
cancers

Review

The Complement System in Ovarian Cancer: An Underexplored
Old Path

Yaiza Senent 1,2,3, Daniel Ajona 1,2,3,4,*, Antonio González-Martín 1,5, Ruben Pio 1,2,3,4,† and
Beatriz Tavira 1,3,6,†

����������
�������

Citation: Senent, Y.; Ajona, D.;

González-Martín, A.; Pio, R.; Tavira,

B. The Complement System in

Ovarian Cancer: An Underexplored

Old Path. Cancers 2021, 13, 3806.

https://doi.org/10.3390/

cancers13153806

Academic Editors: Ion Cristóbal and

Marta Rodríguez

Received: 2 July 2021

Accepted: 26 July 2021

Published: 28 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Translational Oncology Group, Program in Solid Tumors, Cima University of Navarra, 31008 Pamplona,
Spain; ysenent@alumni.unav.es (Y.S.); agonzalezma@unav.es (A.G.-M.); rpio@unav.es (R.P.);
btavirai@unav.es (B.T.)

2 Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain
3 Navarra Institute for Health Research (IdISNA), 31008 Pamplona, Spain
4 Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
5 Department of Oncology, Clinica Universidad de Navarra, 28027 Madrid, Spain
6 Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra,

31008 Pamplona, Spain
* Correspondence: dajonama@unav.es; Tel.: +34-948-19-47-00
† These authors contributed equally to this work.

Simple Summary: Ovarian cancer is one of the leading causes of death among women and the
most lethal cause of death from gynecological malignancy in developed countries. The immune
system plays an essential role in ovarian cancer progression, and its modulation may be used as
an effective therapeutic tool. In this review, we examine the relevance of the cellular and humoral
components of the adaptive and innate immune responses in ovarian cancer, focusing on the role of
an essential component of innate immunity, the complement system. Elements of this system show
tumor-promoting activities that impede the efficacy of developing treatment strategies. We discuss
evidence that suggests a role of complement components in the progression of ovarian cancer and
provide a rationale for evaluating the inhibition of complement components in combination with
immunotherapies aimed to reactivate antitumor T-cell responses.

Abstract: Ovarian cancer is one of the most lethal gynecological cancers. Current therapeutic
strategies allow temporary control of the disease, but most patients develop resistance to treatment.
Moreover, although successful in a range of solid tumors, immunotherapy has yielded only modest
results in ovarian cancer. Emerging evidence underscores the relevance of the components of innate
and adaptive immunity in ovarian cancer progression and response to treatment. Particularly, over
the last decade, the complement system, a pillar of innate immunity, has emerged as a major regulator
of the tumor microenvironment in cancer immunity. Tumor-associated complement activation
may support chronic inflammation, promote an immunosuppressive microenvironment, induce
angiogenesis, and activate cancer-related signaling pathways. Recent insights suggest an important
role of complement effectors, such as C1q or anaphylatoxins C3a and C5a, and their receptors
C3aR and C5aR1 in ovarian cancer progression. Nevertheless, the implication of these factors in
different clinical contexts is still poorly understood. Detailed knowledge of the interplay between
ovarian cancer cells and complement is required to develop new immunotherapy combinations and
biomarkers. In this context, we discuss the possibility of targeting complement to overcome some of
the hurdles encountered in the treatment of ovarian cancer.

Keywords: ovarian cancer; adaptive immunity; innate immunity; complement system; immunother-
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1. Current Status of Ovarian Cancer: Clinical Perspective and Needs

Ovarian cancer is the most lethal gynecological cancer in developed countries [1].
According to data from the US National Cancer Institute (NIH), the five-year survival rate
for ovarian cancer is 49.1% [2]. This can be attributed to a delay in the diagnosis due to
the lack of specific symptoms; 70% of cases are diagnosed in stage III or IV, making it
difficult to treat with curative intent [3]. Ovarian cancer is a complex disease that com-
prises different tumor types, of which epithelial ovarian cancer represents 90–95% of all
cases [4]. The current standard treatment includes surgery and platinum-based chemother-
apy followed by a maintenance period with the anti-angiogenic therapy bevacizumab [5].
Initial responses to chemotherapy are frequently high, but unfortunately, up to 70% of
patients experience recurrence within the first three years, especially patients who are
late-diagnosed [5]. Survival rates have recently improved with the introduction of a new
generation of poly (ADP-ribose) polymerase inhibitors (PARP inhibitors (PARPi)). These
drugs, administered after chemotherapy, prolong the time during which the disease does
not progress, mainly in patients carrying BRCA mutations [6]. Despite this great advance,
the overall survival of patients with ovarian cancer is still low. There are a variety of fac-
tors associated with chemoresistance and relapse, including interactions between ovarian
cancer cells and their surrounding immune microenvironment [7]. Ovarian cancers are
considered “immunogenic tumors” in which spontaneous antitumor immune responses
have been demonstrated [8,9]. The presence of tumors infiltrating CD8+ lymphocytes in
the tumor microenvironment (TME) is associated with longer recurrence-free and overall
survival [10,11], whereas the recruitment of regulatory T (Treg) cells is correlated with a
poor outcome [12]. These associations indicate that ovarian cancers could respond to im-
munotherapy. However, immune checkpoint inhibitors (anti-CTLA-4 or anti-PD-1/PD-L1)
have yielded modest clinical results in ovarian cancer patients [13,14]. A better understand-
ing of the interplay between ovarian tumor cells and the immunological players in innate
and adaptive immunity is critical for developing strategies to overcome the resistance of
ovarian cancers to immunotherapy [15,16].

