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A B S T R A C T

It goes without saying that coronavirus (COVID-19) is an infectious disease and many countries are coping
with its different variants. Owing to the limited medical facilities, vaccine and medical experts, need of the
hour is to intelligently tackle its spread by making artificial intelligence (AI) based smart decisions for COVID-
19 suspects who develop different symptoms and they are kept under observation and monitored to see the
severity of the symptoms. The target of this study is to analyze COVID-19 suspects data and detect whether
a suspect is a COVID-19 patient or not, and if yes, then to what extent, so that a suitable decision can be
made. The decision can be categorized such that an infected person can be isolated or quarantined at home
or at a facilitation center or the person can be sent to the hospital for the treatment. This target is achieved
by designing a mathematical model of COVID-19 suspects in the form of a multi-criteria decision making
(MCDM) model and a novel AI based technique is devised and implemented with the help of newly developed
plithogenic distance and similarity measures in fuzzy environment. All findings are depicted graphically for a
clear understanding and to provide an insight of the necessity and effectiveness of the proposed method. The
concept and results of the proposed technique make it suitable for implementation in machine learning, deep
learning, pattern recognition etc.
1. Introduction

There is no gainsaying the fact that the 21st century has been a
century of different challenges for the mankind. On the top of all is the
emergence of COVID-19 in the city of Wuhan, China in December 2019.
Owing to the uncertainty, limited information and resources, it became
a challenging task to tackle the pandemic in terms of its spread, vaccine
and treatment. A reasonable amount of literature has been written on
the topic by the mathematicians and statisticians to develop emergency
support systems for COVID-19 [1–5]. In this article, a very important
question has been addressed about the COVID-19 suspects who develop
mild, moderate or severe symptoms and a smart decision is required
for their treatment. The target is achieved by developing distance and
similarity measures on plithogenic hypersoft sets and implemented to
the MCDM model of COVID-19 suspects in fuzzy environment.

In order to deal with uncertainty, fuzzy set was introduced in 1965
by Zadeh [6], as an extension of the notion of classical set in which
an element is either a member of the set or not. There is no third
possibility. In fuzzy set, a membership value is allocated to all the
elements in the interval [0, 1]. An extension of the fuzzy set, called

∗ Corresponding author.
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intuitionistic fuzzy set (IFS), was presented by Atanassov [7–9], in
which a membership grade as well as a non-membership grade is
assigned to each element of the set. IFSs have numerous applications in
logic programming [10], pattern recognition [11–15], decision making
and medical diagnosis [16,17] etc. Fuzzy set and intuitionistic fuzzy set
are unable to handle indeterminacy in the data. This gap was fulfilled
by Smarandache who presented the idea of neutrosophic set [18].
A generalization of these concepts was proposed by Smarandache,
and termed as plithogenic set [19,20]. It was noted that, in all these
concepts, there is an insufficiency of parametrization tool. In 1999,
Molodtsov [21], defined soft set as a parameterized family of the
subsets of the universe. Soft set has been widely studied and applied in
different fields [22–25]. In 2018, Smarandache [26] proposed the idea
of hypersoft set, as a generalization of soft set. A lot of research work
has been written on hypersoft set, its hybrids and applications [27–30].
Smarandache introduced plithogenic hypersoft set and its mathematical
definition was given by Rayees et al. [31].

Distance and similarity measures play a key role in medical diagno-
sis and decision making. Beg et al. [32] and Chen et al. [33] presented
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the similarity measures for fuzzy sets and their hybrids. A number
of researchers proposed the distance and similarity measures on IFSs
along with their applications [12–14,34–36]. A ground breaking work
was performed by Majumdar and Samanta [37,38] who proposed the
similarity measures on soft sets and fuzzy soft sets, based on the
distance between them. Kharal [39] presented a modified version of the
distance and similarity measures on soft sets given by Samanta et al.
Similarity measures have extensive applications in psychology [40],
decision making [41] etc.

