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Abstract: Photonic crystals possess metastructures with a unique dispersion relation. An integrated
optical circuit plays a crucial role in quantum computing, for which miniaturized optical components
can be designed according to the characteristics of photonic crystals. Because the stable light trans-
mission mode for a square waveguide is transverse electric or transverse magnetic polarization, we
designed a half-waveplate element with a photonic crystal that can rotate the polarization direction
of the light incident on a waveguide by 90◦. Using the dispersion relation of photonic crystals, the
polarization rotation length and the optical axis’s angle of deviation from the electric field in the eigen-
mode can be effectively calculated. Polarization rotators designed on the basis of photonic crystal
structures can effectively reduce the insertion loss of components and exhibit favorable polarization
rotation performance.

Keywords: integrated optics; optical polarization; photonic crystals

1. Introduction

Photonic crystals, which possess an artificial periodic structure, have a unique disper-
sion relation and are used extensively in the design of optical components, such as optical
lenses [1–4], optical waveguides [5,6], and optical waveplates [7–9]. Photonic crystals with
different structural designs can be exploited to tailor the dispersion relation and spatially
exhibit different effective refractive indices of guided modes in the waveguide.

Integrated optical circuits [10,11] are expected to play a crucial role in the development
of quantum computers. A complete integrated optical circuit for quantum computing can
be easily fabricated on a chip by using a miniature optical structure [12–15]. In the optical
quantum computing design, silicon may be a good material candidate at a certain low
operating temperature due to the stable dispersion relation [16]. Because of the inherent
properties of photons, the polarization state of light can be considered a quantum mode
in quantum calculations. Two orthogonal polarization modes can be selected as optical
quantum modes, and a polarization rotator can be used to switch between [15] or facilitate
the entanglement of [12] these quantum modes.

Miniaturized optical components built into waveguide-type structures are connected
with other fibers or waveguides and integrated into the optical circuit on a chip. Currently,
waveguides are commonly produced with square cross sections; therefore, the light waves
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transmitted in waveguides exhibit transverse electric (TE) or transverse magnetic (TM)
polarization. Most relevant studies have used elements with asymmetric cross sections
to achieve conversion between these polarization modes, with the polarization rotation
effect being produced by the difference in the transmission constants between these modes.
Common methods used to achieve polarization rotation include embedding the main
waveguide in the corner of the outer waveguide [12,17], digging a groove on one side of a
waveguide [18,19], cutting one side of a square waveguide into an oblique shape [20–23],
and developing a waveguide with an L-shaped (asymmetric) [24,25] or double-stair cross
section [26].

One particular avenue that was recently proposed in this context is using the photonic
crystal [27]. Chen designed a polarization rotator based on one-dimensional photonic crys-
tals. In addition to using arrays of air cylinders to produce asymmetric cross sections, they
used photonic crystals to design a new type of polarization rotator with high performance
and potential.

In this study, we designed a waveguide-type wave plate element with one-dimensional
photonic crystals. We formed an asymmetric waveguide cross section by placing periodic
arrays of air cubes on a square Si waveguide to create two polarization modes with different
effective refractive indices of the guided mode in the waveguide (nf and ns). The angle
between the optical axis and the coordinate axis of the two modes in the crystals was 45◦,
enabling the polarization angle to be rotated by 90◦ beyond a certain length (Lπ) in the wave
plate element to achieve TE–TM conversion. We calculated the polarization rotation length
Lπ by analyzing the photonic crystal band structure and determined the angle between the
optical axis and the coordinate axis (optical axis deviation angle) by using the horizontal
and vertical components of the electric field in the eigenmode. Changes in the geometric
parameters of the air cubes can cause changes in the deviation angle, effective refractive
index, and insertion loss (IL) in the eigenmode. Therefore, when maintaining Lπ between
2.5 and 3 µm, we adjusted the geometric parameters of the air cubes to reduce the IL and
thus improve the performance of the structure of the wave plate element.

2. Materials and Methods

A schematic of the structure of the photonic crystal waveguide is displayed in Figure 1.
We used an air cube array on one side of the square waveguide to form a tooth-shaped
waveguide, as shown in Figure 1a. A SiO2 substrate (dark gray area in Figure 1) was placed
below the waveguide. The waveguide (light gray area in Figure 1) consisted of square
waveguides at the front and back for guiding electromagnetic waves and a tooth-shaped
multi-period waveguide. These waveguides were made of Si and placed beneath an air
layer that occupied the space above (not illustrated here). The refractive indices of SiO2,
Si, and air were set as 1.46, 3.46, and 1, respectively. Figure 1b depicts a unit cell and
the detailed structural parameters of the periodic tooth-like structures, where a is the
lattice constant, H is the height of the waveguide, and W is the width of the waveguide.
We defined the thickness, depth, and width of the air cube in the waveguide as a × DC,
H × DP, and W × DW, respectively. To maintain the asymmetry of the waveguide’s cross
section (similar to an L-shape), we limited DC, DP, and DW to 0.2–0.8.