A major effector of innate immunity is the complement system, which represents one
of the first lines of defense that distinguish “self” from “non-self” [17]. This system is
composed of more than 50 soluble or membrane-bound effectors, regulators, and receptors,
and it plays a relevant role in numerous physiological and pathological processes, including
cancer [18]. Some evidence suggests that the modulation of complement activation may
be exploited for the development of successful treatments against cancer [19,20]. In this
review, we discuss the role played by components of adaptive and innate immunity on
the development and progression of ovarian cancer. We mainly focus on the complement
system, its role in the TME, and the rationale behind the use of complement modulators
for the treatment of ovarian cancer.

2. Cellular and Humoral Immune Components of the Ovarian
Tumor Microenvironment

The continuous feedback between tumor cells and the immune system is now recog-
nized as a distinguished cancer hallmark [21]. Neoplastic transformation is characterized by
the acquisition of tumor-associated molecular patterns that can be detected by the immune
system. It is believed that upon recognition, innate and adaptive immunity can eliminate
the vast majority of incipient cancer cells, avoiding tumor formation. However, the immune
system is unable to eliminate all emerging malignant cells. When transforming cells escape
from immune-mediated elimination, a dynamic interplay is established between tumor
cells and the immune system, resulting in tumor-associated immune responses that may
facilitate the development and progression of cancer [22]. In the case of ovarian tumors, a
plethora of immune and non-immune cell types and non-cellular elements are found in the
TME, not only in primary tumors but also in ascites and metastases [23]. The co-existence of
multiple distinct tumor immune microenvironments within a single individual highlights
the high plasticity and adaptability of ovarian cancers [24]. Herein, we summarize the
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main roles of the cellular and humoral elements of the immune system in ovarian tumor
progression.

2.1. Cellular Immune Components

Tumor cells co-exist with non-immune and immune cells, and this relationship de-
termines the natural history of the tumor and its resistance or response to therapy. The
cellular immune components of the ovarian TME include T and B lymphocytes, natural
killer (NK) cells, dendritic cells (DCs), polymorphonuclear cells, and macrophages.

T cells are a prominent component of the ovarian TME. Infiltration by CD8+ T cells is
indicative of an ongoing immune response and is associated with a favorable prognosis [25].
Upon activation, tumor-specific CD8+ T cells secrete IFN-γ, tumor necrosis factor (TNF)-
α, and cytotoxic mediators. However, in the ovarian TME, CD8+ T-cell responses are
often dysfunctional. The autologous recognition of ovarian tumor antigens is limited to
approximately 10% of the intratumoral CD8+ T receptor (TCR) repertoire [26]. This state
can be attributed to the upregulation of T-cell exhaustion molecules by persistent antigen
exposure and the existence of a hostile TME characterized by nutrient deprivation, hypoxia,
oxidative stress, high concentrations of pro-inflammatory molecules, and the presence of
immunosuppressive cell subsets [27]. In fact, ovarian cancers are highly enriched in Treg
cells [28], a subset of lymphocytes that hamper tumor immunosurveillance by fostering
peripheral tolerance to tumor antigens. Treg cells release and metabolize ATP to adenosine
by the action of CD39 and CD73, a process that mediates immunosuppression via the
adenosine and A2A pathways [29]. Consequently, depletion of Treg cells in ovarian cancer-
bearing mice effectively restores antitumor antigen-specific T-cell responses [30]. Other
lymphoid subsets are important elements of the ovarian cancer immune infiltrate. In an
orthotopic syngeneic mouse model, antitumor immunity was driven by CD4+ T cells [15].
A study identified a novel tumor-infiltrating NK subset characterized by a high expression
of PD-1, reduced proliferative capability in response to cytokines, low degranulation, and
impaired cytokine production upon interaction with tumor targets [31]. The presence of
CD20+ B cells was associated with increased survival in ovarian cancer patients [32]. In
human metastases of high-grade serous ovarian cancer, B cells develop memory responses
in the TME and promote antitumor immune responses [33].

DCs are a diverse group of innate immune cells that infiltrate tumors and present
tumor-derived antigens to naïve T cells. High densities of tumor-infiltrating DC-LAMP+

mature DCs suggest the establishment of an antitumor immune response, which is asso-
ciated with a favorable prognosis in ovarian cancer patients [34]. However, this immune
response is often rendered dysfunctional because of a variety of mechanisms, such as the
upregulation of B7-H1 [35], the activation of the endoplasmic reticulum stress response
factor X-box binding protein 1 (XBP1) [36], the attenuation of the toll-like receptor-mediated
DC activation [37], and the activation of the cyclooxygenase 2 (COX2)/prostaglandin E2
(PGE2) axis to redirect the development of DCs toward the formation of myeloid-derived
suppressor cells (MDSCs) [38].

