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Abstract: Recently, deep-learning techniques have become the foundations for many breakthroughs
in the automated identification of plant diseases. In the agricultural sector, many recent visual-
computer approaches use deep-learning models. In this approach, a novel predictive analytics
methodology to identify Tobacco Mosaic Virus (TMV) and Pepper Huasteco Yellow Vein Virus
(PHYVV) visual symptoms on Jalapeño pepper (Capsicum annuum L.) leaves by using image-
processing and deep-learning classification models is presented. The proposed image-processing
approach is based on the utilization of Normalized Red-Blue Vegetation Index (NRBVI) and Normal-
ized Green-Blue Vegetation Index (NGBVI) as new RGB-based vegetation indices, and its subsequent
Jet pallet colored version NRBVI-Jet NGBVI-Jet as pre-processing algorithms. Furthermore, four
standard pre-trained deep-learning architectures, Visual Geometry Group-16 (VGG-16), Xception,
Inception v3, and MobileNet v2, were implemented for classification purposes. The objective of
this methodology was to find the most accurate combination of vegetation index pre-processing
algorithms and pre-trained deep- learning classification models. Transfer learning was applied to
fine tune the pre-trained deep- learning models and data augmentation was also applied to prevent
the models from overfitting. The performance of the models was evaluated using Top-1 accuracy,
precision, recall, and F1-score using test data. The results showed that the best model was an Xception-
based model that uses the NGBVI dataset. This model reached an average Top-1 test accuracy of
98.3%. A complete analysis of the different vegetation index representations using models based
on deep-learning architectures is presented along with the study of the learning curves of these
deep-learning models during the training phase.

Keywords: deep learning; vegetation index; plant viruses; transfer learning; data augmentation

1. Introduction

Agriculture is facing harder yield scenarios every year, and this is due to factors such
as abiotic and biotic stress conditions. On the one hand, abiotic stress includes physical
problems such as non-favorable environment conditions and chemical stress due to toxic
conditions which may be present in soil, air, or irrigation water [1]. On the other hand,
biotic stress conditions are divided into visible pests and microorganisms that lead to
plant diseases [2]. Visible pests are mainly insects, but also rodents and any kind of
animals which can result in harm to the crop [3]. However, microorganisms are the main
concern regarding agricultural losses which account for around 20–40% of yearly crop
yields worldwide [2].
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Plant diseases are a major concern for agriculture where bacteria, fungi, and virus
diseases are the main issues [2]. However, bacteria- and fungi-based diseases may be a
problem, but they can be controlled by using specific commercial treatments [1]. On the
contrary, virus-based diseases are difficult to control due to the lack of anti-viral treatment
where vector interference is the most common strategy. Furthermore, there are many
actions that can be performed to assist in the control of plant virus-based diseases such as
early symptom detection and vector control [4].

Currently, precision agriculture is defined as the integration of a wide variety of
information technologies to help to maximize agricultural yield and minimize costs and
agricultural losses [5]. These information technologies include satellite imaging, sensor
networks, image processing, computer vision, and artificial intelligence to name but a
few [6]. Because of this, image processing is considered one of the most frequently utilized
technologies for plant disease detection where the main objective is to identify the pathogen
symptoms of the plant [7]. There are several methods and approaches to achieve this, where
each combination of plant–pathogen may be a case study. The most common symptoms
of plant diseases are chlorosis, necrosis, and spots, among others [8]. Therefore, each
pathogen has its own visual damage patterns on plant tissues which may be a problem for
image-processing and computer-vision algorithms by sometimes making them unsuitable
in identifying a wide range of diseases using the same algorithm [9]. In addition, vegetation
indices are image-processing algorithms focused on highlighting plant features such as
lesions and many stress responses. These algorithms are based on linear algebra operations
between image components such as red, green, and blue masks on visible light RGB images
and specific multispectral bands images such as red edge (RE) and near infrared (NIR),
among others [10].

Machine learning (ML) is a branch of Artificial Intelligence (AI) that provides learning
techniques to build computer models that emulate the way that humans learn from data.
ML is growing fast, and it is proving to be efficient in identifying between object classes
such as healthy and infected plants [11]. ML is essentially divided into supervised learning,
which is when a model is trained using labeled pre-defined training data, and unsupervised
learning, which is when a model uses unlabeled training data and discovers patterns and
relationships in that data. The traditional machine learning techniques are based on
statistical procedures and previous knowledge of the data [12]. Deep learning is a subset of
ML based on a set of learning techniques that attempts to model high-level abstractions in
data using multiple processing layers [13]. Several investigations are currently using deep-
learning techniques, mainly convolutional neuronal network (CNN) architectures for the
study of plant–pathogen interactions such as VGG-16 [14] and inception [13], among others.
However, previous investigations have applied deep-learning algorithms on raw RGB data
without considering the previous image improvements of new vegetation indices.

