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Abstract

Reconstructing haplotypes from sequencing data is one of the major challenges in genetics.

Haplotypes play a crucial role in many analyses, including genome-wide association studies

and population genetics. Haplotype reconstruction becomes more difficult for higher num-

bers of homologous chromosomes, as it is often the case for polyploid plants. This complex-

ity is compounded further by higher heterozygosity, which denotes the frequent presence of

variants between haplotypes. We have designed Ranbow, a new tool for haplotype recon-

struction of polyploid genome from short read sequencing data. Ranbow integrates all

types of small variants in bi- and multi-allelic sites to reconstruct haplotypes. To evaluate

Ranbow and currently available competing methods on real data, we have created and

released a real gold standard dataset from sweet potato sequencing data. Our evaluations

on real and simulated data clearly show Ranbow’s superior performance in terms of accu-

racy, haplotype length, memory usage, and running time. Specifically, Ranbow is one order

of magnitude faster than the next best method. The efficiency and accuracy of Ranbow

makes whole genome haplotype reconstruction of complex genome with higher ploidy

feasible.

Author summary

We focus on the problem of reconstructing haplotypes for polyploid genomes. Our

approach explored using short read sequence data from a highly heterozygous hexaploid

genome. We observed that short read data from strongly heterozygous organisms open up

a way for haplotype reconstruction by supplying overlap information between reads. We

therefore investigated the role of heterozygosity and ploidy number. Though higher het-

erozygosity provides more useful reads for reconstructing haplotypes, polyploidy

increases the challenge in assembling reads into longer sequences. We called this the prob-

lem of “Ambiguity of Merging” fragments. We addressed this problem by designing a

new algorithm called Ranbow. Ranbow was evaluated on real and simulated data from

the genomes of tetraploid Capsella bursa-pastoris (Shepherd’s Purse) and hexaploid
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Ipomoea batatas (sweet potato). We were able to show that our method achieved high

accuracy and long assembled haplotypes in a feasible amount of time, performing at a

level consistently superior to other algorithms.

This is a PLOS Computational BiologyMethods paper.

Introduction

The rapid advances in sequencing technologies and assembly tools have enabled the assembly

of reference genomes from multiple organims [1–3]. Though useful, such reference sequences

do not reflect the complex wealth of information in each chromosome entity. Homologous

chromosomes are similar, but not identical, and differ in sets of variants. It is therefore clear

that these reference sequences are a consensus of homologous chromosomes and are only esti-

mates of them. Single chromosomes are the main components of inheritance. The majority of

chromosomal regulatory interactions are derived within chromosomes [4]. Knowing the

sequence of single chromosomes provides us with a better view of the genome. The sequence

of variants on a single copy of a chromosome is called a haplotype [5, 6]. Haplotyping plays an

important role in a multitude of biological analysis, such as genome-wide association studies

and imputation [7–9], population genetics studies [10, 11], genome regulation [4, 12, 13], and

genotype error detection [14, 15].

Current computational methods of haplotype detection for diploid and polyploid genomes

use a wide range of data produced by different technologies. ‘Polyploidy’ is a characteristic of

genomes with more than two sets of homologous chromosomes. Human, potato, bread wheat,

and strawberry have two, four [16], six [17], and eight [18] sets of homologous chromosomes,

respectively. One further distinguishes allopolyploidy, where two species hybridize and con-

tribute chromosome sets, and autopolyploidy, where the chromosomes are derived from a sin-

gle species. In this work we do not make any assumption on the origin of the chromosomes.

Approaches to haplotype detection include haplotype inference from SNP array technolo-

gies and population data [19, 20], trio-based haplotyping [21], de novo assembly based haplo-

type reconstruction [22–24], and reference based haplotype reconstruction from sequencing

data [5, 25–29]. The latter assumes that reference sequence, aligned reads, and called variants

are available as input to construct haplotypes. This is the problem formulation we adopt in our

work, focusing on read-based single individual haplotype reconstruction of polyploid

genomes.

Multiple combinatorial optimization models aim to address the haplotype reconstruction

problem [6]. This includes minimum error correction (MEC) [30], minimum fragment

removal (MFR) [31], minimum SNP removal (MSR) [31], minimum fragment cut (MFC)

[32], and balanced optimal partition (BOP) [33]. The tools within these models search for a

solution, i.e. a set of haplotypes, with the highest fitness score of the model. The MEC model,

for example, minimizes the disagreement between reconstructed haplotypes and their consti-

tutive reads. Because most of these models are proven NP-Hard [32, 34], heuristic algorithms

have been proposed [5, 25, 26]. Though existing models target diploid haplotyping, a few of

them can be generalized for polyploid contexts [28, 29].

Diploid and polyploid haplotyping differ in problem complexity. Because the haplotypes in

a diploid haplotype are complementary, obtaining one haplotype is sufficient [5, 25]. In
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contrast, all haplotypes in polyploid genomes must be computed in order to obtain the com-

plete picture of all homologous chromosomes [26, 27]. The step from diploid to polyploid

inflates the search space dramatically [28]. The presence of a larger number of homologous

chromosomes also leads to the quantitative observation of individual variants. This is called

dosage information, which describes the frequencies of variants in a polymorphic site [35].

Errors in dosage information provided as input may also influence the haplotype reconstruc-

tion step. Existing programs either expect this information as input or need to determine it.

Moreover, cross-fertilizing or clonally propagated polyploid genomes have been shown to

have high heterozygosity [14, 35], meaning that a higher number of variants has to be haplo-

typed. This is complicated further as the increasing ploidy of an organism causes more infor-

mation to be pushed into the reference sequence, resulting in lower identity between the

reference sequence and either of the chromosomes [14]. This introduces higher error rates in

the pre-haplotype reconstruction steps of variant calling and mapping.

Despite these challenges, higher heterozygosity helps to connect more variants from

sequence fragments of a certain read size in polyploid genomes. The intervals between variant

positions will be shorter, in turn leading to a higher chance of observing two or more variants

covered by a read. Only reads covering two or more variants are useful for haplotyping. For

instance, the sweet potato genome has an average variant interval length of 58bp [14]; for this

genome we have observed that paired-end Illumina whole genome sequencing (2 × 100bp)

provides�49% useful reads with two or more variants. The same sequencing platform cap-

tures about 1% useful reads for an average interval length of�1000bp in human (NA12878),

meaning that the proportion of useful reads is dramatically higher for the polyploid sweet

potato. These characteristics motivate the design of computational tools that use short read

sequences for haplotype reconstruction of polyploid genomes with high heterozygosity.