MDSCs represent a heterogeneous population of immature myeloid cells that fail
to differentiate into granulocytes, macrophages, or DCs. Two main subsets of MDSCs
have been identified: polymorphonuclear MDSC (PMN-MDSC; CD11b+Ly6G+Ly6Clo in
mice and CD11b+CD14−CD15+CD66b+LOX-1+ in humans) and monocytic MDSC (M-
MDSC; CD11b+Ly6G−Ly6Chi in mice and CD14+CD15−HLA−DR−/lo in humans). PMN-
MDSCs and M-MDSCs are morphologically and phenotypically similar to neutrophils and
monocytes, respectively [39]. These cells potently inhibit the anti-tumor immune response
and reshape the TME to promote tumor growth and metastatic spread. The differentiation
of myeloid precursors toward an MDSC phenotype is mediated by the inflammatory
factor PGE2 via DNA methyltransferase 3A (DNMT3A)-dependent hypermethylation
and the downregulation of a subset of myeloid genes [40]. The infiltration of MDSCs
into ovarian tumors is associated with the Snail-mediated upregulation of CXCL1 and
CXCL2 chemokines that attract MDSCs to the tumor via CXCR2 [41]. In the tumor niche,
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granulocyte–monocyte colony-stimulating factor (GM-CSF), through the signal transducer
and activator of transcription 5 (STAT-5) pathway, upregulates AMP-activated protein
kinase alpha 1 (AMPKα-1) in MDSCs to suppress antitumor CD8+ T-cell responses [42].
Both the presence of TNF-α and the production of NO by MDSCs sustain Th17 responses
in the TME and myeloid cell recruitment in an IL-17-dependent manner [43,44].

Tumor-associated neutrophils, a cell population difficult to distinguish from PMN-
MDSCs, are also involved in ovarian cancer-associated immune responses. In a KRAS-
driven ovarian cancer mouse model, neutrophils reduced the amount of tumor-associated
Treg cells and M-MDSCs while increasing the antitumor immune response via the upregula-
tion of CD8+ T-cell function [45]. By contrast, the activation of neutrophils by mitochondrial
DNA from ascites obstructs anti-tumor immunity and is associated with worse outcomes
in patients with advanced ovarian cancer [46]. This study also reported the formation
of neutrophil extracellular traps (NETs), networks of neutrophil decondensed chromatin
fibers that are capable of binding tumor cells to support metastatic progression [47]. These
contrasting roles of neutrophils in ovarian cancer have been attributed to different polar-
ization states induced by the presence of transforming growth factor (TGF)-β and type-1
interferons in the TME [48].

Tumor-associated macrophages (TAMs) play a major role in the pathogenesis of
ovarian cancer [49]. Macrophages constitute over 50% of the cells in peritoneal ovarian
tumor nodules and malignant ascites and are involved in ovarian cancer initiation, pro-
gression, and metastasis [50]. TAMs are highly plastic cells that can exhibit two main
phenotypes: anti-tumorigenic M1-like (F4/80hi and CD86+ or CD80+ or iNOS+ in mice;
CD68+HLA-DR+CD11c− and CD86+ or CD80+ or iNOS+ in humans) and pro-tumorigenic
M2-like (F4/80hi and CD163+ or CD206+ or arginase+ in mice; CD68+HLA-DR+CD11c−

and CD163+ or CD206+ in humans). Analyses of TAM polarization in ovarian cancer show
that M2 TAMs are associated with a poor prognosis [51,52]. Malignant cells direct TAM
differentiation to facilitate tumor progression. The activation of the ovarian TAM pro-
tumor phenotype requires the expression of zinc finger E-box binding homeobox 1 (ZEB1),
a driver of the epithelial-mesenchymal transition (EMT), and involves direct crosstalk
with tumor cells [53]. Tumor-expressed CD24 interacts with the inhibitory receptor sialic-
acid-binding Ig-like lectin 10 (Siglec-10) expressed by ovarian cancer-inhibiting TAMs to
avoid their antitumor effects [54]. Ovarian cancer cells skew co-cultured macrophages
to a phenotype similar to that found in ovarian tumors [55]. Ovarian cancer cells pro-
mote membrane-cholesterol efflux and depletion of lipid rafts to polarize TAMs toward a
tumor-promoting phenotype characterized by the upregulation of IL-4 signaling [56]. In
return, TAMs enhance the malignant potential of ovarian cancer cells. Endothelial growth
factor (EGF) secreted from TAMs promoted tumor growth at early stages of transcoelomic
metastasis in a mouse model of ovarian cancer [57]. Moreover, TAMs enhance ovarian
cancer invasiveness through activation of the nuclear factor kappa B (NF-kB) and Jun
N-terminal kinase (JNK) pathways in tumor cells [58].