Recently, deep-learning techniques have become the foundations for many break-
throughs in the automated classification of plant diseases using digital images. In the agri-
cultural sector, many recent visual-computer approaches have used different deep-learning
classification models. CNNs are used extensively as a powerful class of classification
models of digital images in a variety of problems in the agricultural field, such as: plant
species identification, plant disease identification, crop pest classification, among others.

Many state-of-the-art approaches for agricultural pest identification and classification
use CNNs as classification models. In 2016, Liu et al. [15] proposed an eight-layer CNN
network based on AlexNet to learn local features from the insect image dataset along with
a saliency map-based approach for localizing pest insect objects in natural images. The
authors reported a mean accuracy precision of 0.951. In the research of Wang et al. [16],
the authors used two CNN architectures, LeNet-5 and AlexNet, to classify pest images. A
total of 82 common pest types were classified, with an accuracy of 91%. In 2017, Cheng
et al. [17] proposed a deep-residual-learning model to identify 10 classes of agricultural
pests under complex farmland background. The accuracy of the deep-learning model
reached 98.67%. Lu et al. [18] investigated rice disease identification using a deep CNN
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model to identify 10 common rice diseases. The authors used a dataset of 500 natural
images of diseased and healthy rice leaves and stems captured from an experimental
rice field. The proposed model achieved an accuracy of 95.48%. In 2018, Barbedo [19]
studied the effects of using relatively small datasets on the effectiveness of deep-learning
tools for plant disease classification. The experiments were carried out using an image
database containing 12 plant species, each presenting very different characteristics in terms
of number of samples, number of diseases, and variety of conditions. In 2019, Thenmozhi
and Srinivasulu [20] proposed an efficient deep CNN model to classify insect species
on three insect datasets. The National Bureau of Agricultural Insect Resources (NBAIR)
dataset consists of 40 classes of field crop insect images, the Xie1 and the Xie2 datasets
contain 24 and 40 classes of insects, respectively. The proposed model was evaluated and
compared with pre-trained deep-learning models based on AlexNet, ResNet, GoogLeNet,
and VGGNet for insect classification. Transfer learning was applied to fine tune the pre-
trained models. Data augmentation techniques such as reflection, scaling, rotation, and
translation were also applied to prevent models from overfitting. The highest classification
accuracies of 96.75%, 97.47%, and 95.97% were achieved in the proposed CNN model
for NBAIR, Xie1, and Xie2 insect datasets, respectively. Picon et al. [21] proposed a crop-
conditional CNN architecture that seamlessly incorporates contextual meta-data consisting
of the plant species identification. To validate this approach, the authors generated a
challenging dataset that consists of more than 100 images taken by cell phone in real field
conditions. This dataset contains almost equally distributed disease stages of 17 diseases
and 5 crops (wheat, barley, corn, rice, and rapeseed). The proposed crop conditional CNN
model obtained an average balanced accuracy of 0.98 and removed 71% of the classifier
errors. In 2020, Barman et al. [22] presented a comparison of CNNs for smartphone image
citrus leaf disease. The MobileNet CNN and Self-Structured CNN architectures were
trained and tested on the same citrus dataset. The best training and validation accuracies
obtained for Self-Structured CNN were 98% and 99% at epoch 12. Kang and Chen [23]
developed a fast implementation framework for deep-learning-based fruit detection. This
framework includes a label generation module and a fruit detector LedNet. The LedNet
model with a lightweight backbone achieved 0.821 and 0.853 on recall and accuracy of
the apple detection. Alves et al. [24] proposed a new deep-residual-learning model called
ResNet34 to address cotton pest recognition issues using a field-based image database of
1600 images balanced for 15 pests and 1 with no insects. The classification model achieved
a high accuracy with F1-score of 0.98.