A handful of methods address polyploid haplotype reconstruction. HapCompass [27] con-

structs a compass graph, which is a specific type of variant graph, from variants and reads and

minimizes the conflicts between reads by finding a spanning tree of the graph. HapTree [26]

works under a probabilistic model, searching for a collection of partial solutions according to a

relative likelihood function of reads and a set of candidate haplotypes. SDhaP [29] constructs a

read-based graph where the nodes are the reads and the edges are defined by the overlaps

between reads. It uses a semi-definite programming approach that aims to find an approxi-

mate solution by a greedy search in the space of all possible haplotype combinations. H-PoP
[28] is a read-clustering based method that models haplotype reconstruction as an optimal

read partitioning problem, called the Polyploid Balanced Optimal Partition(PBOP) model.

Given a P-ploid genome, PBOP clusters the reads into P groups with maximized fitness. These

methods fall short of capturing all characteristics of polyploid genomes and can be improved

in terms of accuracy, memory usage, and running time.

This paper introduces Ranbow, our tool for reconstructing polyploid haplotypes from short

reads. We have focused on sites that vary by single-base substitution, multi-base substitutions,

and small (<50bp) insertions and deletions. We designed Ranbow to account for the following

domain-specific insights: 1) an identical overlap between two aligned reads does not yield that

they stem from one haplotype and may therefore not always be assembled into one haplotype

segment, 2) the observed high number of multi-allelic variants must be accounted for, 3) dif-

ferent types of errors need to be accounted for, including errors stemming from base-calling,

variant-calling, dosage information, and read-mapping. Ranbow exploits the dense variants

within paired-end reads in highly heterozygous regions to reconstruct haplotypes for all

homologous chromosomes in order to account for these domain-specific insights. It clusters

the reads and assembles them into short haplotypes on the variant level while considering sev-

eral error correction schemes to detect, correct, or exclude erroneous variants. Ranbow
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continues by haplotype extension of the regions via a multi-partite graph representation, fol-

lowed by detection of overlaps between haplotypes and paired-end connections. Within this

framework, we show that Ranbow efficiently and accurately constructs long haplotypes using

real and simulated data.

Materials and methods

This section explains the Ranbow design considerations, defines the haplotype reconstruction

problem, presents the algorithm, and describes the generated and simulated data we used in

our evaluation.

Method design considerations

We identified the Ambiguity of Merging (AoM) fragments problem as one of the major tech-

nical challenges specific to polyploid haplotype reconstruction. In diploid genomes, haplo-

types complement each other, in the sense that a variant position will allow for one of two

possible variants. This ensures that any two overlapping reads with identical variants stem

from the same haplotype and therefore the reads can be merged or assembled into one larger

haplotype segment. In polyploid genomes the knowledge of the sequence of one haplotype

does not suffice to infer the sequence of the other haplotypes. Consequently, any matching

overlap between two aligned reads does not yield complete haplotype information (Fig 1)

and the two reads cannot automatically be assembled into one haplotype segment. There-

fore additional information is needed to determine if two reads stem from the same

haplotype.

Our tool deals with multi-allelic variants considering different types of errors. The abun-

dance of multi-allelic variants necessitates integrating these variants in haplotype reconstruc-

tion analysis (see Data for details). Some available studies exclude multi-allelic variants for the

sake of simplicity or reducing the search space. The higher heterozygosity characteristic of a

polyploid genome leads to relatively low reference accuracy [14], a challenge for read mapping,

variant calling, and dosage estimation [35, 36]. Any error introduced in these steps will transfer

to the haplotype reconstruction step. Different types of errors, e.g. base calling and mapping,

require separate consideration. Conventional error models consider solely one type of error.

Fig 1. Ambiguity of merging fragments. In a polyploid genome, merging two fragments purely through sequence comparison may result in

erroneously reconstructed haplotypes. (A) A region of a hexaploid genome with four variant sites. Each color indicates one true haplotype. (B) Seq.A

and Seq.B are two reads sampled from the selected pieces of the blue and purple haplotypes, respectively. These sequences each carry three variants with

an overlap of two variants (C. . .A). Merging Seq.A and Seq.B would lead to Seq.C, which, however, is not one of the true haplotypes from (A).

https://doi.org/10.1371/journal.pcbi.1007843.g001
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For example, the MEC and MFR models consider only variant calling and mapping errors,

respectively. It is therefore essential that our new algorithm be able to deal with several types of

errors. Some of the available methods, such as HapCompass, require dosage information as

input, which is in itself a challenging estimation problem [37].

Definitions and problem formulation. Given a P-ploid organism, a haplotype defines

the sequence of variants in one of the P homologous chromosomes. This paper focuses on sites

that vary by single-base substitution, multi-base substitutions, and small (<50bp) insertions

and deletions; collectively referred to as Small Polymorphism (SmP). The variants are coded

into numbers ranging from zero to P − 1, where 0 refers to the reference allele, 1 refers to the

first alternative allele, 2 to the second one, and so on. We refer to this as haplotypes in coded

allele space which is written as: hCoded allele space
i ¼ hi ¼ a½1�:a½2�:a½3� . . . a½N�, where, hi, a[n], N,

and “.” represent the haplotype in coded allele space, the coded variants, the number of poly-

morphic sites, and the concatenation of the sequences, respectively. Let F be the set {f1, . . ., fM}

of all fragments. A fragment f is the sequence of variants which are covered by an aligned

read. When a read contains a variant not reported in the variant list, the position is considered

as a missing allele or gap (“−”).

As before [14], we defined the similarity and dissimilarity functions between fragments as:

simðf1; f2Þ ¼
PN

n¼1
sðf1½n�; f2½n�Þ

dsmðf1; f2Þ ¼
PN

n¼1
dðf1½n�; f2½n�Þwhere

sðf1½n�; f2½n�Þ ¼
1 f1½n� ¼ f2½n� & f1½n� 6¼ “ � ” & f2½n� 6¼ “ � ”

0 Otherwise

8
<

:

dðf1½n�; f2½n�Þ ¼
1 f1½n� 6¼ f2½n� & f1½n� 6¼ “ � ” & f2½n� 6¼ “ � ”

0 Otherwise

8
<

:

ð1Þ

s(f1[n], f2[n]) (d(f1[n], f2[n])) returns “1” if the two variants f1[n] and f2[n] are available and

identical (different). The similarity (dissimilarity) function computes the number of polymor-

phic sites in which both fragments carry the same (different) variants.