2.2. Humoral Immune Components

The crosstalk between the different cellular components of the TME is essential to
reprogram tumor-associated immune responses. This process is orchestrated by complex
networks interconnected by sets of soluble factors and extracellular structures, such as
cytokines, chemokines, small metabolites, and microvesicles, among others [59]. In partic-
ular, cytokines mediate key interactions between immune and non-immune cells in the
TME [60], and cytokine-based immunotherapy is a promising strategy to modulate the
host’s immune response toward the induction of apoptosis in tumor cells [61]. To date,
there are two FDA-approved treatments for melanoma and metastatic renal cell cancer
based on the administration of TNF-α and interleukin (IL)-2 [62]. In the case of ovarian
cancer, the proinflammatory cytokine IL-6 has been established as a key immunoregula-
tor [63]. IL-6, along with other cytokines, activates pathways such as STAT and NF-kB,
whose modulation could be used as a potential therapeutic tool [63].
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Many years ago, Bjørge et al. found elevated levels of complement C1q, C3, C3a, and
soluble C5b-9 in ascites from ovarian cancer patients, suggesting that local complement
activation may constitute an important soluble component of the ovarian TME [64]. More
recently, ovarian cancer has been classified as a cancer type with “upregulated comple-
ment” [65]. Interestingly, over the last decade, the complement system has emerged as a
major non-cellular regulator of the TME in cancer immunity. Tumor-associated complement
activation may support chronic inflammation, promote an immunosuppressive microen-
vironment, induce angiogenesis, and activate cancer-related signaling pathways [66]. In
the case of ovarian cancer, complement dysregulation may even participate in the onset of
tumors since complement molecules are already overexpressed in precursor lesions [67].
In the following section, we summarize the evidence supporting the involvement of the
complement system in ovarian cancer progression.

3. The Complement System and Its Dual Role in Ovarian Cancer

In 1896, the complement system was first described as a heat-labile component in the
serum able to “complement” heat-stable factors (antibodies). Now, the complement system
is broadly known as a central part of the innate immune response composed of soluble
and membrane-bound proteins that can coordinate a nonspecific inflammatory response
against microbes and unwanted host elements [18]. Complement-circulating effectors
are predominantly synthesized in the liver and are distributed throughout the body in
an inactivated state. Complement can be activated by three main distinctive pathways:
the classical pathway (CP), the lectin pathway (LP), and the alternative pathway (AP)
(Figure 1). The three pathways converge in the cleavage of the complement component
C3 into C3a and C3b. The CP is initiated in foreign, damaged, or dying cells when the
C1 complex, which includes C1q, C1r, and C1s, recognizes antibody clusters, pathogen-
associated molecular patterns (PAMPs), or danger-associated molecular patterns (DAMPs),
among other molecules [68]. The LP is initiated by the recognition of carbohydrate patterns
by mannose-binding lectin (MBL) or ficolins, along with the mannan-binding lectin serine
proteases MASP1 and MASP2 [68]. The initiation of both the CP and the LP leads to the
cleavage of C4 into C4a and C4b and, subsequently, C2 into C2a and C2b. The complex
formed by C4b and C2b (C4bC2b, formerly C4b2a) constitutes the classical C3 convertase,
which is responsible for the cleavage of C3 into C3a and C3b [68]. The AP is initiated by
the spontaneous hydrolysis of C3 into C3(H2O), followed by its binding to factor B. This
complex is recognized by factor D, which catalyzes the cleavage of factor B to form the fluid-
phase alternative C3 convertase C3(H2O)Bb. This convertase can mediate the cleavage of
C3 into C3a and C3b to form the membrane-bound alternative C3 convertase C3bBb [69].
Subsequently, C3b is able to bind to C4bC2b (in the CP and LP) or C3bBb (in the AP), leading
to the formation of C5 convertase. This complex catalyzes the cleavage of C5 into C5a and
C5b. The later fragment sequentially binds to C6, C7, C8, and C9 to form the cytolytic
membrane attack complex (MAC) [18,68]. Many complement functions are mediated by
the anaphylatoxins C3a and C5a, which act as potent inflammatory modulators [70]. These
peptides signal through their respective G-protein-coupled receptors C3aR and C5aR1 [71].
A second, lesser-known C5a receptor, C5aR2, also participates in C5a responses, though its
role remains unclear. Finally, an array of membrane and soluble complement regulatory
proteins (CRPs) protects normal cells from the overactivation of complement [68] (Figure 1).
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Figure 1. Schematic representation of the effectors and regulators of the complement cascade. Complement is initiated
by three distinctive pathways: the classical (blue arrows), the lectin (green arrows), and the alternative (brown arrows)
pathways. All three pathways converge in the formation of C3 and C5 convertases, which in turn generate the inflammation
modulators C3a and C5a. The terminal steps, which culminate in the assembly of the membrane attack complex (MAC), are
common to the three pathways. Inhibitory proteins of the three pathways are shown in red boxes.

