time 
scale (s)

Assessment method (mean ± std.)

ACC/% TPR/% TNR/% Macro‑F1

0.25 58.17 ± 3.1975 57.37 ± 7.9609 58.95 ± 8.0782 57.9163

0.5 58.18 ± 4.1395 61.58 ± 9.7172 54.75 ± 9.1824 59.5898

0.75 58.69 ± 2.359 56.3 ± 9.72049 61.06 ± 8.8617 57.7672

1.0 59.23 ± 3.1682 59.49 ± 5.7936 58.94 ± 7.3657 59.441

2.0 60.54 ± 4.2358 59.47 ± 12.0169 61.58 ± 11.7651 60.358

3.0 59.48 ± 2.9294 60.0 ± 7.8775 58.96 ± 9.0603 59.8546

4.0 59.48 ± 5.7782 60.02 ± 6.7483 58.95 ± 8.0782 59.7818

5.0 60.52 ± 4.7069 60.53 ± 4.8538 60.54 ± 11.1021 60.9008

6.0 58.96 ± 2.6829 58.41 ± 10.1091 59.49 ± 7.0932 58.7311

Table 5 The classification results of RT‑ERM with different 
time scales for θ rhythm under the dimension of emotion 
arousal

Time 
scale (s)

Assessment method (mean ± std.)

ACC/% TPR/% TNR/% Macro‑F1

0.25 67.0 ± 7.3143 60.5 ± 10.8282 73.5 ± 13.4257 65.5009

0.5 69.1 ± 4.2131 65.5 ± 10.3561 72.5 ± 8.1394 67.9658

0.75 62.25 ± 2.8394 55.0 ± 5.0 69.5 ± 4.7169 59.3537

1.0 64.25 ± 3.7165 63.5 ± 8.6746 65.0 ± 10.9544 63.7584

2.0 64.57 ± 1.991 63.41 ± 6.3994 65.73 ± 7.8801 64.3596

3.0 61.0 ± 5.3851 62.5 ± 11.8848 59.5 ± 8.2006 61.5251

4.0 57.75 ± 4.9307 56.0 ± 9.9498 59.5 ± 10.1118 57.18

5.0 61.0 ± 2.7838 61.0 ± 9.1651 61.0 ± 7.0 61.0651

6.0 62.5 ± 4.8734 61.5 ± 8.6746 63.5 ± 6.7268 62.1434

Table 6 The classification results of RT‑ERM with different 
time scales for α rhythm under the dimension of emotion 
arousal

Time 
scale (s)

Assessment method (mean ± std.)

ACC/% TPR/% TNR/% Macro‑F1

0.25 63.75 ± 3.4003 60.5 ± 6.8738 67.0 ± 8.42615 62.7233

0.5 58.25 ± 6.8965 59.0 ± 13.0 57.5 ± 12.2983 58.7429

0.75 60.25 ± 4.8023 59.0 ± 8.0 61.5 ± 8.6746 59.8748

1.0 58.24 ± 4.8916 56 ± 20.3469 55.5 ± 7.8898 54.2846

2.0 60.75 ± 2.5124 60.0 ± 8.3666 61.5 ± 7.433 60.552

3.0 56.25 ± 2.3048 56.5 ± 12.6589 56.0 ± 12.0 56.5154

4.0 59.5 ± 2.4494 61.0 ± 9.4339 58 ± 8.7178 60.2175

5.0 58.0 ± 4.4441 57.5 ± 8.13941 58.5 ± 8.6746 57.8832

6.0 60.25 ± 4.5345 60.0 ± 10.7238 60.5 ± 12.7377 60.5214

Table 7 The classification results of RT‑ERM with different 
time scales for β rhythm under the dimension of emotion 
arousal

Time 
scale (s)

Assessment method (mean ± std.)

ACC/% TPR/% TNR/% Macro‑F1

0.25 58.75 ± 3.5794 61.0 ± 8.6023 56.5 ± 9.7596 59.832

0.5 60.75 ± 4.8798 68.0 ± 7.1414 53.5 ± 12.4599 63.733

0.75 63.5 ± 3.0 64.0 ± 8.6023 63.0 ± 8.124 63.8073

1.0 63.0 ± 4.8476 65.5 ± 10.5948 60.5 ± 8.7891 64.0

2.0 59.0 ± 3.3911 57.5 ± 10.0623 60.5 ± 11.9268 58.6477

3.0 56.25 ± 5.6181 56.5 ± 6.3442 56.0 ± 9.9498 56.5601

4.0 58.5 ± 5.0249 58.5 ± 8.9582 58.5 ± 10.7354 58.788

5.0 58.25 ± 3.3634 59.0 ± 5.3851 57.5 ± 4.6097 58.566

6.0 59.75 ± 3.4369 57.0 ± 7.1414 62.0 ± 9.0 58.6327
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(67.9658%). The θ rhythm uses a small time scale (such 
as 0.25  s and 0.5  s) to get the best results under the 
dimension of emotion arousal, that is contrary to emo-
tion valence. The time scale of 0.25 s corresponds to the 
best recognition when it comes to the α rhythm, and it 
makes better in classifying negative samples. As for the 
β rhythm, the time scale of 0.5  s does well in recogniz-
ing positive samples, while 0.75 s is on the contrary, and 
these two scales obtain a close macro-F1 results, the for-
mer is 63.733% and the latter is 63.8073%. However, the 
experimental results of γ rhythm are more complicated. 
The time scales of 0.25 s and 2.0 s get the highest average 

ACC. 2.0 s and 6.0 s make best in the negative samples’ 
recognition. When 1.0 s and 3.0 s are used to distinguish 
the positive samples, they reach the best result. And we 
think that 0.25 s and 3.0 s correspond to the best recog-
nition effect for their highest macro-F1 (61.8742% and 
61.8743%). The results show that low rhythms (such as θ 
rhythm) can better identify emotional arousal.