We defined a haplotype segment s as a consensus obtained from a set of fragments F0 com-

puted by themerge function as follows:

s ¼ mergeðF0Þ ¼ argmax
s0

X

fk2F0
simðfk; s

0Þ

where F0 � F and s0 varies over the possible sequences of alleles:
ð2Þ

We call the elements of the set F0 the supporting fragments of s.
The aim of haplotype reconstruction is to assemble F or a subset of F into P haplotypes H =

{h1, h2, h3, . . ., hP}. Note that haplotype reconstruction and haplotype assembly are used inter-

changeably. In an ideal scenario with availability of sufficient coverage and long error-free

fragments, the aim of haplotype reconstruction is to merge fragments into exactly P haplo-

types. In reality, sequencing errors, mapping errors, and lack of connectivity between alleles

mean that haplotypes may only be partially assembled. We define the aim of haplotype recon-

struction as reconstructing long haplotypes with high accuracy.

Short region haplotype reconstruction. A set of aligned fragments differs in their SmP

sites. We utilize these differences, or haplotype patterns, to cluster the aligned fragments. In

order to cluster the fragments, we have introduced a mask to denote the positions on which to
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base this clustering. A mask (msk) is defined as an ordered set of indices of SmP sites, the seed

sequence of a mask (tmsk) is a sequence pattern observed in an aligned fragment at the mask

indices. The supporting fragments of a seed sequence (Ftmskj ) is a set of fragments which carry

identical variants at the mask indices. Fig 2A depicts a schematic view of how we use one mask

and its seed sequences to collect haplotype segments of a region. Ranbow searches for masks

which identify a sufficiently large number of unique seed sequences. Each seed sequence clus-

ters together a group of reads which can be merged into one haplotype segment. For instance

in Fig 2A, seed sequence “10” groups the green fragments and merges them into the haplotype

Fig 2. Ranbow’s main processing steps. (A) depicts a schematic view of how one mask results in its haplotype segments. The seed sequences cluster the

fragments according to the variants they carry. In this figure, there are three clusters; each constructs one haplotype segment. The haplotype segments

are supported with four, four, and three fragments, respectively (blue, red, and green fragments). The purple fragment gets discarded because it is

detected as an erroneous fragment (see text). (B) A unique matching overlap of Fragment 2 and a haplotype block in a triploid genome. Fragment 1 has

two matching and one mismatching overlap. This violates the unique match overlap rule. Fragment 2 has one matching and two mismatching overlaps

meaning that Fragment 2 can be merged with the first haplotype unambiguously. (C) One fragment covering four polymorphic sites contributes eleven

seed sequences. The seed sequences of length two, three, and four are shown in the panel in different colors. (D) A schematic view of the multi-partite

graph and desired and conflicting cycles and paths. (E) Schematic view of the steps for constructing haplotypes from desired cycles of length three. A

sliding window of length four is depicted in red. Solid gray lines represent the edges starting from the leftmost block of a sliding window. The blue edges

are the newly formed haplotypes. The candidate edges at each step are checked to find if they construct a triangle or not. The most supported triangle at

each step is converted to one haplotype segment.

https://doi.org/10.1371/journal.pcbi.1007843.g002
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segment “1120”. p unique seed sequences of a mask (e.g, “11”, “00”, “10”) represent p unique

haplotype segments (“1101”, “0010”, “1120”). This results in a haplotype block, or a block, of

p haplotype segments.

Haplotype reconstruction on a mask. There are three possibilities for the number of seed

sequences (p) observed by a mask (mskj) in comparison with the ploidy of the organism (P):

i) p = P: Because each seed sequence represents one haplotype segment, the fragments con-

taining similar seed sequence stem from one haplotype. We cluster these fragments together.

In other words, each cluster can be seen as the supporting fragment of one seed sequence. Ran-
bow constructs haplotype segments by merging the supporting fragments of seed sequences.

bmskj ¼ fsmskji js
mskj
i ¼ mergeðFtmskj Þg ð3Þ

where tmskj is a seed sequence, Ftmskj is the supporting fragments set, smskj is one of the assembled

haplotype segment, bmskj is the obtained haplotype block, and themerge function is defined in

Eq 2.

The fragments in the supporting fragment set of a seed sequence agree on the variants at

the mask sites. Disagreement on the other indices are suggestive of errors that are corrected

during the haplotype segment assembly (Fig 2A red cross). At the end of this step, a mask with

P unique seed sequences results in a haplotype block with P unique haplotype segments.

ii) p> P indicates one or more errors in the supporting fragment of a mask. P seed

sequences are kept after an error correction step. The erroneous seed sequences are detected

according to their fragment support. The smaller the number of supporting fragments, the

higher the probability of this being an erroneous seed sequence (Fig 2A red box). We deleted

the seed sequences deemed erroneous and kept only P seed sequences.

iii) p< P indicates insufficient information for reconstructing P haplotypes of the region.

This can result from the similarity of alleles in different homologous chromosomes or from

errors from base calling, genome assembly, mapping, and variant calling steps. The algorithm

for dealing with these regions is explained in the Phasing the regions with fewer than P haplo-
types section.

Elongating haplotype segments with flanking fragments. To elongate haplotypes that

take into account AoM properties, we designed an iterative algorithm utilizing the unique

matching overlaps of a haplotype in a block, hI 2 bmskj , and a neighboring overlapping frag-

ment, fk. Fig 2B illustrates a unique matching overlap for a block in a triploid genome. A

unique matching overlap has the following properties: i) fk shares matching overlaps with

hi¼I 2 bmskj meaning sim(hi=I, fk)> 0 and dsm(hi=I, fk) = 0, ii) fk shares mismatching overlaps

with hi6¼I 2 b
mskj meaning dsm(hi6¼I, fk)> 0. In other words fk shares one matching and P − 1

mismatching overlaps with hi 2 bmskj . This assures that fk belongs to hi=I. At each iteration,

Ranbow selects a fragment and a haplotype with a unique overlap and merges them. The over-

lapping fragment set is updated by updating the haplotypes. After each iteration, Ranbow
applies the same procedure over the new haplotype list and overlapping fragments set, ulti-

mately resulting in an extended haplotype block.

Detecting and evaluating all possible masks. Given n polymorphic sites, 2n − n − 1 possi-

ble masks can be computed. It is computationally expensive to find all masks, but not all of the

masks are supported by fragments. To obtain all masks with available seed sequences and suffi-

cient fragment support, we designed a two-nested-hash-tables data structure. This data struc-

ture helps Ranbow to pinpoint the masks with fragments supports independent of the size of

the scaffolds, distribution of fragments, and the fragment lengths. At the end of this step, Ran-
bow provides all masks with available seed sequences and ignores those masks with no sup-

porting fragment.
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In the mentioned nested hash tables, the keys in the outer hash table (OHT) are mask indi-

ces and the values are hash tables. The inner hash table (IHT) keeps seed sequences as the key

and a list of supporting fragments as the values. S1 Fig Illustrates IHT and OHT hash tables

with an example. To fill this data structure, Ranbow goes through the fragment list. A fragment

with k non-missing alleles contributes 2k − k − 1 seed sequences to different masks. Fig 2C

illustrates eleven seed sequences which are contributed with a fragment (fk) consisting of four

non-missing alleles. Only masks of length smaller than five are considered in order to decrease

the running time. This can be tuned as a parameter.