Complement plays an essential role in the control of cellular immunity [18], participat-
ing in the regulation, differentiation, and trafficking of several immune cell types [17,72].
C3 and C4 depletion impair humoral immune responses in vivo [73–75]. It has been pos-
tulated that antigen–antibody clusters interact with complement and are recognized by
DCs, B lymphocytes, and macrophages [76]. Further evidence of the interplay between
adaptive and innate immunity is the CD21(CR2)-CD19-CD81 complex on B cells, which
enhances B-cell receptor function [77,78], partially by recognizing C3d-tagged surfaces [79].
Anaphylatoxins also play an important role in immune regulation. Most immune cell types
express C3aR and/or C5aR1 on their surfaces [65]. On B cells, C3a impairs polyclonal im-
mune responses and TNF-α and IL-6 production [80,81]. C5a has been extensively reported
to induce the migration of several cell types [82–86]. Interestingly, C5a fosters antigen
cross-presentation and the maturation of DCs [87–89]. Moreover, C3a-C3aR and C5a-C5aR1
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signaling promote the activation [90] and expansion [91] of T cells and divert their differen-
tiation from Treg cells [92,93]. Complement inhibitory proteins, such as CD46, have been
shown to modulate T-cell fate depending on the isoform expressed and the presence of
IL-2 [94,95]. Moreover, negative modulation of the inhibitor CD59 was demonstrated to
ameliorate antigen-specific T-cell responses [96]. Overall, the information gathered during
the past few decades illustrates the interconnections between the complement system and
adaptive and innate immunity and endorses the hypothesis that complement’s role extends
beyond its traditional non-specific, first-defense function.

Dysregulation of complement can lead to the development of several pathologies.
Kidney diseases, such as atypical hemolytic uremic syndrome (aHUS) and C3 glomeru-
lopathies, are closely related to complement anomalies. C3 glomerulopathies are character-
ized by the production of C3 fragments in the fluid phase via the alternative pathway and
abnormal complement consumption that leads to the damage of the glomerular basement
membrane [97]. Activation of the complement system is also involved in the pathogenesis
of systemic autoimmune diseases [98]. Alterations in regulatory proteins can trigger seri-
ous conditions as well. Paroxysmal nocturnal hemoglobinuria (PNH) is a hematological
disorder caused by a deficiency in glycosylphosphatidylinositol anchor synthesis that
negatively affects the expression of the CRPs CD55 and CD59 [99]. More recently, cancer
progression has been associated with complement activation [66].

In the next sections, we review studies that have reported the participation of compo-
nents of the complement system in the biology of ovarian cancer or its potential clinical
use. The findings of these studies are summarized in Tables 1 and 2.

Table 1. Summary of the studies in ovarian cancer cell lines and mouse models reporting tumor-promoting or tumor-
suppressing activities mediated by complement components.

Component
Type

Complement
Component (s)

Role in
Cancer

Experimental
Setting Cell Line(s) In Vivo Model Mechanism Ref

C
om

pl
em

en
te

ff
ec

to
rs

an
d

re
ce

pt
or

s

C1q Anti-tumor In vitro SKOV3 - Induction of apoptosis [100]

gC1qR Anti-tumor In vitro C33a, SiHa - Induction of apoptosis [101]

gC1qR Anti-tumor In vitro SKOV3,
CAOV-3 -

Induction of apoptosis
after paclitaxel

treatment
[102]

C3 and C5aR1 Pro-tumor In vivo -

Spontaneous
model in
C57BL/6

TgMISIIR-Tag
mice

Inhibition of
angiogenesis [103]

C3aR and C5aR1 Pro-tumor In vivo ID-8 VEGF Syngenic model
in C57BL/6 mice

Autocrine stimulation
of tumor growth [104]

C3 Pro-tumor In vivo ID-8 VEGF Syngenic model
in C57BL/6 mice

Autocrine promotion of
EMT [105]

C3 and C5aR1 Anti-tumor In vivo TC-1

Syngenic model
in B6.SJL-

PtprcaPep3b/BoyJ
mice

Promotion of T-cell
homing [106]

C5a Anti-tumor
Pro-tumor In vivo SKOV-3 Xenograft model

in SCID mice
Dose-dependent effect

on tumor growth [107]
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Table 1. Cont.

Component
Type

Complement
Component (s)

Role in
Cancer

Experimental
Setting Cell Line(s) In Vivo Model Mechanism Ref

C
om

pl
em

en
tr

eg
ul

at
or

s

CD59, CD46, FH,
and FHL-1 Pro-tumor In vitro

Caov-3,
SK-OV-3,
SW626,
PA-1,

HUV-EC-C

-

Functional complement
activation and

regulation occurs
locally in ascites

[64]

CD55 Pro-tumor In vivo SK-OV-3 Xenograft model
in SCID* mice

Blockade of CD55 leads
to improved efficacy of

mAb therapy
[108]

CD55 Pro-tumor In vivo

A2780,
TOV112,

CP70,
HEC1a

Xenograft model
in SCID mice

Silencing of CD55
restores sensitivity to

chemotherapy
[109]

CD59 Pro-tumor In vivo A2780 Xenograft model
in SCID mice

Silencing of CD59
reduces tumor growth [110]

CD59 Pro-tumor In vitro SK-OV-3 -

Neutralization
improves CDC

mediated by mAb
therapy

[111]

CD46 and CD59 Pro-tumor In vitro

IGROV1,
OVCAR3,
SKOV3,
OAW42,
INTOV1,
INTOV2

-

Neutralization
improves CDC

mediated by mAb
therapy

[112]

CD46, CD55, and
CD59 Pro-tumor In vitro SK-OV-3 -

Silencing of CRPs leads
to improved efficacy of

mAbs
[113]

FH, FHL-1, and
sCD46 Pro-tumor In vitro

SK-OV-3,
Caov-3,

PA-1,
SW626

- Resistance to CDC [114]

EMT: epithelial-mesenchymal transition, SCID: severe combined immunodeficient, mAb: monoclonal antibody, CDC: complement-
dependent cytotoxicity.

