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Abstract

Burkholderia sp. strain UYPR1.413 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from a
root nodule of Parapiptadenia rigida collected at the Angico plantation, Mandiyu, Uruguay, in December 2006. A survey
of symbionts of P. rigida in Uruguay demonstrated that this species is nodulated predominantly by Burkholderia
microsymbionts. Moreover, Burkholderia sp. strain UYPR1.413 is a highly efficient nitrogen fixing symbiont with
this host. Currently, the only other sequenced isolate to fix with this host is Cupriavidus sp. UYPR2.512. Therefore,
Burkholderia sp. strain UYPR1.413 was selected for sequencing on the basis of its environmental and agricultural
relevance to issues in global carbon cycling, alternative energy production, and biogeochemical importance, and
is part of the GEBA-RNB project. Here we describe the features of Burkholderia sp. strain UYPR1.413, together with
sequence and annotation. The 10,373,764 bp high-quality permanent draft genome is arranged in 336 scaffolds
of 342 contigs, contains 9759 protein-coding genes and 77 RNA-only encoding genes.
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Introduction
Rhizobia are soil bacteria that have acquired the ability
to establish symbiotic associations with plants, mainly
from the Fabaceae family, and carry out the Biological
Nitrogen Fixation (BNF) process. BNF is catalyzed by
the rhizobial nitrogenase complex, whereby N2 is re-
duced to ammonium.
Well-known and studied rhizobia are those belonging to

the α-proteobacteria (eg. Azorhizobium, Bradyrhizobium,
Ensifer, Mesorhizobium and Rhizobium). In 2001 symbiotic
nitrogen fixing bacteria belonging to the group of Betapro-
teobacteria were reported as root nodule bacteria, introdu-
cing the term of Alpha and Beta-rhizobia to differentiate
both groups of rhizobia [1, 2]. The Beta-rhizobia identified
so far belong to only two genera: Burkholderia and Cupria-
vidus and the association seem to be mainly with plants
from the Mimosoideae subfamily [3]. Additionally, studies
indicate that the South American Mimosa genus is
preferentially nodulated by Beta-rhizobia [4]. Different
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Beta-rhizobia species have been described belonging to
the Burkholderia genus (eg. B. caballeronis, B. caribensis,
B. diazotrophica, B. dilworthii, B. mimosarum, B. nodosa,
B. phymatum, B. rhynchosiae, B. sabiae, B. sprentiae, B.
symbiotica and B. tuberum) but only two in the Cupriavi-
dus genus (C. taiwanensis and C. necator) [2, 5–17].
Burkholderia sp. UYPR1.413 strain has been isolated

from a root nodule of Parapiptadenia rigida (Benth.)
Brenan found in an angico plantation in Artigas,
Uruguay [18]. P. rigida belongs to the Mimosoideae sub-
family and is a woody species, which can reach 30 m in
height and a diameter of 60 to 80 cm [19]. The wood is
of excellent quality, heavy, elastic, very hard and quite
durable, rich in tannins and has medicinal properties
[20]. There are six different species of Parapiptadenia in
the Americas of which only P. rigida is present in
Uruguay. A survey of symbionts of P. rigida in Uruguay
demonstrated that this species is nodulated by rhizobia
belonging to the genera Burkholderia, Cupriavidus and
Rhizobium, of which the Burkholderia microsymbionts
predominated [18]. Burkholderia sp. UYPR1.413 strain
belongs to a group of microsymbionts that were able to
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Fig. 1 Images of Burkholderia sp. strain UYPR1.413 using scanning (Left) and transmission (Center) electron microscopy and the appearance of
colony morphology on solid media (Right)

Fig. 2 Phylogenetic tree highlighting the position of Burkholderia sp. strain UYPR1.413 (shown in blue print) relative to other type and non-type
strains in the Burkholderia genus using 1046 bp internal region of the 16S rRNA gene. Several Alpha-rhizobia sequences were used as outgroup.
All sites were informative and there were no gap-containing sites. Phylogenetic analyses were performed using MEGA, version 5.05 [47]. The tree
was built using the maximum likelihood method with the General Time Reversible model. Bootstrap analysis with 500 replicates was performed
to assess the support of the clusters. Type strains are indicated with a superscript T. Strains with a genome sequencing project registered in GOLD
[30] have the GOLD ID provided after the strain number. Finished genomes are designated with an asterisk
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nodulate and fix nitrogen with P. rigida [18]. In this
work we present the description of the Burkholderia
sp. UYPR1.413 high-quality permanent draft genome
sequence and its annotation.
Organism information
Classification and features
Burkholderia sp. strain UYPR1.413 is a motile, Gram-
negative, non-spore-forming rod (Fig. 1 Left, Center) in the
order Burkholderiales of the class Betaproteobacteria. The
rod-shaped form varies in size with dimensions of 0.3–
0.5 μm in width and 1.0–2.0 μm in length (Fig. 1 Left). It is
fast growing, forming 0.5–1 mm diameter colonies after
24 h when grown on TY [21] at 28 °C. Colonies on TY are
white-opaque, slightly domed, moderately mucoid with
smooth margins (Fig. 1 Right).
Table 1 Classification and general features of Burkholderia sp. strain
[28] published by the Genome Standards Consortium [48]