The contributions made in this article are two fold. First of all,
distance and similarity measures are defined on plithogenic hypersoft
sets. The necessity of defining these measures arises due to the fact
that plithogenic hypersoft set is a generalization of all the previously
defined structures. Moreover, it takes into account all the necessary
information as well the shortcomings in the process of mathematical
modeling of an MCDM problem. Therefore, the problems involving
decisions on COVID-19 suspects must be intelligently handled on a
broad spectrum. Thus, a mathematical model of COVID-19 suspects is
structured into an MCDM problem in the context of plithogenic hy-
persoft set. Secondly, the proposed plithogenic distance and similarity
measures are implemented on the problem to make smart decisions
on the infected ones depending on the severity of the infection. Last
but not the least, the algorithm of the proposed AI based method not
only detects the infection in the suspects [42], but also talks about
its severity. It is capable of reading the input, processing it according
to the proposed algorithm steps and concluding with useful output. It
makes the proposed method applicable to a variety of medical diagnosis
problems. The algorithm is tested on COVID-19 suspects data due to the
ongoing situation in the world facing the pandemic.

Mathematically, the proposed plithogenic distance and similarity
measures satisfy the basic properties of distance and similarity mea-
sures and obey the results of relevant theorems. For the validation
of the proposed algorithm, the results are calculated with the corre-
sponding Euclidean and Hamming distance and similarity measures
and a comparative analysis is performed. The obtained results prove
the validity of the proposed algorithm and its efficiency in producing
AI based decision making. The scope of the study can be extended to
pattern recognition, image processing, picture science, in different en-
vironments like pythagorean fuzzy environment [43], 𝑞-rung orthopair
uzzy environment, spherical fuzzy environment, etc.

The remainder of the article is arranged such that, in Section 2,
ome basic concepts are given for a better understanding of the pro-
osed work. In Section 3, plithogenic distance measure is defined,
elevant theorems with proofs are given, types of plithogenic distance
easures are given, and plithogenic similarity measure is defined.

n Section 4, mathematical modeling and AI based decision making
or COVID-19 suspects is given. In Section 5, the COVID-19 model is
mployed on COVID-19 suspects. Conclusion is given in Section 6 along
ith future directions of the study.

. Preliminaries

Let 𝑈 be an initial universe, 𝑃 (𝑈 ) be its power set, and  ⊆ 𝑈 be a fi-
ite set of alternatives under consideration. Let  = {𝛼1, 𝛼2,… , 𝛼𝑛}, 𝑛 ≥
be a finite set of parameters or attributes, whose attribute values

re members of the sets 𝐴1, 𝐴2,… , 𝐴𝑛 respectively, such that these sets
re disjoint, i.e., 𝐴𝑖 ∩ 𝐴𝑗 = 𝜙, with 𝑖 ≠ 𝑗 and 𝑖, 𝑗 = 1, 2,… , 𝑛. Let

𝐶 = 𝐴1 × 𝐴2 × ⋯ × 𝐴𝑛, and 𝐵 be a collection of selected attributes,
i.e., 𝐵 ⊆ .

2.1. Soft set [21]

A soft set (𝐹 ,𝐵) is defined by the mapping 𝐹 ∶ 𝐵 → 𝑃 (𝑈 ).
Mathematically, it can be written as
2

(𝐹 ,𝐵) = {⟨𝑥, 𝐹𝐵(𝑥)⟩, 𝑥 ∈ 𝑈, 𝐹𝐵(𝑥) ∈ 𝑃 (𝑈 )}
2.2. Hypersoft set [26]

Let 𝐶 represents the cartesian product of 𝐴1, 𝐴2,… , 𝐴𝑛 having ele-
ments of the form 𝛿 = (𝛿1, 𝛿2,… , 𝛿𝑛), where 𝛿𝑖 ∈ 𝐴𝑖 for 𝑖 = 1, 2,… , 𝑛.

hen, a hypersoft set (𝐻,𝐶) is defined by the mapping 𝐻 ∶ 𝐶 → 𝑃 (𝑈 ),
nd given by

𝐻,𝐶) = {⟨𝛿,𝐻(𝛿)⟩, 𝛿 ∈ 𝐶,𝐻(𝛿) ∈ 𝑃 (𝑈 )}

.3. Plithogenic set [19]

If all members of the set  are characterized by attributes such
hat the attributes may have been further divided into attribute values,
long with a contradiction degree defined between each attribute value
nd its corresponding dominant attribute value, then the set  is called
plithogenic set.