Table 2. Summary of the studies performed with clinical samples reporting the potential clinical use of the determination of
complement components.

Component
Type

Complement
Component(s) Role in Cancer Type of

Sample Methodology Stage(s) Mechanism Ref

C
om

pl
em

en
te

ff
ec

to
rs

an
d

re
ce

pt
or

s

C1q Diagnosis Serum Mass
spectrometry III–IV Overexpression [115]

gC1qR Prognosis Tissue IHC III–IV
Overexpression

associated with shorter
overall survival

[116]

MBL and
MASP-2 Diagnosis Serum ELISA I–IV Overexpression [117]

Ficolin-2 and
ficolin-3 Diagnosis Serum ELISA I–IV Overexpression [118]

C3 and C4 Prediction of
response Plasma Mass

spectrometry III–IV

Downregulation (C3)
or upregulation (C4) in

platinum-resistant
patients

[119]

C3 Diagnosis Serum Mass
spectrometry I–IV Downregulation [120]

C3 and C5aR1 Prognosis Tissue Real-time PCR I–II

mRNA levels
associated with

decreased overall
survival

[104]
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Table 2. Cont.

Component
Type

Complement
Component(s) Role in Cancer Type of

Sample Methodology Stage(s) Mechanism Ref

C
om

pl
em

en
tr

eg
ul

at
or

s

CD59, CD46, FH,
and FHL-1 Pro-tumor Ascitic fluid Immunoblotting,

ELISA, IHC I, III, IV
Complement activation
and regulation occurs

locally in ascites
[64]

CD46 Prognosis Tissue IHC I–III Expression associated
with shorter survival [121]

CD46 and CD59 Therapy Tissue
cDNA

microarray,
IHC

Advanced
stage

Neutralization
improves CDC

mediated by mAb
therapy

[112]

CD46, CD55, and
CD59 Pro-tumor Tissue IHC Not specified Overexpression in

malignant tissue [122]

FH, FHL-1, and
sCD46 Pro-tumor Ascitic fluid,

tissue
ELISA,

IHC III–IV Overexpression in
malignant tissue [114]

IHC: immunohistochemistry, mAb: monoclonal antibody, CDC: complement-dependent cytotoxicity.

3.1. Complement Initiation Components in Ovarian Cancer

C1q, the first component of the classical complement activation pathway, links innate
and adaptive immunity [123]. Both promoting and inhibitory roles have been reported for
C1q in cancer progression, but most studies associate C1q expression with poor clinical
outcomes in cancer, as is the case for gliomas and osteosarcomas [124,125]. C1q may
act as a tumor-promoting factor through both complement-dependent and complement-
independent mechanisms [126,127]. In ovarian cancer, the role of C1q appears to be
context-dependent. In vitro, C1q displays an anti-tumor effect in SKOV3 cells by promoting
apoptosis through the upregulation of the TNF-α pathway and the downregulation of the
mammalian target of rapamycin (mTOR) survival pathway [100]. Conversely, expression
levels of C1q in circulating extracellular vesicles isolated from ovarian cancer patients
in stages III–IV are significantly elevated compared with those isolated from healthy
individuals [115]. Discrepancies have also been observed in the case of the globular C1q
receptor (gC1qR), a cell surface receptor for C1q. This molecule is upregulated in tumor
cells [128], and its overexpression induces mitochondrial dysfunction and p53-dependent
apoptosis in human cervical squamous carcinoma cells in vitro [101]. Consistently, the
induction of gC1qR expression by paclitaxel in ovarian cancer cell lines SKOV3 and CAOV3
results in mitochondrial dysfunction and cell apoptosis [102]. However, this consistency
observed in vitro disappears when clinical samples from ovarian cancer patients at different
stages of the disease are analyzed. gC1qR downregulation was observed in ovarian cancer
patients in the early stages of the disease (stages I–II) [102]. By contrast, gC1qR seems to
be overexpressed in tumor tissue from ovarian cancer patients in stages III and IV, and
this is associated with a poor prognosis and cisplatin resistance [116]. These data suggest
an increase in complement activation during ovarian cancer progression. Consistent with
this assumption, C4 was detected in ascitic fluid from late-stage patients, while it was
undetectable in ascitic fluid from healthy donors [64]. Moreover, C4 levels were found to
be upregulated in plasma samples from chemoresistant compared with chemosensitive
ovarian cancer patients [119]. In the same study, complement factor I and C3 were found
to be downregulated [119]. Finally, MBL and MASP2 serum levels are altered in ovarian
cancer patients, and MBL levels are associated with advanced disease stages [117]. The
ovarian tumor antigen cancer antigen 125 (CA-125), a highly glycosylated protein, may
be a target for pattern recognition molecules, such as collectins and ficolins, which may
mediate the interaction with MBL and the activation of the lectin pathway [129]. Serum
ficolins have been reported to be elevated in ovarian cancer patients despite their lower
tumor expression [118]. In conclusion, several studies have reported the presence of
complement initiation factors in ovarian cancer. However, the contribution of these factors
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to ovarian cancer progression and response to treatment is still unclear and requires further
investigation.