MIGS ID Property

Classification

Gram stain

Cell shape

Motility

Sporulation

Temperature range

Optimum temperature

pH range; Optimum

Carbon source

MIGS-6 Habitat

MIGS-6.3 Salinity

MIGS-22 Oxygen requirement

MIGS-15 Biotic relationship

MIGS-14 Pathogenicity

MIGS-4 Geographic location

MIGS-5 Sample collection

MIGS-4.1 Latitude

MIGS-4.2 Longitude

MIGS-4.4 Altitude

Evidence codes-IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i
(i.e., not directly observed for the living, isolated sample, but based on a generally a
codes are from the Gene Ontology project [56]
Figure 2 shows the phylogenetic relationship of Burkhol-
deria sp. strain UYPR1.413 in a 16S rRNA gene sequence
based tree. This strain is phylogenetically most related to
Burkholderia sabiae Br3407T, Burkholderia caribensis
MWAP64T and Burkholderia phymatum STM815T with
sequence identities to UYPR1.413 16S rRNA gene se-
quence of 98.96, 98.64 and 98.56 %, respectively, as deter-
mined using the EzTaxon-e server [22]. Burkholderia
sabiae Br3407T was first isolated from root nodules of Mi-
mosa caesalpiniifolia, a native tree to Brazil [6]. Burkhol-
deria caribensis MWAP64T was first isolated from vertisol
in Martinique [5] and related strains have been identified
as a plant growth promoting bacteria for grain Amaranth
and Mango trees [23, 24] and nitrogen fixing root nodule
bacteria for several Mimosa species [25, 26]. Burkholderia
phymatum STM815T is also known to nodulate effectively
with several Mimosa species [27]. Minimum Information
UYPR1.413 in accordance with the MIGS recommendations

Term Evidence code

Domain Bacteria TAS [49]

Phylum Proteobacteria TAS [50, 51]

Class Betaproteobacteria TAS [52]

Order Burkholderiales TAS [53]

Family Burkholderiaceae TAS [54]

Genus Burkholderia TAS [55]

Species Burkholderia sp. IDA

(Type) strain UYPR1.413 IDA

Negative TAS [55]

Rod IDA

Motile IDA

non-sporulating TAS [55]

Not reported

28 °C IDA

Not reported

Not reported

Soil, root nodule on host TAS [18]

Not reported

Aerobic IDA

Symbiotic TAS [18]

Non-pathogenic NAS

Uruguay TAS [18]

December, 2006 TAS [18]

−30.507 TAS [18]

−57.702 TAS [18]

76 m IDA

.e., a direct report exists in the literature); NAS: Non-traceable Author Statement
ccepted property for the species, or anecdotal evidence). These evidence
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Table 2 Genome sequencing project information for Burkholderia sp. strain UYPR1.413

MIGS ID Property Term

MIGS-31 Finishing quality Permanent-draft

MIGS-28 Libraries used Illumina Std PE

MIGS-29 Sequencing platforms Illumina HiSeq 2000

MIGS-31.2 Fold coverage 117.1 × Illumina

MIGS-30 Assemblers Velvet version 1.1.04, ALLPATHS-LG V.r41043

MIGS-32 Gene calling methods Prodigal 1.4

Locus Tag A3A7

Genbank ID JAFD01000000

Genbank Date of Release January 23, 2014

GOLD ID Gp0010091

BIOPROJECT PRJNA165303

MIGS-13 Source Material Identifier UYPR1.413

Project relevance Symbiotic N2fixation, agriculture

Table 3 Genome statistics for Burkholderia sp. strain UYPR1.413

Attribute Value % of total

Genome size (bp) 10,373,764 100

DNA coding (bp) 8,806,315 84.89

DNA G + C (bp) 6,461,024 62.28

DNA scaffolds 336

Total genes 9836 100

Protein-coding genes 9759 99.22

RNA genes 77 0.78

Pseudo genes 1 0.01

Genes in internal clusters 471 4.79

Genes with function prediction 7467 75.92

Genes assigned to COGs 6103 62.05

Genes with Pfam domains 7650 77.78

Genes with signal peptides 934 9.50

Genes with transmembrane helices 2097 21.32

CRISPR repeats 1
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about the Genome Sequence (MIGS) [28] is provided in
Table 1.