The novelty of this project is the development of a new predictive analytics method-
ology to identify Tobacco Mosaic Virus (TMV) and Pepper Huasteco Yellow Vein Virus
(PHYVV) visual symptoms on Jalapeño pepper (Capsicum annuum) leaves by means of
new RGB vegetation indices as pre-processing algorithms and pre-trained deep-learning
models based on VGG-16, Xception, Inception v3, and MobileNet v2 architectures. The
objective of this methodology is to find the most accurate combination of an RGB vegetation
index and a deep-learning classification model to identify PHYVV and TMV in Jalapeño
pepper plants by using a small training dataset. Furthermore, it presents measurements
of how identification accuracy can be improved by pre-processing images with new RGB
vegetation indices and its usefulness for future research.

2. Results

All the experiments were carried out using Keras version 2.2.4, with Tensorflow 1.13.1
as backend, and Python version 3.7.8. Experiments were conducted on a PC with the
following configuration: Intel Xeon W-2133 processors, 32 GB of RAM, and one NVIDIA
GTX 1080 GPU.

2.1. Image Processing Results

The results obtained from the image processing are shown in Figure 1. It can be
observed that image representations were organized as columns and dataset classes as rows.
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Consequently, an image results matrix is established to compare between different results
where it is easy to observe that NRBVI and NGBVI indices are effective in highlighting
chlorotic pixels in all the classes in their grayscale versions. It is also noteworthy that
Jet colored versions of NRBVI and NGBVI are even more useful in identifying chlorotic
areas inside the analyzed leaf. Furthermore, it is important to mention that comparing
between rows, each class shows different patterns that need to be classified by an AI-based
algorithm to finally have an efficient identification of infected plants.
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2.2. Data Description and CNN Architectures Parameters

In this investigation, the experiments were conducted on five different datasets. One
dataset consisted of the RGB images, whereas the other four were built applying each of the
pre-processing algorithms previously described, that is, NRBVI, NRBVI-Jet, NGBVI, and
NGBVI-Jet. Within each dataset there are three classes. These classes are labeled as healthy
(non-infected leaves), PHYVV (PHYVV-infected leaves), and TMV (TMV-infected leaves).
Each dataset has 100 images for each class, for a total of 300 images. Each dataset was
divided into 80% (240 images) for training data and 20% (60 images, 20 images per class) for
testing data. During the training phase, 20% of the validation data was randomly selected
from the 240 images. These validation data are used to manually adjust hyper-parameters,
which are essentially the settings that cannot be automatically learned during training.
These include the learning rate and the batch size, among others.

The models were trained using the Stochastic Gradient Descent (SGD) as an optimizer
with 0.9 momentum, and the learning rate was varied between 1e-3 and 1e-4. The learning
rate defines the learning progress of the proposed model and updates the weight parame-
ters to reduce the loss function of the network. The maximum number of epochs was set to
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100 and batch sizes of 16 were used in this experiment. Table 1 provides a summary of the
parameters and hyper-parameters used for each architecture.

Table 1. Parameter setting of CNN architecture models.

Parameters VGG-16 Xception Inception v3 MobileNet v2

Optimizer SGD SGD SGD SGD
Learning rate 1e-3 1e-4 1e-3/1e-4 1e-3/1e-4
Momentum 0.9 0.9 0.9 0.9
Weight decay 1e-4 1e-5 1e-5 1e-5
Epochs 100 100 100 100
Batch size 16 16 16 16

2.3. Experimental Environment

Two strategies were followed for training the models used in these experimental
procedures. First, the models were trained from scratch. That is, all trainable parameters
in the model start with a randomly assigned value, and the second value is transferred
from learning. That is, all trainable parameters start with a value that was assigned while
training the model on a different dataset, in this case, transfer learning from pre-trained
models on ImageNet dataset was used.

As opposed to with the traditional machine learning techniques, CNNs-based models
can learn the features needed to discriminate between the classes directly from the original
images instead of extracting the specific features manually. It is well known that training
deep CNNs-based models requires many images. In this approach, the dataset is limited
to about 300 images for each vegetation index representation (in each individual dataset).
To address this issue, data augmentation was used to obtain a variety of conditions in the
dataset. The input images were randomly rotated between 0 and 360 degrees, randomly
translated along the X or Y direction (or both directions), and randomly flipped vertically
or horizontally during training.

The training procedure was as follows. For each dataset and CNN architecture, a total
of 10 trials were carried out for each model from scratch and 10 trials were carried out from
transfer learning, with a random selection of 20% for validation data.