3.2. C3 and C5 in Ovarian Cancer

The C3- and C5-derived fragments C3a and C5a participate in the establishment of
a chronic inflammatory state that may favor tumorigenesis and cancer progression [70].
In ovarian cancer, the implication of C3a and C5a seems to depend on multiple factors,
although most of the evidence suggests a tumor-promoting effect. Nuñez-Cruz et al. as-
sessed the role of complement in ovarian tumor progression using C3 and C5aR1-deficient
mice. Complement inhibition impaired both tumor vascularization and growth [103]. Some
molecular mechanisms have been associated with the tumor-promoting function of C3
and C5 in ovarian cancer tumor cells. These mechanisms include the activation of the
phosphatidylinositol-3-kinase (PI3K) pathway and the induction of EMT [104,105]. C3 and
C5 and their effector fragments also influence tumor progression by acting on immune
cells. Circulating polymorphonuclear cells from ovarian cancer patients can acquire an
immunosuppressive phenotype capable of restraining T-cell proliferation after exposure to
ascites in a process dependent on C3 [130]. This T-cell non-responsiveness is associated
with the production of C5a and is mediated by mTOR signaling and nuclear factor of
activated T-cells (NFAT) translocation [131]. Interestingly, C5a may function in a dose-
dependent manner. Thus, in a SKOV-3 tumor model, low local doses of C5a reduced tumor
growth in association with the recruitment of M1 TAMs and NK cells, while high doses
promoted tumor progression [107]. Ovarian cancer cells overexpress ribosomal protein S19
(RPS19), which leads to tumor growth through its interaction with C5aR1 in MDSCs [132].
By contrast, the local production of C3 and the release of C5a disrupt the tumor endothelial
barrier, facilitating the homing of T cells and their tumor recruitment [106]. This study
further stresses the contrasting effects associated with complement effectors in different
models of ovarian cancer. Unfortunately, the results reported in patients do not clarify
the matter. High levels of C3 or C5aR1 have been associated with decreased overall sur-
vival [104,133]. By contrast, reduced expression of C3 was observed in the blood of ovarian
cancer patients [134], and this factor was downregulated in the serum of platinum-resistant
patients [119].

3.3. Complement Regulatory Proteins in Ovarian Cancer

CRPs protect host cells from autologous complement attack, but they can render
complement ineffective at eliminating cancer cells. Membrane-bound CRPs (mCRPs),
such as CD46, CD55, and CD59, are expressed by ovarian cancer tumors [121,135] and
cell lines [108,122,135]. These regulators are linked to worse clinical outcomes and may
constitute an obstacle for cancer immunotherapy [121,136–138]. Their presence has also
been associated with the development of multi-drug resistance in ovarian cancer cells [139].
Neutralization of mCRPs increases the sensitivity to complement-dependent cytotoxic-
ity [111,113,139], reduces ovarian tumor growth [110], and enhances the anti-tumor efficacy
of therapeutic antibodies [108,112]. In line with these findings, CD55 silencing restores
cisplatin sensitivity to chemotherapy in resistant ovarian cancer cells [109]. Regarding
soluble complement regulators, a range of studies has demonstrated their importance in
several tumor types [140–143]. In ovarian cancer, some soluble complement inhibitors,
such as factor H and factor H-like 1 (FHL-1), have been found in ascitic fluid and primary
tumors [64,114]. However, the role of these regulators in ovarian cancer progression has
not been defined yet.

In conclusion, the evidence suggests that complement dysregulation drives ovarian
cancer progression. Complement effectors, receptors, and regulators have been implicated
in different aspects of ovarian cancer biology (Figure 2). Although there are inconsistencies
in the description of the role of complement components in some clinical or experimental
contexts, the majority of studies point toward a tumor-promoting activity of complement in
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well-established tumors. These findings have paved the way for studies aimed to potentiate
cancer therapies through the modulation of the complement system.

Figure 2. Complement-related mechanisms associated with ovarian cancer progression. Complement components have
been implicated in different biological processes associated with ovarian cancer progression. They include modulation
of immunosuppression in the tumor microenvironment; regulation of angiogenesis and endothelial permeabilization;
autocrine and paracrine effects in tumor cells mediated by C1q, C3a, or C5a; and inhibition of complement-dependent
cytotoxicity (CDC) by membrane-bound complement regulators.