Symbiotaxonomy
Burkholderia sp. strain UYPR1.413 was isolated from
Parapiptadenia rigida, a Mimosoideae legume native
to Uruguay [18]. This tree is native to South America,
including south Brazil, Argentina, Paraguay, and Uruguay,
and used by locals for timber and as a source of gums,
tannins and essential oils [18]. Burkholderia sp. strain
UYPR1.413 is able to renodulate its original host and is
highly efficient in fixing nitrogen with this host [18]. A
selection of host plants, including Trifolium repens,
Medicago sativa, Peltophorum dubium and Mimosa
pudica were investigated previously for their ability to
nodulate with UYPR1.413 and only M. pudica plants
were nodulated by UYPR1.413, albeit ineffectively [18].

Genome sequencing information
Genome project history
This organism was selected for sequencing on the basis
of its environmental and agricultural relevance to is-
sues in global carbon cycling, alternative energy pro-
duction, and biogeochemical importance, and is part of
the Genomic Encyclopedia of Bacteria and Archaea,
The Root Nodulating Bacteria chapter (GEBA-RNB)
project at the U.S. Department of Energy, Joint Gen-
ome Institute (JGI) for projects of relevance to agency
missions [29]. The genome project is deposited in the
Genomes OnLine Database [30] and the high-quality
permanent draft genome sequence in IMG [31]. Se-
quencing, finishing and annotation were performed by
the JGI using state of the art sequencing technology
[32]. A summary of the project information is shown
in Table 2.
Growth conditions and genomic DNA preparation
Burkholderia sp. strain UYPR1.413 was grown to mid
logarithmic phase in TY rich media [21] on a gyratory
shaker at 28 °C. DNA was isolated from 60 mL of cells
using a CTAB (Cetyl trimethyl ammonium bromide)
bacterial genomic DNA isolation method [33].

Genome sequencing and assembly
The draft genome of Burkholderia sp. UYPR1.413 was
generated at the DOE Joint genome Institute (JGI) using
state of the art technology [32]. An Illumina Std shotgun
library was constructed and sequenced using the Illu-
mina HiSeq 2000 platform which generated 23,255,298
reads totaling 3488.3 Mbp. All general aspects of library
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construction and sequencing performed at the JGI can
be found at the JGI web site [34]. All raw Illumina se-
quence data was passed through DUK, a filtering pro-
gram developed at JGI, which removes known Illumina
sequencing and library preparation artifacts (Mingkun L,
Copeland A, Han J. unpublished). The following steps
were then performed for assembly: (1) filtered Illumina
reads were assembled using Velvet version 1.1.04 [35] (2)
1–3 Kbp simulated paired end reads were created from
Fig. 3 Graphical map of the four largest scaffolds of the genome of Burkho
scaffold: Genes on forward strand (color by COG categories as denoted by
RNA genes (tRNAs green, sRNAs red, other RNAs black), GC content, GC ske
Velvet contigs using wgsim [36] (3) Illumina reads were
assembled with simulated read pairs using Allpaths-LG
(version r41043) [37]. Parameters for assembly steps
were: 1) Velvet (velveth: 63-shortPaired and velvetg: –very
clean yes –exportFiltered yes –min contig lgth 500 –scaf-
folding no –cov cutoff 10) 2) wgsim (–e 0 –1 100 –2
100 –r 0 –R 0 –X 0) 3) Allpaths-LG (PrepareAllpathsIn-
puts: PHRED 64 = 1 PLOIDY = 1 FRAG COVERAGE =
125 JUMP COVERAGE = 25 LONG JUMP COV= 50,
lderia sp. strain UYPR1.413. From the bottom to the top of each
the IMG platform), Genes on reverse strand (color by COG categories),
w
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RunAllpathsLG: THREADS = 8 RUN = std shredpairs
TARGETS = standard VAPI WARN ONLY =True OVER-
WRITE = True). The final draft assembly contained 342
contigs in 336 scaffolds. The total size of the genome is
10.4 Mbp and the final assembly is based on 1214.2 Mbp
of Illumina data, which provides an average of 117.1×
coverage of the genome.