In order to rank all masks, Ranbow defines a fitness function which computes the fragment

support for the seed sequences of each mask and reports the Pth highest supported seed

sequence. In Fig 2A, the seed sequences “11”, “00”, “10”, and “20” are supported by four, three,

three, and one fragment, respectively. Three, the number of supporting fragments of “10”, the

third highest value (the example genome is triploid, P = 3), is reported as the fitness value.

Ranbow ranks the masks according to this fitness function (MSKranked) and iterates over this

ranked list to reconstruct haplotype blocks for these masks. We flag the variants used in recon-

structed haplotype blocks as “used”. This includes mask variants and the variants integrated in

the elongation step (see Elongating haplotype segments with flanking fragments). In the follow-

ing iteration, we select a mask for which its variants are not flagged “used”.

Haplotype elongation via long range connections. Haplotype segments of different hap-

lotype blocks are connected by recruiting fragments that link distant SmPs. These distant con-

nections can be obtained via paired-end, Hi-C, or long read information. We have modeled

the problem as a weighted k-partite graph G(V, E, w), in which haplotype segments are the

nodes and the fragments contributing to two haplotype segments are considered as the edges.

In the k-partite graph G, k refers to the number of constructed haplotype blocks. S2 Fig illus-

trates haplotype blocks and their corresponding k-partite graph. We define Fsx and Fsy as the

supporting fragments of sx and sy haplotype segments and choose wðsx ;syÞ ¼ jF
sx \ Fsy j as the

weights of the edges in the graph G computed by the number of fragments which contribute to

both haplotype segments.

In an ideal scenario of error-free input data, an elongated haplotype segment will corre-

spond to a desired path, i.e. a path with no conflict among its edges in this graph. A conflict-

ing path is one linking two nodes of the same partition. Such a path may be due, e.g., to a

mapping error. A conflicting path indicates that two haplotype segments of one block are actu-

ally one haplotype, violating the definition of haplotype segments in a block and the definition

of partitions in a k-partite graph. We extend the definition of desired path to desired cycle

when two paths connect two nodes from different haplotype blocks. Fig 2D depicts a schematic

view of graph G. Every two nodes in a desired cycle are supported by two paths. For instance,

for a cycle with length three of a! b! c! a (Fig 2D (Blue)) every path between a number of

nodes, e.g. a! b! c, is supported by another path, e.g., a! c. The elongation step is there-

fore based on these cycles.

Constructing the whole graph is computationally expensive. First, one needs to find all

non-conflicting cycles in the graph. Second, all pairs of segments need to be checked to see if

they share fragments in order to add edges. Moreover, the probability of having an edge

between distant haplotype segments is low because the read insert size is limited. We have

therefore designed a greedy algorithm which avoids constructing the whole graph. Ranbow
sorts haplotype blocks based on their starting positions(Bsorted). The starting position of a

block is the smallest starting position of its segments. It then defines a sliding window with a

user-defined length (ten as default) covering a number of neighboring blocks in Bsorted. Fig 2E
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depicts a sliding window of length four (red rectangles). All edges in this sliding window are

constructed and their weights calculated.

For constructing the partial graph in one sliding window, Ranbow searches for the cycles

with length of three, called triangles, starting from the first block of the selected sliding win-

dow. Ranbow checks for a pair of edges such that they start from one node, a, and end in two

nodes, b and c where b and c are not in the same block as a. Ranbow then checks whether

there is an edge between b and c. If this edge exists, a, b, and c form a triangle. Ranbow finds a

triangle with maximum fragment support, meaning w(a, b) + w(a, c) + w(b, c) is maximum.

Having found a triangle with maximum support, Ranbow merges a, b, and c (Fig 2E (blue
lines)) and constructs a new haplotype segment by updating a and deleting b and c.

The next step is elongation through direct connections. Ranbow sorts all edges based on

their decreasing weight and iterates over the sorted list. At each iteration, it selects one edge

and checks whether merging the two nodes of the edge results in a conflict. In case of no con-

flict, the nodes are merged into one node and the graph gets updated. The algorithm stops

when there are no more edges in the graph, or E = ;. One can assign a predefined threshold on

the weights in order to use only highly confident edges, enabling all edges supported by lower

than the user-defined threshold to be filtered out. Ranbow’s default threshold is set to three.

Phasing the regions with fewer than P unique haplotypes. In a P-ploid genome, there is

the possibility of having regions with p< P unique haplotype segments. In this situation, P − p
of the haplotypes are identical to one of the other haplotypes. For instance, there are two possi-

ble scenarios for a hexaploid genome where p = 4 and the unique haplotype segments are {A1,

A2, A3, A4}: either there are two copies of two haplotypes ({A1, A1, A2, A2, A3, A4}) or there are

three copies of one haplotype ({A1, A1, A1, A2, A3, A4}). It is essential to be able to distinguish

which haplotype has more than one copy. It is also important to note that the unique matching

overlap operation (see Elongating haplotype segments with flanking fragments) is not applicable

to haplotypes with more than one copy. Ranbow is able to assemble the p haplotype segments

obtained from one mask into a haplotype block of p haplotypes by skipping the elongation

with flanking fragments step. Ranbow sorts the masks based on the number of their seed

sequences in descending order, iterating over them to assemble new blocks of haplotypes. This

results from Ranbow finding the largest number that the haplotypes of the region can be

reconstructed to. It starts from p = P − 1 and counts down to p = 2. For each p, it iterates over

sorted masks and checks whether the region is already reconstructed, or partly reconstructed,

into its haplotypes. If the haplotypes of a mask region are not yet reconstructed, Ranbow col-

lects p haplotypes to a new haplotype block.

Data

We used simulated and real datasets to evaluate the competing methods. First we introduce

how test datasets are generated.