To evaluate the performance of the different models, the following metrics were computed:

1. The average, maximum, and minimum Top-1 accuracies for each model. Top-1
accuracy measures the number of times the answer with the highest probability given
by the models matches the expected answer. It is presented as the ratio of the number
of correct answers to the total number of answers.

2. The precision of each class. This is the ratio of the number of correctly predicted
positive instances to the total number of predicted positive instances, see Equation (1).
An associated term, macro-precision, is also used and it measures the average precision
per class.

precision =
TP

TP + FP
(1)

3. The recall of each class that is the ratio of the number of correctly predicted positive
instances to the total number of instances in a class, see Equation (2). Macro-recall
measures the average recall per class.

recall =
TP

TP + TN
(2)

4. F1-score is the weighted average of precision and recall, see Equation (3). Macro-F1-
score measures the average F1-score per class.

F1− score =
2× precision× recall

precision + recall
(3)
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where TP (true positive), FP (false positive), TN (true negative), and FN (false negative)
are technical terms for binary classifiers. Specifically, TP is the positive samples correctly
classified, FP is the positive samples misclassified, TN is the negative samples correctly
classified, and FN represents the negative samples misclassified.

2.3.1. Models from Scratch

In this first experimental configuration. A total of 10 models were built from scratch
for each dataset and CNN architecture. The results of the test data indicate a slightly better
performance from models that used the NRBVI-Jet dataset compared to those that used
other datasets. For the VGG-16-based model, the average Top-1 accuracy was 73.3%, for
the Xception-based model it was 83.3%, for the Inception-based model it was 82.3%, and
for the MobileNet-based model it was 77.5%. Table 2 summarizes the performance of the
CNNs-based models.

Table 2. Recognition test accuracy of different models that were trained from scratch for different
datasets (best results are highlighted with bold font).

Dataset VGG-16
(avg/min/max)

Xception
(avg/min/max)

Inception v3
(avg/min/max)

MobileNet v2
(avg/min/max)

RGB 73.3/71.4/75 80.3/79.5/81.6 77.5/71.4/79.5 73.4/69.3/75.0
NRBVI 71.6/70.1/80.2 75.0/74.4/81.6 76.6/75.5/77.5 70.6/65.1/71.6
NRBVI-Jet 73.3/71.3/75.7 83.3/81.6/83.6 82.3/79.9/85.7 77.5/70.0/81.6
NGBVI 70.0/59.1/70.4 76.6/63.3/76.9 75.5/68.3/79.5 70.0/66.6/73.4
NGBVI-Jet 73.1/65.3/75.2 82.9/80.2/85.7 81.6/79.5/83.6 71.4/70.0/73.4

Based on previous results, it was noted that all models based on VGG-16 and MobileNet
reached similar average Top-1 accuracies. The models based on Xception and Inception
that used the NRBVI-Jet dataset have a slightly better performance than others that used
different datasets; the difference in models performance ranged from 0.4% to 8.3%.

Table 3 reports metric values of precision, recall, and F1-score from models that used
the NRBVI-Jet dataset. As can be seen in Table 3, the Xception-based model reached better
metrics values than the other models. It obtained 0.83 on Macro-precision, Macro-recall, and
Macro-F1-score.

Table 3. Classification report of precision, recall, and F1-score of the models that use NRBVI-Jet dataset.

Class Name
VGG-16 Xception Inception v3 MobileNet v2

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

HEALTHY 0.74 0.85 0.79 0.87 1.0 0.93 0.8 1.0 0.89 0.7 0.95 0.81
PHYVV 0.79 0.55 0.65 0.78 0.7 0.74 0.72 0.65 0.68 0.55 0.55 0.55
TMV 0.7 0.8 0.74 0.84 0.8 0.82 0.82 0.7 0.76 0.92 0.6 0.73
Macro avg 0.74 0.73 0.73 0.83 0.83 0.83 0.78 0.78 0.78 0.73 0.7 0.7

For the HEALTHY class, the VGG-16-based model obtained 0.74, 0.85, and 0.79 on
precision, recall, and F1-score, respectively. The Xception-based model achieved 0.87, 1.0,
and 0.93 on precision, recall, and F1-score, respectively. The Inception-based model obtained
0.8, 1.0, and 0.89 on precision, recall, and F1-score, respectively. The MobileNet-based model
achieved 0.7, 0.95, and 0.81 on precision, recall, and F1-score, respectively.