Mathematically, it is represented by the notation ( , 𝛼, 𝐴, 𝑑, 𝑐),
here  is a subset of 𝑈 , 𝛼 is an attribute, 𝐴 is the set of attribute values
f 𝛼, 𝑑 is the degree of appurtenance function, and 𝑐 is the contradiction
egree function.

.4. Plithogenic hypersoft set [31]

The set ( ,, 𝐶, 𝑑, 𝑐) is called a plithogenic hypersoft set (PHSS), if
n appurtenance degree function 𝑑 and a contradiction degree function
between two attribute values are defined as follows:

∶  × 𝐶 → 𝑃 ([0, 1]𝑗 ),∀ 𝑝 ∈  , 𝑗 = 1, 2, 3.

∶ 𝐴𝑖 × 𝐴𝑖 → 𝑃 ([0, 1]𝑗 ), 1 ≤ 𝑖 ≤ 𝑛, 𝑗 = 1, 2, 3.

here 𝑗 = 1, 2, 3 gives the fuzzy, intuitionistic fuzzy, and neutrosophic
egree of appurtenance respectively, such that for the attribute values
1 and 𝛿2 of the same attribute satisfy the following constraints:

(𝛿1, 𝛿1) = 0,

(𝛿1, 𝛿2) = 𝑐(𝛿2, 𝛿1).

or 𝑛-tuple (𝛿1, 𝛿2,… , 𝛿𝑛) ∈ 𝐶, PHSS 𝑃 ∶ 𝐶 → 𝑃 (𝑈 ) can be
athematically represented as

𝑃 (𝛿1, 𝛿2,… , 𝛿𝑛) = {𝑝(𝑑𝑝(𝛿1), 𝑑𝑝(𝛿2),… , 𝑑𝑝(𝛿𝑛)), 𝑝 ∈ }

.5. Distance measure between fuzzy sets [32]

There are different measures in literature for distance which is
alculated between the fuzzy sets under consideration. The most com-
only used distances between fuzzy sets, were categorized as hamming
istance measure 𝑑𝐻 , normalized hamming distance measure 𝑑𝑁𝐻 ,
uclidean distance measure 𝑑𝐸 , and normalized Euclidean distance
easure 𝑑𝑁𝐸 . For any two fuzzy sets 𝐹1 and 𝐹2, over a finite universe
, with truth membership functions 𝑇𝐹1 (𝑝𝑖) and 𝑇𝐹2 (𝑝𝑖), respectively for
= 1, 2, 3,… , 𝑛 such that 𝑝𝑖 ∈ 𝑈 , the said distances are

𝐻 (𝐹1, 𝐹2) =
𝑛
∑

𝑖=1
|𝑇𝐹1 (𝑝𝑖) − 𝑇𝐹2 (𝑝𝑖)|

𝑁𝐻 (𝐹1, 𝐹2) =
1
𝑛

𝑛
∑

𝑖=1
|𝑇𝐹1 (𝑝𝑖) − 𝑇𝐹2 (𝑝𝑖)|

𝑑𝐸 (𝐹1, 𝐹2) =
[ 𝑛
∑

𝑖=1
[𝑇𝐹1 (𝑝𝑖) − 𝑇𝐹2 (𝑝𝑖)]

2
]

1
2

𝑑𝑁𝐸 (𝐹1, 𝐹2) =
[

1
𝑛
∑

[𝑇𝐹1 (𝑝𝑖) − 𝑇𝐹2 (𝑝𝑖)]
2
]

1
2

𝑛 𝑖=1
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2.6. Distance measure between soft sets [39]

Let 𝑈 be finite universe, 𝛼𝑖 be the attributes, such that 𝑖 = 1, 2, 3,… ,
𝑚, and 𝑝𝑗 ∈ 𝑈 such that 𝑗 = 1, 2, 3,… , 𝑛, then the commonly used
distances between two soft sets 𝑆1 and 𝑆2, over 𝑈 , are given as