SIM data: To construct a SIM dataset we use a genomic scaffold to simulate different ploidy

levels with various heterozygosity rates. We employ Haplogenerator [38] to construct different

haplotypes with given heterozygosity rate from the scaffold. Haplogenerator [39] uses a Pois-

son process to randomly generate variant positions. We use ART [40] to simulate short reads

with various insert sizes from simulated haplotypes. ART imitates the sequencing process

using an empirical error model or quality profiles summarized from large recalibrated

sequencing data. We align the simulated reads to the 100kb scaffold followed by variant calling

using BWA-MEM [41] and FREEBAYES [42], respectively. The scaffold, aligned reads (BAM

format), and called variants (VCF format) serve as input for haplotype reconstruction, while

the haplotypes serve as ground truth.
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CBU data: For tetraploid example we chose Shepherd’s purse, Capsella bursa-pastoris
(“CBU”). We downloaded the CBU genome and its Illumina reads [43]. We generate BAM

and VCF files with BWA-MEM [41] and FREEBAYES [42], respectively, to produce genotype

information from the aligned reads. Within a genotype, alleles get randomly assigned to simu-

late four haplotypes. The subsequent steps are the same as described above (see also S1 Text

for more details).

SP data: We use the hexaploid sweet potato, Ipomoea batatas, genome to produce both sim-

ulated and real datasets. The simulated dataset is produced following the same procedure

explained for CBU. The real datasets include Illumina short reads of various insert sizes and

Roche 454 GS FLX+ pyrosequencer. These raw data were previously published by us [14], and

were polished and transformed into standard form, i.e. coded allele space, for haplotype recon-

struction analysis. The Illumina data consists of paired-end and mate-pair reads with selected

and non-selected insert sizes. We used aligned Illumina reads (mapped via BWA-MEM [41])

for variant calling with FREEBAYES [42], followed by haplotype reconstruction. Roche 454

GS FLX+ pyrosequencer reads are longer than Illumina reads and we employ them to evaluate

the reconstructed haplotypes (S3 Fig). All Roche 454 reads were sampled from the same SP

individual. We did not utilize these sequencing data in the de novo assembly of the SP genome

reference to avoid biases in the assembled reference towards these reads. The characteristics of

these sequencing libraries are shown in Table 1. Because sequencing errors are more concen-

trated at homopolymers and at read ends, we were able to polish the Roche 454 reads to pro-

duce higher quality ground truth haplotype sequences by trimming low quality base calls(S3

Fig). The thresholds of 99.7% (Phred = 25) for base quality and 99% for mapping quality

(Phred = 20) guarantee that the reads will be aligned correctly and that the variants in the

reads represent the true haplotypes.

We chose SP and CBU genomes due to the availability of sequence reads sampled from sin-

gle individuals, allowing for haplotyping of individual genomes. The characteristics of these

genomes, i.e. SmP interval length distribution and the rate of variant types, are depicted in Fig

3. We observed very high frequencies of short intervals with exponential drop for larger inter-

vals (Fig 3A). This suggests that the majority of neighboring SmPs can be connected via short

read sequencing technologies, such as Illumina. Fig 3B shows the distribution of different

types of variants. Though SNP variants are the most frequent type of variants, the number of

indels and same-length multinucleotide variants are non-negligible. We therefore allow for all

types of variants in our haplotype reconstruction.

Different size test data: Some of the available algorithms do not run on large datasets. We

therefore defined three datasets distinguished by size for the purpose of testing different

aspects of our and competing tools using the procedures explained above (see Table 2).

Small datasets: Those comprise two simulated (Alla and All350bp) and one real (AllRb ) dataset.

1) The Alla dataset is generated according to SIM data scheme, with fixed genome size and

insert sizes of 350bp, 500bp, 1kb, and 5kb. We use a 100kb scaffold to simulate datasets with

Table 1. Sequence library characteristics.

Platform Sequencing type Insert size QC-passed reads Mapped rate Monoploid coverage

Hiseq 2500 PE100 350 bp 345M 94.66% 8x

Hiseq 2500 PE100 950 bp 190M 95.07% 4x

Nextseq 500 PE150 550 bp 837M 94.70% 26x

Nextseq 500 PE150 - 694M 91.65% 21x

Hiseq 4000 PE100 20kb 316M 95.67% 6x

GS FLX+ SE - 3M 98.91% 0.56x

https://doi.org/10.1371/journal.pcbi.1007843.t001
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four, six, eight, and ten haplotypes and with 0.001, 0.005, 0.01, 0.05, and 0.1 heterozygosity

rates. We produce ten replicates for each ploidy level and heterozygosity rate. For each repli-

cate, we then generate 30x monoploid read coverage of each insert size. 2) All350bp datasets are

generated according to the SP and CPU data generation schemes. This time we fix the library

insert size to 350bps and vary the genome length. We selected five scaffold groups of 10kb,

50kb, 100kb, 500kb, and 1000kb lengths, each of which contains ten scaffolds of the corre-

sponding genomes. We selected these scaffolds based on length and coverage such that they

represent the majority of scaffolds in the assembly (see S4 Fig). 3) AllRb serves as the real dataset

Fig 3. Properties of the sweet potato and CBU genome datasets. (A) The interval length distribution of polymorphic sites. Both axes are in log scale.

(B) The frequencies of different types of variants. The y-axis is in logarithmic scale.

https://doi.org/10.1371/journal.pcbi.1007843.g003

Table 2. Simulated and real datasets for evaluation.

SIM CBU SP

Small Alla All350bp All350bp AllRb
Medium − H-PoP/Ranbowc H-PoP/Ranbowc −
Large − − − RanbowR

All: Datasets for evaluation of all competing tools

R: Evaluated with Roche 454 reads

a: Simulated short reads of 350bp, 500bp, 1kb, and 5kb insert sizes

b: Illumina short reads of 350bp, 550bp, 950bp, Non-selected size and 20kb insert sizes

c: Simulated short reads of 350bp, 1kb, 2kb, and 5kb insert sizes

https://doi.org/10.1371/journal.pcbi.1007843.t002
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which comprises Illumina short reads of 350bp, 550bp, 950bp, 20kbp, and non-selected size

insert sizes as input. S5 Fig illustrates the insert size distribution of Illumina libraries. The

reconstructed haplotypes were evaluated with Roche 454 reads (see Table 1).

Medium datasets: These consist of five paired-end read insert sizes, namely 350bp, 1kbp,

2kbp, 5kbp, and “All” for the SP and CBU genomes, where the “All” library is made by merg-

ing the first four datasets. S6 Fig shows the insert length distributions of simulated datasets.

Small and medium datasets agree on underlying scaffolds, their variants, and in the procedure

used to simulate reads. They differ in terms of monoploid coverage and insert size. The cover-

age for the 350bp, 1kbp, 2kbp, and 5kbp insert sizes is 40x. The coverage for the “All” dataset is

160x (4×40x).