For the PHYVV class, the VGG-16-based model obtained 0.79, 0.55, and 0.65 on
precision, recall, and F1-score, respectively. The Xception-based model achieved 0.78, 0.7, and
0.74 on precision, recall, and F1-score, respectively. The Inception-based model obtained 0.72,
0.65, and 0.55 on precision, recall, and F1-score, respectively. The MobileNet-based model
achieved 0.55, 0.55, and 0.55 on precision, recall, and F1-score, respectively.

For the TMV class, the VGG-16-based model obtained 0.7, 0.8, and 0.74 on precision,
recall, and F1-score, respectively. The Xception-based model achieved 0.84, 0.8, and 0.82
on precision, recall, and F1-score, respectively. The Inception-based model obtained 0.82,



Plants 2021, 10, 1977 7 of 17

0.7, and 0.76 on precision, recall, and F1-score, respectively. The MobileNet-based model
achieved 0.92, 0.6, and 0.73 on precision, recall, and F1-score, respectively.

Analysis of the accuracy during the training phase provides additional insight into
how a particular model is performed. Figure 2 shows the learning curves of models that
use the NRBVI-Jet dataset. For all models, an overfitting problem is clearly seen at early
epochs. Moreover, the difference in the learning curves of the training and validation data
was huge; it ranged from 12% to 20%. Therefore, the models reached overfitting.
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2.3.2. Pre-Trained Models and Data Augmentation

In this experimental configuration, transfer learning from pre-trained models on the
ImageNet dataset was employed. Based on the experimental and empirical evidence, it was
found that a complete fine-tuning technique instead of a feature extractor technique was the
best option. It starts with a pre-trained model as a starting point and then completely re-trains
it on the target dataset. Data Augmentation was also used to prevent models from overfitting.
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Table 4 shows the test accuracy of the fine-tuned models on the different datasets. The
best performance was obtained by the models that used the NGBVI dataset, an average Top-
1 accuracy of 96.6% was achieved by the VGG-16-based model, an average Top-1 accuracy
of 98.3% was obtained by the Xception-based model, and average Top-1 accuracies of
95% and 92.3% were obtained by Inception-based model and MobileNet-based model,
respectively. The difference in model performance between the maximum and minimum
values of the average Top-1 test accuracy was approximately 6.7%.

Table 4. Recognition test accuracy of different fine-tuned models for different datasets (best results
are highlighted with bold font).

Dataset VGG-16
(avg/min/max)

Xception
(avg/min/max)

Inception v3
(avg/min/max)

MobileNet v2
(avg/min/max)

RGB 93.3/91.6/93.6 93.3/91.8/93.4 91.8/91.6/93.8 93.3/91.8/93.8
NRBVI 93.3/91.8/95.9 96.6/95.2/97.9 93.8/91.6/95.9 91.8/83.3/93.8
NRBVI-Jet 91.6/89.7/91.9 95.0/91.8/96.6 89.7/87.7/90.0 87.76/83.3/89.8
NGBVI 96.6/89.7/96.9 98.3/95.9/98.9 95.0/93.8/97.9 92.3/89.7/95.0
NGBVI-Jet 95.0/81.6/95.2 93.3/81.2/94.7 89.7/85.7/91.8 91.8/89.7/93.4

Table 5 details the performance metric values of precision, recall, and F1-score from
models that used the NGBVI dataset for each class. For the HEALTHY class, all models
obtained 1.0 on precision, recall, and F1-score.

Table 5. Classification report of precision, recall, and F1-score of the models that use NRBVI-Jet dataset.

Class Name
VGG-16 Xception Inception v3 MobileNet v2

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

HEALTHY 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
PHYVV 0.91 1.0 0.95 0.95 1.0 0.98 0.87 1.0 0.93 0.9 0.95 0.93
TMV 1.0 0.9 0.95 1.0 0.95 0.97 1.0 0.85 0.92 0.95 0.9 0.92
Macro avg 0.97 0.97 0.97 0.98 0.98 0.98 0.96 0.95 0.95 0.95 0.95 0.95

For PHYVV class, the VGG-16-based model obtained 0.91, 1.0, and 0.95 on precision,
recall, and F1-score, respectively. The Xception-based model achieved 0.95, 1.0, and 0.98
on precision, recall, and F1-score, respectively. The Inception-based model obtained 0.87,
1.0, and 0.93 on precision, recall, and F1-score, respectively. The MobileNet-based model
achieved 0.9, 0.95, and 0.93 on precision, recall, and F1-score, respectively.