We used the finite-element method (FEM) to simulate the light transmission behaviors
and the photon band structures in the full structure. Band structures and light transmission
behaviors were determined using eigenmode analysis and frequency–domain analysis,
respectively. In the calculation of the eigenmode, we only used a unit cell with a width
of a (Figure 1b). The band structure diagram of the photonic crystal was calculated by
setting Floquet periodic boundary conditions in the x-direction, and the deviation angle
of the optical axis of the wave plate was determined from the electric field data for the
eigenmode. In addition, the polarization transition state and IL values of the full structure
were analyzed in the frequency domain by plotting the full structure of the waveplate
(Figure 1a). This structure contained multi-period tooth-shaped waveguides and complete
square waveguides at its head and tail. An electromagnetic wave with a wavelength of
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1.55 µm and y-polarization was incident onto the square waveguide from the x-direction,
and it entered the tooth-shaped waveplate structure after passing through a complete
square waveguide.
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Figure 1. Schematics of the (a) full structure and (b) unit cell of the photonic crystal waveplate.

3. Results

We first selected the structure with DC = DP = DW = 0.5 for analysis and used the
unit cell displayed in Figure 1b to obtain the band structure diagram of the photonic
crystal through FEM-based eigenvalue calculation (Figure 2a). The horizontal axis of the
band structure diagram in Figure 2a represents the reduced k-vector. The unit of this
vector is 2π/a, and it represents the reciprocal space coordinates in the reduced Brillouin
zone. The vertical axis of the aforementioned diagram denotes the eigenfrequency. The
points in Figure 2a, which carry different k-vectors, represent the eigenfrequencies at
specific k vectors. By connecting those points with similar field distributions, we found
several lines in the band structure diagram, which represent the eigenmodes existing in the
corresponding structure. We increased the number of data points in the two modes with
the lowest frequency by using the interpolation method, and these modes are indicated
using blue and orange lines in Figure 2a. The operating frequency was set as the frequency
corresponding to a light wave with a vacuum wavelength of 1.55 µm (approximately
194 THz), which is marked with a dotted line Figure 2a. The photonic crystal structure
corresponds to the two eigenmodes at the operating frequency, and the k-vectors in these
eigenmodes had values of 0.289 (second mode, orange line) and 0.341 (first mode, blue
line). After substituting the lattice constant a and wavelength into the reduced k-vector
unit noted previously, the refractive index of the first and second modes were obtained
(ns = 2.114 and nf = 1.792). We defined the optical axis of the first mode as the slow axis
and that of the second mode as the fast axis. The electric field diagrams of the two modes
are presented in the insets of Figure 2a.

Because the wave incident from the square waveguide exhibits TE or TM polarization,
the half-wave-plate conditions must be fulfilled to achieve conversion between the two
orthogonal linear polarization modes. According to the birefringence properties of a half-
wave-plate, a phase difference Γ = 2π·∆n·L

λ0
= π exists between the components of the

incident wave transmitted along the fast and slow axes. In the aforementioned equation,
∆n represents the differences in the refractive indices of the fast and slow axes, L represents
the polarization rotation length, and λ0 represents the wavelength of an incident wave
in vacuum. According to the formula, the polarization rotation length can be found that
is inverse proportional to ∆n at certain wavelength. Therefore, increasing the difference
of the refractive indices between eigenmodes can produce shorter L. After substituting
the two effective refractive indices of the guided modes and the vacuum wavelength of
1.55 µm into the aforementioned equation, the required polarization rotation length for
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the photonic crystal half-wave-plate was obtained as 2.41 µm (Lπ = λ0/(2·∆n) = 2.41 µm).
It can be noticed that it should be a reciprocal result when the light comes from the other
side of the device due to the same modes. To verify this result, we performed frequency–
domain analysis with a 20-period full structure. The electric field distribution and electric
field intensity obtained when a y-polarized electromagnetic wave was transmitted along
the waveguide are illustrated in Figure 2b,c, respectively. The electric field intensity
map in the lower parts of Figure 2b,c reveals that Ey (intensity along the y-axis) was
almost 0 at x = 2.45 µm. Moreover, at this point, Ez (intensity along the z-axis) reached its
maximum value. The aforementioned results indicate that the analyzed structure converted
y-polarized waves to z-polarized waves at a minimum distance of approximately 2.45 µm,
which is close to the theoretical value obtained using the photonic band structure diagram.
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For better understanding of the birefringence properties of a PhC-type wave plate
structure, we calculated the optical axis deviation angle of the photonic crystal wave plate.
By using the y- and z-component strengths of the electric field of the eigenmode to integrate
the waveguide cross section Ω, the angle θ between the optical axis and the coordinate axis
of mode can be defined as follows [19]:

tan θ =

s
Ω nSi

2(y, z)·Ez
2(y, z)dydz

s
Ω nSi

2(y, z)·Ey2(y, z)dydz
(1)

where nSi is the refractive index of Si (i.e., 3.46).
The inset of Figure 2a shows the optical axis deviation angle θ in the first mode when

DC = DP = DW = 0.5. Using Equation (1), we obtained θ to be 49.7◦. Because of the presence
of a SiO2 substrate under the waveguide, even when the cross section of the waveguide
had a symmetric pattern with x = y as the axis of symmetry, the asymmetric material
distribution around the waveguide caused the included angle of the optical axis to not
be 45◦. According to the characteristics of a half-wave-plate, when the phase difference
between the waves passing along the fast and slow axes of a birefringent element is π, the
angleϕ between the original polarization direction and the optical axis is rotated to 2ϕ after
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these waves are linearly polarized and pass through the element. To achieve conversion
between TE and TM polarization, 2ϕ should be 90◦; therefore, a birefringent structure
should be designed to have a ϕ value of 45◦ (i.e., θ = 45◦ is angle between the optical axis
and the coordinate axis). To design a structure with θ = 45◦, we calculated the optical axis
deviation angle θ for the first mode according to the structural parameters DC, DP, and
DW. Figure 3a displays the contour map drawn for DC = 0.5. The gradient of the contours
in this figure exhibits an increasing trend from the upper left to the lower right, and the
45◦ contour is very close to the diagonal where DP = DW. The aforementioned figure
reveals that when DP < 0.4, the slope of the contours gradually decreases, and the gradient
distribution gradually shifts to the vertical direction; when the DP value is changed, the
DW difference corresponding to the same optical axis angle is not very large. The 45◦

contour line has a high overlap with the DP = DW line only when DP > 0.6.
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We extracted the part with Lπ < 3.5 µm from all the DP and DW combinations on
the 45◦ contour line with different DC values, and the corresponding DC, DP, and DW
values are listed in Table 1. On the basis of the structural parameters presented in Table 1,
Lπ and IL were plotted for different components (Figure 3b,c). The term Lπ was calculated
using the refractive index difference obtained through eigenvalue analysis. To determine
the IL, tooth-shaped structures with lengths corresponding to the lengths of each structure
(Lπ) were drawn (e.g., for DC = 0.4, DP = 0.4, and DW = 0.46, Lπ = 3.47 µm, which is
approximately 13.88 times the value of a (=0.25 µm), and the tooth-shaped structure was
drawn for 14 periods). The connected square waveguides in the front and back side of
the tooth-shaped region are five periods long, and a y-polarized electromagnetic wave
was incident from the x-direction of the square waveguide. The IL can be obtained from
the output signal Eout and incident signal Ein received from the output end of the square
waveguide as follows:

IL(dB) = 10 × log10
Ein
Eout

(2)

It can be noticed that the formula in Equation (2) is similar to the polarization conver-
sion efficiency. The polarization conversion efficiency is defined as the ratio between the
output Ez field and the input Ey field, which will show an inverse proportional tendency
with the IL. Due to the mechanism of the half-wave plate, the electric field can be almost to-
tally converted to the target component except for the energy loss. The output electric fields
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in the other two components (i.e., Ex and Ey) are confirmed as one order smaller than the
target component Ez. Therefore, we discuss Lπ with IL in the following θ = 45◦ structures.

Table 1. Structural parameters when θ = 45◦ and Lπ < 3.5 µm.