Genome annotation
Genes were identified using Prodigal [38], as part of the
DOE-JGI genome annotation pipeline [39, 40] followed
by a round of manual curation using GenePRIMP [41]
for finished genomes and Draft genomes in fewer than
10 scaffolds. The predicted CDSs were translated and
used to search the National Center for Biotechnology
Information (NCBI) non-redundant database, UniProt,
TIGRFam, Pfam, KEGG, COG, and InterPro databases.
The tRNAScanSE tool [42] was used to find tRNA
genes, whereas ribosomal RNA genes were found by
searches against models of the ribosomal RNA genes
built from SILVA [43]. Other non-coding RNAs such as
the RNA components of the protein secretion complex
Table 4 Number of protein coding genes of Burkholderia sp. strain U
categories

Code Value % Age

J 193 2.79

A 1 0.01

K 721 10.42

L 231 3.34

B 4 0.06

D 36 0.52

V 67 0.97

T 332 4.80

M 405 5.85

N 136 1.96

U 200 2.89

O 196 2.83

C 526 7.60

G 527 7.61

E 789 11.40

F 103 1.49

H 220 3.18

I 325 4.70

P 308 4.45

Q 248 3.58

R 794 11.47

S 559 8.08

− 3733 37.95

The total is based on the total number of protein coding genes in the genome
and the RNase P were identified by searching the gen-
ome for the corresponding Rfam profiles using INFER-
NAL [44]. Additional gene prediction analysis and
manual functional annotation was performed within
the Integrated Microbial Genomes-Expert Review
(IMG-ER) system [45] developed by the Joint Genome
Institute, Walnut Creek, CA, USA.

Genome properties
The genome is 10,373,764 nucleotides with 62.28 % GC
content (Table 3) and comprised of 336 scaffolds and
342 contigs (Fig. 3). From a total of 9836 genes, 9759
were protein encoding and 77 RNA only encoding genes.
The majority of genes (75.92 %) were assigned a putative
function whilst the remaining genes were annotated as
hypothetical. The distribution of genes into COGs func-
tional categories is presented in Table 4.

Conclusion
Burkholderia sp. UYPR1.413 belongs to a group of
Beta-rhizobia isolated from Parapiptadenia rigida, a
native tree from Uruguay belonging to the Mimosoideae
YPR1.413 associated with the general COG functional

COG Category

Translation, ribosomal structure and biogenesis

RNA processing and modification

Transcription

Replication, recombination and repair

Chromatin structure and dynamics

Cell cycle control, Cell division, chromosome partitioning

Defense mechanisms

Signal transduction mechanisms

Cell wall/membrane/envelope biogenesis

Cell motility

Intracellular trafficking, secretion, and vesicular transport

Posttranslational modification, protein turnover, chaperones

Energy production and conversion

Carbohydrate transport and metabolism

Amino acid transport and metabolism

Nucleotide transport and metabolism

Coenzyme transport and metabolism

Lipid transport and metabolism

Inorganic ion transport and metabolism

Secondary metabolite biosynthesis, transport and catabolism

General function prediction only

Function unknown

Not in COGS
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legume group [18]. This tree is also native to the south of
Brazil, Argentina and Paraguay [18]. Phylogenetic analysis
revealed that UYPR1.413 is most closely related to
Burkholderia sabiae Br3407T, Burkholderia caribensis
MWAP64T and Burkholderia phymatum STM815T.
Interestingly, Br3407T was isolated from nitrogen-
fixing nodules on the roots of Mimosa caesalpiniifolia,
a legume tree native to Brazil [6]. MWAP64T has not
been reported to nodulate legume plants, however B.
caribensis TJ182 is able to nodulate and fix nitrogen
with Mimosa pigra [7]. STM815T was originally iso-
lated from Macroptilium atropurpureum but could not
be authenticated on this host [1]. Additional studies
showed that STM815T is instead able to nodulate a
wide range of Mimosa species [27]. Glasshouse experi-
ments from previous studies have shown that Burkhol-
deria sp. UYPR1.413 is also able to nodulate Mimosa
pudica seedlings, albeit ineffectively [18]. However, it
is different from the other microsymbiont in that it
can form an effective association with Parapiptadenia
rigida. The only other sequenced isolate to fix with
this host is Cupriavidus sp. UYPR2.512 [46]. There are
in total 13 Burkholderia strains that are known legume
symbionts; four (WSM3556T, WSM4176, WSM5005T,
STM678T) nodulate South African papilionoid species,
in contrast to the other nine (BR3459, CCGE1002,
DSM 21604, JPY251, JPY366, LMG 23256T, STM815,
STM3621 and UYPR1.413) that are able to nodulate
mimosoid species. A comparison of the mimosoid
nodulating strains reveals that UYPR1.413 has the lar-
gest genome (10.4 Mbp), with the highest KOG count
(1670) and the lowest GC (65.28 %) percentage in this
group. All 13 of these genomes share the nitrogenase-
RXN MetaCyc pathway catalyzed by a multiprotein ni-
trogenase complex. However, only Burkholderia sp.
UYPR1.413 has been shown to fix effectively with
Parapiptadenia rigida. The genome attributes of Burkhol-
deria sp. UYPR1.413 will therefore be important for on-
going molecular analysis of the plant microbe interactions
required for the establishment of leguminous tree symbi-
oses with this host.
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