For TMV class, the VGG-16-based model obtained 1.0, 0.9, and 0.95 on precision,
recall, and F1-score, respectively. The Xception-based model achieved 1.0, 0.95, and 0.97
on precision, recall, and F1-score, respectively. The Inception-based model obtained 1.0,
0.85, and 0.92 on precision, recall, and F1-score, respectively. The MobileNet-based model
achieved 0.95, 0.9, and 0.92 on precision, recall, and F1-score, respectively.

Figure 3 shows the accuracy and loss curves obtained from models that used the NG-
BVI dataset on the training and testing data during the training progress. It is clearly seen
that the models based on Xception and Inception have a great performance improvement;
as they have lower losses and higher accuracies.
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3. Discussion

Plant viruses are a major threat to sustainable and productive agriculture, causing
significant economic losses worldwide. Several studies on automated plant virus detection
have been conducted using machine-learning techniques. One of the major machine-
learning techniques is the convolutional neural network, a type of deep-learning neural
network that has become a very successful automated classification technique for image-
based plant virus classification.

This study demonstrated that the proposed methodology is a powerful method for
high-accuracy, automated PHYVV and TMV classification in Jalapeño pepper leaf images.
This method avoids the complex and labor-intensive step of feature extraction (hand-
crafted feature extractors) from images employing CNNs-based models. Furthermore,
using different RGB image vegetation indices enabled investigators to obtain more accurate
CNNs-based classification models.
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Data representation plays a crucial role in the performance of CNNs-based models. In
the first experimental configuration, the results of the test set showed that the most accurate
model was the Xception-based model that used the NRBVI-Jet dataset. It reached an aver-
age Top-1 accuracy of 83.3%. The worst models were those that used NRBVI and NGBVI
datasets. In the second experimental configuration, transfer learning from pre-trained
models and data augmentation were used. The best average Top-1 accuracy was obtained
by an Xception-based model that used the NGBVI dataset, with an average Top-1 accuracy
of 98.3%. In this experimental configuration, all models significantly increased the average
Top-1 test accuracies between 12–26% concerning the first experimental configuration of
the models built from scratch. Therefore, it was concluded that transfer learning from
pre-trained models and data augmentation helped CNNs-based models to reduce the
overfitting and to reach high test accuracies, as shown in Table 4 and Figure 3; the differ-
ence between the accuracy curves of the training and the validation data are small in each
trained model. This study therefore offers a promising avenue for virus classification using
different RGB image vegetation indices along with CNNs-based models in relatively small
image datasets. The source code of this article is publicly released and can be downloaded
from https://github.com/jrmillan1983/PHYVV_TMV_CNN (Supplementary Materials).

4. Materials and Methods
4.1. Field Site

The experiment was carried out in two different small-sized greenhouses located
in Queretaro, Mexico at 20◦42′20.39′ ′ N 100◦15′33.81′ ′ W for site A and 20◦42′23.4′ ′ N
100◦15′42.2′ ′ W for site B and their exact location can be observed as a red circle within
Figure 4. The experiment at site A was carried out from February 2020 to June 2020 and
site B was utilized as experiment site from July 2020 to October 2020. Both greenhouses are
in a semi-arid region at an elevation of 1800 m with an average temperature of 25 ◦C with
below-freezing winter temperatures. The plant substrate was made as a mixture of clay
55, sandy 25, silt 20, organic matter 1.81 and DAP 1.4 (g/cm3). Furthermore, the irrigation
system was a standard drop-based irrigation system with average agronomic practices for
Jalapeño plants.
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4.2. Biological Materials

The plant material used was Capsicum annuum L. Type Jalapeño cv. Don Pancho from
the National Institute of Agricultural and Livestock Forestry Research (INIFAP, in Spanish),
with a purity of 98%. The plants were grown in two small greenhouses with an average
temperature of 25 ◦C which can be observed in Figure 5. The PHYVV sample was provided
by Cinvestav, Irapuato, Mexico and the TMV samples were provided by UNAM-Iztacala,

https://github.com/jrmillan1983/PHYVV_TMV_CNN
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Mexico. In order to infect the plants, a bio-ballistic-based procedure was carried out to
inoculate PHYVV into the plants [25]. With respect to TMV, plants of 6 to 8 leaves were
abraded with wet carborundum (400 grit) and inoculated with 30 µg of TMV (25 µg/mL),
by gently rubbing adaxial leaves’ surfaces. Furthermore, RT-PCR confirmation tests were
carried out to ensure the presence of the virus inside the plants according to the procedure
described by Guevara-Olvera et al. [26].
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Figure 5. Experimental greenhouse with Capsicum annuum L. Type Jalapeño cv. Don Pancho. Site (A)
left side and site (B) right side.