𝑑𝐻 (𝑆1, 𝑆2) =
1
𝑚

𝑚
∑

𝑖=1

𝑛
∑

𝑗=1
|𝑆1(𝛼𝑖)(𝑝𝑗 ) − 𝑆2(𝛼𝑖)(𝑝𝑗 )|

𝑑𝑁𝐻 (𝑆1, 𝑆2) =
1
𝑚𝑛

𝑚
∑

𝑖=1

𝑛
∑

𝑗=1
|𝑆1(𝛼𝑖)(𝑝𝑗 ) − 𝑆2(𝛼𝑖)(𝑝𝑗 )|

𝑑𝐸 (𝑆1, 𝑆2) =
[

1
𝑚

𝑚
∑

𝑖=1

𝑛
∑

𝑗=1
[𝑆1(𝛼𝑖)(𝑝𝑗 ) − 𝑆2(𝛼𝑖)(𝑝𝑗 )]2

]
1
2

𝑑𝑁𝐸 (𝑆1, 𝑆2) =
[

1
𝑚𝑛

𝑚
∑

𝑖=1

𝑛
∑

𝑗=1
[𝑆1(𝛼𝑖)(𝑝𝑗 ) − 𝑆2(𝛼𝑖)(𝑝𝑗 )]2

]
1
2

3. Plithogenic distance and similarity measures

In almost every field of science including pattern recognition, image
processing, machine learning, artificial intelligence and related fields,
whenever we need to distinguished two objects, the concept of dis-
tance and their similarity is required. There are different measures in
literature for distance and similarity in which distance is calculated
between the sets under consideration and the degree of similarity
is calculated based on their associated distance. There are multiple
applications in which the contradiction degree 𝐶𝐹 (𝛿, 𝛿𝑑 ) need to be
defined. So the effectiveness of our method can be seen there. The
proposed distance formulas accommodated the contradiction degree
𝐶𝐹 (𝛿, 𝛿𝑑 ) by maintaining the structure of original formula and also its
conditions,

For this, let 𝑈 be the finite universe,  = {𝛼1, 𝛼2,… , 𝛼𝑛} be the
set of attributes, and 𝐴 = {𝐴1, 𝐴2,… , 𝐴𝑛} be the set of corresponding
attribute values sets of the attributes 𝛼1, 𝛼2,… , 𝛼𝑛 such that 𝑚 represents
the number of chosen attributes and 𝑙 represents the equal number of
attribute values of each attributes. Let 𝐶 be the cartesian product of
attribute values 𝐴1, 𝐴2,… , 𝐴𝑛 such that (𝛿1, 𝛿2,… , 𝛿𝑛) ∈ 𝐶 be 𝑛-tuple
of the attribute values and 𝑐𝐹 (𝛿, 𝛿𝑑 ) represents the fuzzy contradiction
degree between the attribute value 𝛿 and their corresponding dominant
attribute value 𝛿𝑑 . Let 1 and 2 be two PHSSs such that 𝑑1

(𝑝𝑗 ) and
𝑑2

(𝑝𝑗 ), be their corresponding degree of appurtenance, respectively,
where 𝑗 = 1, 2, 3… , 𝑙, then the following plithogenic distance and
similarity measures are proposed as follows:

3.1. Plithogenic distance measures

The proposed plithogenic distance measures (PDM) are named as
plithogenic hamming distance measure 𝑑𝐻 , normalized plithogenic
hamming distance measure 𝑑𝑁𝐻 , plithogenic Euclidean distance mea-
sure 𝑑𝐸 , and normalized plithogenic Euclidean distance measure 𝑑𝑁𝐸 .
For any two PHSSs 1 and 2, the said distances are proposed as
follows:

𝑑𝐻 (1,2) =
1
𝑚

𝑚
∑

𝑖=1

𝑙
∑

𝑗=1
|𝑑𝑖1

(𝛿𝑗 ) − 𝑑𝑖2
(𝛿𝑗 )| × max(𝑐𝑖𝐹 (𝛿𝑗 , 𝛿𝑑 )) (3.1)

𝑑𝑁𝐻 (1,2) =
1
𝑚𝑛

𝑚
∑

𝑖=1

𝑙
∑

𝑗=1
|𝑑𝑖1

(𝛿𝑗 ) − 𝑑𝑖2
(𝛿𝑗 )| × max(𝑐𝑖𝐹 (𝛿𝑗 , 𝛿𝑑 )) (3.2)