4. Therapeutic Potential of Targeting Complement in Ovarian Cancer

Complement inhibition may be a useful therapeutic strategy against cancer [19].
Agonists of C5aR1 and C3aR increase ovarian tumor cell proliferation, migration, and
invasion, suggesting that receptor antagonists could be used to block cancer growth [104].
Complement targeting may also impair angiogenesis, a highly relevant biological process
in ovarian cancer. Elevated levels of serum VEGF after chemotherapy treatment have
been associated with lower overall survival in ovarian cancer patients [144], and the
anti-VEGF antibody bevacizumab has shown therapeutic activity in both patients and
animal models [145–147]. Genetic or pharmacological inhibition of C3 or C5aR1 results in
smaller and poorly vascularized ovarian tumors in vivo [103], and C5a is able to promote
endothelial cell tube formation and migration [103,148]. Therefore, it can be speculated
that inhibition of complement may potentiate the efficacy of anti-angiogenic agents.

Another scenario in which complement modulation may be of special relevance is
immunotherapy. We previously described the implication of effectors and regulators of the
complement system in the ability of T cells to infiltrate tumors and the response against
tumor-associated antigens [149]. Using various models of lung cancer, we proposed that the
modulation of complement activation can improve the antitumor efficacy of monoclonal
antibodies targeting the PD-1/PD-L1 pathway [150]. This synergistic effect has also been
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reported in other tumor models targeting C5a/C5aR1 [151,152] or C3a/C3aR [151,153]. To
our knowledge, these combinations have not been tested yet in models of ovarian cancer,
and we can only hypothesize about the outcome of these studies. The inhibition of C3
or C5aR1 abrogates the suppressor phenotype of MDSCs in the ovarian TME [130,131],
suggesting that complement inhibition may have a positive effect on the efficacy of anti-
PD-1/PD-L1 therapies. Conversely, antitumor T cells require the production of C3 and the
release of C5a in the endothelium in order to infiltrate ovarian tumors [106]. The targeting
of mCRPs should also be considered in light of their relevance in the TME [136]. The
inhibition of mCRPs may be used to sensitize tumors to other drugs. In ovarian cancer, the
neutralization of CD46, CD55, and CD59 in combination with the anti-HER2 monoclonal
antibodies trastuzumab and pertuzumab induces tumor cell killing in vitro [113]. Nev-
ertheless, considering the dual role of complement molecules in ovarian tumors, in vivo
studies are needed to determine whether complement inhibition has any impact on the
response to checkpoint-based or antibody-based immunotherapies, and in which direction.

5. The Need for Preclinical Models to Better Delineate the Role of Complement in
Ovarian Cancer

In this review, we discussed the functions that complement components exert in
the biology of ovarian tumors. Many questions remain regarding the conflicting results
observed in different experimental settings. To address these questions, in vivo models that
faithfully recapitulate the complexity of the disease are needed. Currently, there are a few
animal models established for the study of ovarian cancer. These include genetically engi-
neered mouse models, xenograft cell transplants of human cell lines, and patient-derived
xenografts [154]. These models have facilitated the study of many mechanisms associated
with ovarian cancer progression and have allowed the evaluation of many therapeutic
molecules [155]. For the study of complement-related mechanisms or treatments, mouse
models that capture the complexity of the TME are required. Models based on syngeneic tu-
mor cells injected intraperitoneally in immunocompetent mice represent a practical option.
Some studies have used the syngeneic intraperitoneal injection of ID-8-MOSEC, a mouse
epithelial ovarian cancer cell line originating in C57BL/6 mice, to evaluate the roles of C3,
C5, and C5aR1 in ovarian cancer development and progression (Table 1) [104,106]. This
cell line was developed by Dr. Katherine F. Roby in the Department of Anatomy and Cell
Biology of the University of Kansas in the early 2000s, and it is one of the most frequently
used ovarian cancer cell lines since it has the capacity to induce tumor peritoneal implants
observed in stages III and IV [156]. Because of its slow growth rate, some strategies have
been developed to increase the aggressiveness of this cell line, including the overexpression
of dendritic cell chemoattractant beta-defensin 29 (Defb29) or VEGF [157], two factors
associated with increased invasiveness. Nevertheless, this model does not completely
recapitulate the human pathophysiology of the disease and does not exactly reproduce
the TME [154]. The development of better ovarian cancer models is needed to unravel the
mechanisms by which complement components modulate ovarian cancer progression and
to evaluate complement-based therapeutic combinations.

6. Conclusions

A growing body of literature suggests that the complement system is involved in
ovarian cancer progression. Nevertheless, the specific role of the different complement
components in different clinical scenarios has just started to be unraveled, and many an-
swers remain elusive. The molecular heterogeneity of ovarian cancers and the complexity
of the biological interactions in the ovarian TME pose a challenge to our understanding of
the mechanisms underlying the complement-associated immune responses and the identifi-
cation of adequate therapeutic targets. The situation is aggravated by the lack of preclinical
models that reliably recreate ovarian cancer traits. Therefore, further studies are needed
to better delineate the complement-related mechanisms associated with ovarian cancer
progression as well as to determine how complement activation should be modulated to
treat ovarian cancer patients.
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