4.3. Image Dataset

The image dataset for this project was generated by taking photographs of Jalapeño
pepper leaves using a RGB camera on a smartphone model Samsung Galaxy S7 edge at a
4032 × 3024 12 MP resolution with 4:3 aspect ratio at ambient light conditions, using no
flash and a thick white paper background. It is noteworthy that to avoid being invasive the
photographs were taken in situ without cutting the leaves. Furthermore, a dataset of plant
leaves was generated by including 3 classes (healthy, PHYVV, and TMV) with 100 images
within each class for a total of 300 images for training purposes. Sample images of these
3 classes can be seen in Figure 6.
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Figure 6. RGB image examples of the generated Jalapeño plant dataset. (a) healthy leaf, (b) PHYVV
infected leaf and (c) TMV infected leaf.

4.4. Vegetation Index Algorithms

Vegetation indices are algorithms that are focused on estimating the fractional green
vegetation cover by means of indirect estimation of vegetation surface through linear
algebra operations between image masks such as red, green, and blue, or specific hyper-
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spectral bands [27]. Usually, vegetation indices are focused on quantifying vegetation
covered areas for remote sensing applications. However, the most common plant disease
symptoms are chlorosis and necrosis. Because of this, two new vegetation indices are
proposed to highlight chlorosis and necrosis areas across vegetation with the objective of
obtaining a better identification of chlorotic and necrotic symptoms.

4.4.1. Normalized Red–Blue Vegetation Index

NRBVI is a newly proposed vegetation index focused on highlighting chlorosis areas
and discarding non-vegetation pixels from the greenhouse environment such as walls and
ground to name but a few. Furthermore, NRBVI can be estimated from RGB images by
subtracting red from blue masks as the first step, followed by a further normalization
operation by dividing the resulting pixels by the maximum pixel value as can be observed
at Equation (4).

NRBVI =
RED− BLUE

max(RED− BLUE)
(4)

4.4.2. Normalized Green–Blue Vegetation Index

Alternatively, NGBVI is another newly proposed vegetation index, which is focused
on highlighting chlorosis symptoms too, but by means of green and blue masks. As can be
observed in Equation (5), NGBVI can be calculated by subtracting green from blue masks in
the numerator and further dividing it by the highest pixel value from the numerator result.

NGBVI =
GREEN− BLUE

max(GREEN− BLUE)
(5)

4.4.3. Jet Color Scale

Color scales are a useful tool for highlighting small differences in grayscale images.
Most commercial equipment uses color scales to improve visualization for humans in
applications such as vegetation indices, thermal cameras, and different kinds of remote
sensing applications. Color scales consist of a discretization of the 8-bit grayscale into
sixteen solid color bands where colors are assigned depending on the color scale that
you chose. For this project, the jet color pallet was chosen due to its popularity among
vegetation index applications and for its clear visualization where blue corresponds to low
intensity pixels and red to the highest values. For clarity, grayscale and jet scale differences
are shown in Figure 7.
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4.5. Deep-Learning Models

CNNs have become the most popular learning algorithms in vision-related applica-
tions in recent years. Some of the remarkable application areas of CNNs include image
segmentation, classification, plant species identification, plant disease identification, crop
pest classification, among others. There are a lot of different state-of-the-art CNN architec-
tures, therefore testing of all the possibilities was not a viable option. In this article, four
common deep-learning network architectures were used (VGG-16, Xception, Inception v3,
and MobileNet v2).

One of the most popular CNN architectures is VGG. This algorithm represents one
of the most successful state-of-the-art CNN architectures due to its powerful and accu-
rate classification ability. VGG network was introduced by Simonyan and Zisserman in
2014 [28]. In this study, a VGG-16 architecture was used that consists of 16 sequentially
stacked convolution layers followed by rectified linear units (ReLU). A MaxPooling is
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computed after every two convolutional layers in the first four layers, and then after every
three layers in the rest of the network, ending with three fully connected layers followed
by a softmax layer. The block diagram of a VGG-16 network is illustrated in Figure 8.
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Figure 8. The Visual Geometry Group (VGG)-16 network architecture [28].