Large datasets: This dataset consists of whole genome Illumina reads of the SP genome as

input. For ground truth we use Roche 454 reads (see Table 1).

Results

We implemented Ranbow using Python 2.7. Ranbow is freely available under a GNU licence.

Accepted Ranbow inputs are a reference sequence in FASTA format, a collection of aligned

reads in BAM format, and called sequence variants in the VCF format. Dosage information is

not required. Ranbow returns the list of aligned haplotypes in the BAM format. The haplo-

types are represented in coded allele space, depicting only the connection between alleles and

ignoring the inter-allelic regions (details in Definition and problem formulation). We have

introduced the “hap” format file for the haplotypes in coded allele space and their specifics. It

contains the haplotypes and their read support information. Ranbow extracts a list of frag-

ments from input sequence reads and variants. The coded allele space format allows the vol-

ume of the read-file to be significantly reduced. For example, we obtained 1.6Gb of aligned

fragments from 657Gb of mapped reads in sweet potato genome data (see Data). Data distri-

bution was automated to multiple cores. Ranbow accepts the number of available cores as an

input parameter, grouping scaffolds to minimize the estimate of maximum running time for

the busiest core. This feature is invaluable when dealing with high depth sequence reads and

whole genome sequence data applications.

We evaluated Ranbow (V2.0) against HapCompass, SDhaP, and H-PoP. HapTree could

not be included due to runtime error on some of the datasets. Ranbow and HapCompass
accept BAM and VCF format as input and produce aligned haplotypes in the BAM format.

Pre- or postprocessing the data in order to apply the algorithm is unnecessary. H-PoP and

SDhaP accept a file format which contains allele connectivity via fragments, and produce a

similar format output file. The application of these methods on real data requires pre- and

postprocessing steps for the tools to accept the data as input (see S2 Text). HapCompass and

Ranbow are the only methods that can handle non-SNP sites. SDhaP cannot handle non-SNP

polymorphic sites if the number of alleles is higher than four, a restriction that needs to be con-

sidered in the pre-processing step for this method. H-PoP only integrates one reference and

one alternative allele. It converts the rest of alternative alleles to either the reference or the first

alternative alleles (see S2 Text).

Some of the available algorithms did not finish in reasonable time on large datasets. We

therefore constructed three groups of datasets with different sizes as described in Data above.

We started by comparing all methods on Small datasets. Since H-PoP delivered haplotyping

results in most cases, we compared it with Ranbow using Medium datasets. Only Ranbow
obtained results on Large datasets. As evaluation metrics we use accuracy, haplotype length,

running time, and memory usage. The accuracy is the generalized form of reconstruction rate

[44] defined for diploid genome. Each reconstructed haplotype is assigned to one and only one
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ground truth haplotype based on sequence similarity. For these assignments, the accuracy

reports the ratio of the number of correctly reconstructed variants over the length of the recon-

structed haplotype in coded allele space, where the length does not count missing alleles. Fig 4

shows the evaluation on Alla datasets. Alla contains 20 configurations (four ploidy levels times

five heterozygosity rates) and 200 datasets (ten replicates for each configuration). We set the

high time limit of 10000 second for this small genomic region. SDhaP, H-PoP and HapCom-
pass failed for some configurations mainly when heterozygosity and/or ploidy was high.

Ranbow’s accuracy is mostly between 0.9 and 1.0 and it performs best in terms of accuracy.

For low heterozygosity (0.001, 0.005, and, 0.01) and ploidy levels, H-PoP performs better

than Ranbow in terms of haplotype length, although at the cost of lower accuracy. Ranbow
and H-PoP will allow for missing alleles in the result (see fourth row). The gap length is

calculated as the number of missing alleles between first and last defined variant. For example

in ‘0 − 1 − − 00’, haplotype and gap lengths are four and three, respectively. Ranbow can han-

dle every heterozygosity rate and ploidy in a reasonable running time. Maximum running

time for Ranbow is 1114 second for ploidy level 10 and heterozygosity of 0.1. Ranbow per-

forms best in terms of peak memory usage as well. Table 3 shows the memory usages of com-

peting methods in GB for 0.01 and 0.05 heterozygosity rates.

In the absence of a ground truth, models such as MEC or MFR (see Introduction) serve as

evaluation metrics. For example, the MEC metric computes the MEC scores between the

reconstructed haplotypes and their corresponding fragments. HapCompass, SDhaP, and

H-PoP use the MEC metric. The downside of assessing tools with these metrics is that they fail

to evenly capture the benefits these tools offer. The MEC metric only considers sequencing

errors and the MFR model only the mapping errors.

For this paper we use Roche 454 reads for evaluating the assembled haplotypes in the real

datasets. We did not use these reads for haplotype reconstruction. Roche 454 reads are on the

order of 800 bp long S3 Fig. For designing an evaluation metric we proceed as follows. A 454

read gets aligned to the reference sequence. Then the haplotype to compare the 454 read to is

chosen based on maximal number of matches and minimal number of mismatches between

the 454 read and overlapping haplotypes. In particular, a 454 read with a switch error will have

many mismatches with respect to the haplotype.

We further integrate haplotype accuracy and length through a “match-mismatch plot”, our

new approach that evaluates and visualizes the performance of various methods (shown in Fig

5A and 5B). Each dot in a match-mismatch plot corresponds to one assembled haplotype that

is compared to a ground truth. The reconstructed haplotype gets assigned to the ground truth

and the number of matches and mismatches are calculated. The x-coordinate (y-coordinate)

of a dot indicates how many alleles are assembled correctly (incorrectly). Missing alleles are

not considered at this point. The observation frequency for each individual haplotype is

encoded in the shading at the respective (x, y) position. Because the aim of haplotyping lies in

obtaining longer and more accurate sequences, a larger x-value and smaller y-value are

desired. The lines in the plot depict linear fits to the dots generated by each method. The flatter

the slope of the line, the higher the overall accuracy of the method. The match-mismatch plot

simultaneously evaluates and visualizes accuracy and length of a haplotype.

The results of AllbR and All350bp evaluation are shown in Fig 5. The match-mismatch plot for

real data is presented in Fig 5A. x-axis values correspond to the number of variants covered by

Roche 454 reads (see S7 Fig). Fig 5B shows the match-mismatch plot for All350bp. We evaluated

the accuracy in addition to match-mismatch plot in S8 Fig. Judging by the slope of the regres-

sion lines in the match-mismatch plots (Fig 5A and 5B) and the reported accuracy (S8 Fig),

Ranbow’s performance is consistently superior with respect to accuracy for real and simulated
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Fig 4. Comparison of methods on Alla datasets. Evaluation of competing methods in terms of accuracy, average haplotype length,

maximum haplotype length, gap length (these lengths are in coded allele space), running time, and memory usage on Alla datasets. Alla
contains 200 datasets, each with a heterozygosity rate of 0.001, 0.005, 0.01, 0.05, or 0.1 and a ploidy level of four, six, eight, or ten.