DC

DW DP
0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75

0.3 0.50 0.55 0.60 0.63 0.67 0.73 0.77
0.4 0.46 0.50 0.55 0.58 0.63 0.67 0.72 0.76
0.5 0.45 0.50 0.54 0.57 0.61 0.66 0.70 0.75
0.6 0.45 0.50 0.53 0.56 0.61 0.65 0.70
0.7 0.43 0.45 0.49 0.53 0.57 0.61 0.65
0.8 0.43 0.45 0.48 0.52 0.55 0.60 0.65

Each line in Figure 3b,c represents a different DC value, and DP is the horizontal axis
of this graph. For θ = 45◦, the smallest value of Lπ (i.e., 2.08 µm) appeared when DC = 0.8,
DP = 0.55, and DW = 0.55. The smallest IL (i.e., 0.43 dB) appeared when DC = 0.4, DP = 0.4,
and DW = 0.46. If considering the applications in quantum communications, such a low IL
device will be needed. According to the acceptable loss in the system, the relation shown
in Figure 3b,c can provide several choices.

Figure 3b reveals that, at different DC values, the minimum value of Lπ appeared
when 0.5 < DP < 0.6, with corresponding DW values falling in the range of 0.50–0.65. The
trend in Figure 3c reveals that the IL increased with the DP value. If the DP value was
between 0.5 and 0.6, the smallest Lπ value was obtained, and the IL was not too high. When
DC increased, Lπ decreased; however, the rate of decrease of Lπ reduced when DC > 0.5.
As displayed in Figure 3c, an increase in the DC value resulted in an increase in the IL
because an increase in the DC value increased the size of the air cubes and caused energy
dissipation into air. In summary, the DC value must be controlled within a certain range to
shorten Lπ without increasing the IL substantially.

For DP values of 0.5–0.6, the Lπ values of each structure were very close to each other.
Therefore, suitable geometry parameters could be selected within an appropriate Lπ range
to reduce the IL. For example, when DP = 0.6 and DC > 0.5, the required polarization
rotation length (Lπ) of each element was approximately 2.19 µm. A structure with DC = 0.5
had a low IL of 1.6 dB.

Finally, to find the optimal result among many parameter combinations, we plotted
the product of the IL and Lπ (Figure 4) and determined the combination corresponding to
the smallest IL and shortest conversion length. Figures 3c and 4 exhibit similar trends, with
the overall performance being better when the DC and DP values were small. However, the
minimum value of the aforementioned product (1.49) appeared when DC = 0.4, DP = 0.4,
and DW = 0.46 (indicated by the arrow), which indicates that a structure with a smaller DC
value should be selected to reduce the IL to the greatest extent allowed by Lπ. Similarly,
structures with smaller DP and DW values exhibit lower IL. The inset in Figure 4 illustrates
the distribution of the electric field at the point indicated by the arrow, and the inset reveals
that the Ey field in this structure (DC = 0.4, DP = 0.4, and DW = 0.46) was completely
converted into an Ez field after passing through the photonic crystal wave plate, which
confirmed the effectiveness of this structure.
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4. Conclusions

In this study, we designed a waveguide-type waveplate based on one-dimensional
photonic crystals and created a tooth-shaped waveguide on one side of a square waveguide
with an air cube array. On the basis of the birefringence of the half-wave-plate, we used the
band structure diagram to analyze the polarization rotation length of the PhC-type wave
plate structure. We then verified the calculation results through the frequency–domain
simulation of the full structure of the wave plate. By using the electric field data for the
eigenmode, we calculated the deviation angle of the optical axis of the crystal. We found
that when DP < 0.4, the DW values required to maintain a fixed rotation angle were all very
close. This enhances the error tolerance in the fabrication process. By analyzing the effect of
variations in the geometric parameters of the air cubes on θ, we found that structures with
different geometric parameters at θ = 45◦ can have an Lπ value of less than 3.5 µm and an
IL of less than 5 dB. The product of Lπ and IL confirmed that the designed photonic crystal
wave plate exhibits superior overall performance when the air cubes have a smaller volume.
When designing components, the required parameters can be effectively selected according
to the Lπ and IL values provided by us. The proposed structure can be fabricated by two
steps of E-Beam lithography and inductively coupled plasma dry etching processes. For
the first step, the patterns of air squares can be defined by E-Beam lithography and etched
by dry etching. For the second step, the waveguides’ pattern can be defined by E-Beam
lithography with alignment key and etched by dry etching process. According to the Lπ or
IL relations as a function of DP, DW, and DC shown above, the geometric parameters of the
air cube can provide the fabrication tolerance to a certain extent. Finally, by adjusting the
included angle of the optical axis of the wave plate structure, this structure can be used in
designing waveguide-type polarization rotation devices.
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