The Xception architecture is a linear stack of depthwise separable convolution layers
with residual connections [29]. The Xception network consists of 36 convolutional layers
that perform as the feature extractor. These 36 convolutional layers are organized into
14 modules with linear residual connections around them, except for the first and last
modules, and are followed by a softmax layer. A complete description of the specifications
of the network is featured in Figure 9.
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Inception v3 is a convolutional neural network architecture from the Inception family.
The Inception v3 network is composed of 11 Inception modules of five kinds in total and
supports the following concepts.
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1. Factorizing convolution to reduce the number of parameters (connections) without
decreasing the network efficiency.

2. Factorizing into smaller convolution to reduce the number of parameters. For example,
a 5 × 5 convolution filter has 25 parameters, this filter is replaced by two 3 × 3
convolution filters, 3 × 3 + 3 × 3 = 18 parameters, this is a reduction of 28% of the
number of parameters.

3. Factorizing into asymmetric convolution is to factorize a standard two-dimensional
convolution kernel into two one-dimension convolution kernels. For example, a
3 × 3 convolution filter (9 parameters) could be replaced by a 1 × 3 convolution
filter followed by a 3 × 1 convolution filter (1 × 3 + 3× 1 = 6 parameters). This is a
reduction of 33% on the number of parameters.

4. Auxiliary classifier is a small CNN inserted between layers during training, and the
loss incurred is added to the main network loss.

5. Efficient Grid Size Reduction.

A complete description of the specifications of the network is featured in Figure 10.
For further description of Inception v3, see Szegedy et al. [30].
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Figure 10. The Inception v3 architecture [30,31].

MobileNet is a lightweight CNN architecture. The first version of MobileNet was
proposed by Google in 2017 [32] and it is oriented to mobile and embedded devices. It is
characterized by using depthwise and pointwise convolution. MobileNet v2 [33] adapts
inverted residual blocks which can incorporate low-level features with high-level features.
The architecture of MobileNet v2 contains the initial full convolution layer with 32 filters,
followed by 19 residual bottleneck layers, see Table 6. For further description of MobileNet
v2, see Sandler et al. [33].
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Table 6. MobileNet v2 architecture description [33].

Input Operator Expansion Factor Output
Channels

Number of
Repeated Layers Stride

2242 × 3 Conv2d - 32 1 2
1122 × 32 bottleneck 1 16 1 1
1122 × 16 bottleneck 6 24 2 2
562 × 24 bottleneck 6 32 3 2
282 × 32 bottleneck 6 64 4 2
142 × 64 bottleneck 6 96 3 1
142 × 96 bottleneck 6 160 3 2
72 × 160 bottleneck 6 320 1 1
72 × 320 bottleneck - 1280 1 1

72 × 1280 Avgpool 7 × 7 - - 1 -
1 × 1 × 1280 Conv2d 1 × 1 - - k -

4.6. Image Processing Experiment

The image-processing experiment setup consisted of applying the RGB image as
common input to four different algorithms, which are NRBVI and NGBVI in grayscale
as well as Jet colored versions, and the original RGB image, to compare the performance
of each algorithm in order to identify chlorosis lesions on Jalapeño leaf images [34]. The
image-processing methodology is described as block diagram in Figure 11, where the RGB
image as common input and five versions of the same image as outputs of the whole
process can be observed.
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5. Conclusions

CNNs are used extensively as a powerful class of classification models of digital
images in a variety of applications in the agricultural field, such as plant species identifica-
tion, plant disease identification and crop pest classification, among others. This article
proposes an innovative methodology for the identification of Tobacco Mosaic Virus (TMV)
and Pepper Huasteco Yellow Vein Virus (PHYVV) visual symptoms on Jalapeño pepper
(Capsicum annuum) leaves.

The proposed methodology combines new RGB vegetation indices and deep-learning
classification models. The results show that the proposed methodology can correctly
and effectively recognize TMV and PHYVV through image recognition of different im-
age representations such as RGB, NRBVI, NRBVI-Jet, NGBVI, and NGBVI-Jet. The best
CNNs-based models were those that used NGBVI vegetation index representations. The
pre-trained Xception-based model reached an average Top-1 accuracy of 98.3%. Future
investigations will focus on increasing the dataset size and analyzing other state-of-the-art
CNN architectures.
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