Columns and rows represent the ploidy level and evaluation metrics, respectively. Each point is the average of up to ten datapoints, each

the result of one method on one dataset. For better distinguishability of the methods, lines connect the points for each method. An

accuracy (or a length) datapoint represents the average accuracy (length) of all assembled haplotypes in a dataset. A time datapoint

(memory or max length) represents the running time (peak memory usage or maximum haplotype length) of a method on a dataset. Bar

plots in the last row show the number of replicate data sets for which a method accomplished computation of a result.

https://doi.org/10.1371/journal.pcbi.1007843.g004
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datasets. S9 Fig evaluates Ranbow and H-PoP in terms of haplotype length, this time measured

in base pairs. This plot shows the overall equivalent performance of these two methods in

terms of haplotype lengths on CBU dataset. Fig 5C and 5D show the execution times for differ-

ent scaffold size groups. Ranbow is two (scaffold group 10kb) to 30 (scaffold group 1000kb)

times faster than the next best method for real data and also several times faster than the next

best method for simulated data. S1 Table shows the running time of competing methods in

detail.

Because some of the datasets did not achieve a reasonable running time on SDhap and

HapCompasss, we focused our medium datasets comparison on Ranbow and H-PoP. Fig 6

shows the match-mismatch plots for H-PoP and Ranbow for different insert sizes on the CBU

genome. Ranbow is more accurate and assembles longer haplotypes. The length and frequency

distributions of the variants correctly reconstructed into haplotypes are shown in S10 Fig. Inte-

grating libraries of different insert size is a common scenario when sequencing new organisms.

We therefore designed the “All” datasets to test Ranbow’s performance in this situation. Per-

formance increases markedly when different insert sizes are integrated (see Fig 6 bottom row).

Ranbow uses the short insert sizes for local haplotype assembly and longer insert sizes for elon-

gation of the haplotypes. Due to the exceedingly long running time on the Large dataset (SP

whole genome datasets) by H-PoP and the other competing methods, we limited our evalua-

tion to Ranbow. S11 Fig evaluates the haplotypes computed from Roche 454 reads. The slope

of the fitted line is 0.07 showing Ranbow’s superior performance.

Discussion

Ranbow outperforms the competing methods for the following three reasons:

1. Integrating multi-allelic variants: Ranbow has an advantage over methods that search the

solution space. Multi-allelic variants substantially inflate the solution space of possible hap-

lotypes. Ranbow avoids searching the solutions space, instead using the multi-allelic vari-

ants to cluster the reads efficiently. For example, two bi-allelic polymorphic sites cannot

cluster the reads into six classes in a hexaploid genome (2 × 2 possible sequence pattern).

By integrating multi-allelic variants, one bi-allelic and one tri-allelic variant can provide six

sequence patterns and can cluster the reads into six groups (2 × 3 possible sequence pat-

terns). Multi-allelic variants enable Ranbow to cluster the reads and reconstruct local haplo-

types. This approach is central to Ranbow’s improved performance when compared to

methods that search the solution space.

2. Integrating different types of errors: Ranbow integrates different types of errors simulta-

neously. It detects, corrects, or excludes erroneous reads. Excluding an erroneously mapped

read, which is not a feature of methods using the MEC model, increases the speed and

Table 3. Average peak memory usage on Alla dataset with 0.01 and 0.05 heterozygosity. “-” represent the methods failed to accomplish.

Peak memory usage(GB)

Heterozygosity rate 0.01 0.05

Ploidy 4 6 8 10 4 6 8 10

Ranbow 0.21 0.32 0.41 0.49 1.01 1.35 1.73 2.15

SDhaP 6.88 7.84 8.70 - - - - -

H-PoP 11.33 19.86 19.00 20.40 21.05 21.01 21.13 -

HapCompass 8.56 9.73 12.18 - - - - -

https://doi.org/10.1371/journal.pcbi.1007843.t003
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Fig 5. Comparison of all methods on sweet potato real and simulated datasets. A, B) Match-mismatch plots for sweet potato real and

simulated datasets, respectively. These scatter plots illustrate the accuracy of the methods. C, D) The execution time s for different scaffold size

groups (10 scaffolds per five scaffold length groups, totally 10×5 scaffolds). The y-axis is in logarithmic scale.

https://doi.org/10.1371/journal.pcbi.1007843.g005
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accuracy of our method. Methods using the MEC model have to integrate the erroneously

mapped reads to one of the assembled haplotypes. Only Ranbow excludes these reads.

3. Data structure: Ranbow consists of local haplotype reconstruction steps followed by global

haplotype elongation. In contrast to read-clustering and read-graph based methods, Ran-
bow compares only a local selection of reads in its first step. Ranbow’s data structure facili-

tates random access to local regions with higher signal for partitioning reads. This is a

distinct advantage over sliding window approaches and directly enables Ranbow to escape

from local optimum solutions. In addition, Ranbow constructs a multipartite graph where

the nodes are haplotype segments reconstructed from read clusters. The number of haplo-

type segments is limited by the ploidy of the organism. In contrast, read clustering or

Fig 6. The comparison of H-PoP and Ranbow on different insert sizes for simulated dataset of CBU genome.

https://doi.org/10.1371/journal.pcbi.1007843.g006
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read-graph based methods use reads as the graph nodes. Increasing the sequencing depth is

computationally expensive and negatively affects the performance of these methods. Ran-
bow uses the reads as an entity stemming from one haplotype. Variant-based graph meth-

ods shear the reads into variant connections. One read covering three variants becomes

three bi-variant connections in these approaches. These methods rely on computational

steps to connect these variants again.

Conclusion

We have addressed the challenge of haplotype reconstruction for polyploid organisms from

short read data. We investigated the characteristics of polyploid genomes and the technical

challenges for reconstructing haplotypes. We introduced the AoM problem, and discussed

how this, combined with the higher search space and the high error rate, are the main technical

challenges when reconstructing haplotypes from sequence data. We designed Ranbow, a

method that embeds multiple error correction steps to detect different types of errors, i.e.

base-calling, variant-calling, and mapping errors. Our method successfully integrates bi-allelic

and multi-allelic variants. Although multi-allelic variants inflate the search space, the Ranbow
algorithm is independent of this parameter, enabling it to reconstruct haplotypes quickly. Ran-
bow does not use dosage information as input, yet can be used for calling dosage information

when haplotypes are computed. This is advantageous because in addition to read frequency,

the information on which flanking variants are connected to each other through sequence

reads is also taken into account.