4.4  Emotion recognition results comparison and analysis
From Table  9, it can be seen that most of the emotion 
recognition studies using the DEAP database currently 
select a time window of 1–8 s, and the time window with 
the highest recognition accuracy rate is 1–2 s.

In the statistical results in Table  9, Kuai [25], using 
rhythm synchronization patterns with joint time–fre-
quency–space correlation model (RSP-ERM) to distinguish 
the emotion, obtained the average classification rates of 
64% (arousal) and 66.6% (valence). In our work, for valence, 
RT-ERM can obtain the highest average recognition accu-
racy (62.12%) at the time scale of 0.75 s and β rhythm; In 
terms of arousal, RT-ERM can obtain the highest average 
recognition accuracy (69.1%) at the time scale of 0.5 s and 
θ rhythm, which is 0.7% higher than traditional SVM or 
KNN model [20], and 2.5% higher than Kuai’s [25] result. 
Through the statistical results, we found that the LSTM-
based deep learning network can effectively identify the 
emotional state and obtain a good recognition effect.

Table 8 The classification results of RT‑ERM with different 
time scales for γ rhythm under the dimension of emotion 
arousal

Time 
scale (s)

Assessment method (mean ± std.)

ACC/% TPR/% TNR/% Macro‑F1

0.25 61.25 ± 3.9131 62.5 ± 5.1234 60.0 ± 7.7459 61.8742

0.5 60.0 ± 5.1234 59.5 ± 8.7891 60.5 ± 8.7891 59.8828

0.75 58.75 ± 2.7951 61.5 ± 8.6746 56.0 ± 10.9087 60.0983

1.0 59.5 ± 1.8708 64.0 ± 7.6811 55.0 ± 7.0711 61.3011

2.0 61.5 ± 5.0249 60.5 ± 9.6046 62.5 ± 8.1394 61.17

3.0 59.5 ± 1.5 64.0 ± 8.8881 56.0 ± 11.5758 61.8743

4.0 59.25 ± 5.25 57.5 ± 6.0207 61.0 ± 6.6332 58.5626

5.0 59.5 ± 4.4441 58.0 ± 10.2956 61.0 ± 7.0 58.8468

6.0 57.5 ± 2.958 52.5 ± 7.1589 62.5 ± 6.0207 55.2748

Table 9 Comparison of results that use EEG signals of DEAP dataset for emotion recognition

SVR support vector regression, QDA quadratic discriminant analysis, LDA linear discriminant analysis, RSP-ERM emotional recognition model based on rhythm 
synchronization patterns, /2 binary classification

Literature Emotion category Window’s length Classification The highest 
classification 
accuracy (Acc/%)

Rozgić et al. [20] Arousal/2
Valence/2

1 s/2 s/4 s/8 s (1-s step length) SVM
KNN

68.4/2
76.9/2

Zhuang et al. [21] Arousal/2
Valence/2

1 s (0.1-s step length) SVR 68.4/2
76.9/2

Yoon et al. [3] Arousal/2
Valence/2

2 s (1-s step length) Bayesian based on sensor 
convergence

70.1/2
70.9/2

Hatamikia et al. [22] Arousal/2 1 s KNN, QDA, LDA 74.2/2
72.33/2Valence/2

Tripathi et al. [23] Arousal/2
Valence/2

– DNN 73.28/2
75.58/2

Li et al. [24] (Arousal and Valence)/2 3 s SAE, LSTM RNN 79.26/2

Kuai et al. [25] Arousal/2
Valence/2

3 s RSP-ERM 64/2
66.6/2

Our work Arousal/2 < 1 s RT-REM 69.1/2

Valence/2 62.12/2
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5  Conclusions
This paper discusses the temporal memory characteris-
tics of the brain in the process of emotional information 
processing, and then describes the theoretical basis and 
advantages of the cyclic neural network when it is used in 
the mining analysis of temporal characteristics, and finally 
constructs a model of sentiment analysis and recognition 
to achieve effective recognition and analysis of emotions. 
We discussed the emotion mechanism under different 
time scales corresponding to different rhythms, using the 
rhythm oscillation mechanism as the default mode of the 
brain. It can be found from the experimental results that 
high rhythms, such as β and γ rhythm, are good at recog-
nizing the valence emotions, and low rhythms, such as θ 
rhythm, do well in the recognition of arousal emotions. For 
example, the recognition average accuracy rate can reach 
69.1% at the time scale of 0.5 s and θ rhythm in our experi-
ments, increasing 2.5% when compared with the existing 
EEG-based emotion analysis using rhythm characteristics 
(RSP-ERM model [25]). It is noteworthy that the smaller 
time scale shows better recognition performance no matter 
in the valence or arousal state. In summary, the “rhythm–
time” characteristics obtained through RT-ERM affective 
model analysis not only have a greater significance for the 
in-depth understanding of the physiological properties of 
the brain in the process of emotional information process-
ing, but also help to guide the application of emotion recog-
nition model based on physiological inspiration.
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