Our work shows that Ranbow generally outperforms other haplotypers in terms of recon-

structed haplotype length, accuracy, and computational and memory efficiency on real and

simulated datasets. Only in a few datasets, the increase in accuracy and efficiency came at the

cost of shorter haplotypes and increased gap sizes. Ranbow’s general superior performance

stems from the specific features and data structure we considered during the design process. It

considers the AoM feature in every step and deal with different types of errors simultaneously.

The erroneous reads are corrected or excluded within two layers of data structure, namely a

local haplotype reconstruction followed by a global procedure. This data structure allows Ran-
bow to search for regions with better signals and prioritize them for the local haplotype recon-

struction step. The local haplotype reconstruction step constructs haplotype segments in

haplotype blocks. The global procedure combines these haplotype by building a multipartite

graph.

We have shown that Ranbow is more than one order of magnitude faster than the compet-

ing approaches on real datasets, making whole genome haplotype reconstruction of complex

genomes, such as the hexaploid sweet potato, possible. On a large computer cluster our

method completed haplotype reconstruction of the sweet potato genome in approximately two

days. This is a vast improvement on the estimated more than twenty days needed by the next

best competing method. This feature allows the user to apply our method multiple times

under different parameter settings or iteratively, e.g., for iterative assembly refinement [14].

We showed that our tool is able to efficiently utilize a combination of different insert sizes.

This aligns with the established sequencing strategy of combining different insert lengths for

de novo assembly of a new organism’s genome.

As long-read sequencing technologies become more wide-spread, there will be a need for

programs that can assemble haplotypes efficiently and accurately. Ranbow fits the bill perfectly

as it can also be applied to less heterozygous genomes. We hope to be able to improve Ranbow
further by integrating base quality for long read sequencing, such as PacBio and Nanopore,
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and mapping quality and barcoded errors for linked reads, as well as the read count values.

Our long term goal is that Ranbow will be the superior haplotyping method for a broad range

of sequencing technologies.

Supporting information

S1 Fig. An illustration of IHT and OHT hash tables. This figure shows a mask (mask = (1,

4)), its seed sequence (‘11’,‘00’, and ‘10’) and the fragments containing these seed sequences

(f1, f2, . . ., f11). For example, the IHT for the seed sequence ‘11’ contains its supporting frag-

ments IHT(‘11’) = f1, f2, f3, f4. The OHT of a mask contains the IHTs of the mask seed

sequences OHT(1, 4) = {IHT(‘11’),IHT(‘00’),IHT(‘10’)}.

(TIF)

S2 Fig. Schematic view of graph G. This figure illustrates haplotype blocks and segments, and

shows fragments and their corresponding edges in the graph. G is k-partite graph with haplo-

type blocks defining the partitions and the haplotype segments defining the nodes within the

partitions. If two reads of a fragment are mapped to two haplotype segments of different

blocks, an edge is assigned between the nodes of these segments.

(TIF)

S3 Fig. Base quality and length distribution of Roche 454 reads. Left: Each 454 read is

divided into 20 equal size segments. The box plot shows the base quality distribution and the

red line indicates the high threshold we set for filtering the bases on quality. Right: The Roche

454 length distribution. Maximum length is 1771bp.

(TIF)

S4 Fig. Selected scaffolds’ properties. In this heat map, each dot depicts one scaffold of the

sweet potato genome. These scaffolds were obtained after the scaffolding step of de novo
assembly. The x-axis shows the log scale of coverage and the y-axis shows the log scale of scaf-

fold lengths. We randomly selected 50 scaffolds (red circles) of different sizes, namely 10kb,

50kb, 100kb, 500kb, and 1000kb, ten scaffolds each. These scaffolds are used for evaluations

with real data and producing the simulated dataset.

(TIF)

S5 Fig. Dataset properties of sweet potato genome. Left: Insert size distribution. The real

data contains five different libraries with different insert sizes, namely 350bp, 550bp, 950bp,

20k, and no size selection. For simulated data, we generated inserts of 350bp from the selected

scaffolds with 30x coverage for each haplotype. Right: Coverage of selected scaffolds for real

and simulated data. The x-axis shows base coverage, and the y-axis depicts frequency. In the

real dataset, the base coverage varies in a wide range up to 10k while the simulated data has the

peak at 180x. This discrepancy is caused by the presence of repeats in the genome.

(TIF)

S6 Fig. Insertion length distribution for simulated dataset of CBU genome. Four 100bp

paired-end read libraries with insert sizes of 350bp, 1kbp, 2kbp and 5kb are generated by

EAGLE (Enhanced Artificial Genome Engine) [45]. EAGLE generates reads and converts

them to alignments. It is designed to simulate the behavior of Illumina’s Next Generation

Sequencing instruments. For each library, the coverage for every haplotype is 40x.

(TIF)

S7 Fig. Distribution of the number of variants covered by Roche 454 reads.

(TIF)
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S8 Fig. Comparing the accuracy of the methods on real and simulated sweet potato data.

The data are categorized into the five different categories: very short, short, medium-size, long,

and very long. The real data does not contain the very long category because it is done by

Roche 454 reads, which are limited in size.

(TIF)

S9 Fig. Ranbow and H-PoP compared in terms of reconstructed haplotype length mea-

sured in base pairs. Data is based on All350bp generated for CBU genome. Five violin plots rep-

resent measurements for five genome lengths and y-axis reports haplotype length in base

pairs.

(TIF)

S10 Fig. Length and frequency distribution of assembled haplotypes by different insert

size on simulated sweet potato data. The x-axis shows different insert sizes. The y-axis depicts

the number of matches in the assembled haplotype. The width of the violin plots shows the dis-

tribution of the number of assembled haplotypes within the groups. Except for the 350bp
group, in which H-PoP performs better, Ranbow outperforms in all groups including the col-

lection of all insert sizes, which is depicted in the All group.

(TIF)

S11 Fig. Match-mismatch plot for assembled haplotypes using Roche 454 reads. The color

of each dot represents how many pairs of 454 reads with its corresponding assembled haplo-

type have a certain number of matches (x-axis) and mismatches (y-axis).

(TIF)

S1 Text. Simulated data. This section explains the procedure for generating simulated data.

(PDF)

S2 Text. Usability of different tools. This section compares the usability of competing meth-

ods.

(PDF)

S1 Table. Running time in second for AllbR and All350bp datasets.

(PDF)
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