𝑑𝐸 (1,2) =
[

1
𝑚

𝑚
∑

𝑖=1

𝑙
∑

𝑗=1
(𝑑𝑖1

(𝛿𝑗 ) − 𝑑𝑖2
(𝛿𝑗 ))2 × max(𝑐𝑖𝐹 (𝛿𝑗 , 𝛿𝑑 ))

]
1
2

(3.3)

𝑑𝑁𝐸 (1,2) =
1
𝑛

[

1
𝑚

𝑚
∑

𝑙
∑

(𝑑𝑖1
(𝛿𝑗 ) − 𝑑𝑖2

(𝛿𝑗 ))2 × max(𝑐𝑖𝐹 (𝛿𝑗 , 𝛿𝑑 ))
]

1
2

(3.4)
3

𝑖=1 𝑗=1
3.1.1. Theorem 1
The distance measures between plithogenic hypersoft sets 1 and

2 satisfies the following inequalities.

(1) 𝑑𝐻 (1,2) ≤ 𝑛
(2) 𝑑𝑁𝐻 (1,2) ≤ 1
(3) 𝑑𝐸 (1,2) ≤

√

𝑛
(4) 𝑑𝑁𝐸 (1,2) ≤ 1

It is obvious from the definitions described in the Eqs. (3.1), (3.2), (3.3),
and (3.4), that the proposed plithogenic distance measures obey these
laws.

3.1.2. Theorem 2
The distance functions 𝑑𝐻 (1,2), 𝑑𝑁𝐻 (1,2), 𝑑𝐸 (1,2), 𝑑𝑁𝐸 (1,

2) defined from 𝑃 (𝑈 ) → 𝑅+ are metric.

roof.
Let 1,2 and 3 be three plithogenic hypersoft sets over the

niverse 𝑈 . then

(1) 𝑑𝐻 (1,2) ≥ 0
(2) Suppose 𝑑𝐻 (1,2) = 0,

⇔
1
𝑚

𝑚
∑

𝑖=1

𝑙
∑

𝑗=1
|𝑑𝑖1

(𝛿𝑗 ) − 𝑑𝑖2
(𝛿𝑗 )| × max(𝑐𝑖𝐹 (𝛿𝑗 , 𝛿𝑑 )) = 0

⇔
𝑚
∑

𝑖=1

𝑙
∑

𝑗=1
|𝑑𝑖1

(𝛿𝑗 ) − 𝑑𝑖2
(𝛿𝑗 )| = 0

⇔ |𝑑𝑖1
(𝛿𝑗 ) − 𝑑𝑖2

(𝛿𝑗 )| = 0

⇔ 𝑑𝑖1
(𝛿𝑗 ) = 𝑑𝑖2

(𝛿𝑗 )

⇔ 1 = 2

(3) 𝑑𝐻 (1,2) = 𝑑𝐻 (2,1)
(4) For any three plithogenic hypersoft sets 1,2 and 3, consider

𝑑𝐻 (1,2)

𝑑𝐻 (1,2) =
1
𝑚

𝑚
∑

𝑖=1

𝑙
∑

𝑗=1
|𝑑𝑖1

(𝛿𝑗 ) − 𝑑𝑖2
(𝛿𝑗 )| × max(𝑐𝑖𝐹 (𝛿𝑗 , 𝛿𝑑 ))

= 1
𝑚

𝑚
∑

𝑖=1

𝑙
∑

𝑗=1
|𝑑𝑖1

(𝛿𝑗 ) − 𝑑𝑖3
(𝛿𝑗 ) + 𝑑𝑖3

(𝛿𝑗 ) − 𝑑𝑖2
(𝛿𝑗 )|

× max(𝑐𝑖𝐹 (𝛿𝑗 , 𝛿𝑑 ))

= 1
𝑚

𝑚
∑

𝑖=1

𝑙
∑

𝑗=1
| [𝑑𝑖1

(𝛿𝑗 ) − 𝑑𝑖3
(𝛿𝑗 )] + [𝑑𝑖3

(𝛿𝑗 ) − 𝑑𝑖2
(𝛿𝑗 )] |

× max(𝑐𝑖𝐹 (𝛿𝑗 , 𝛿𝑑 ))

≤ 1
𝑚

𝑚
∑

𝑖=1

𝑙
∑

𝑗=1
|𝑑𝑖1

(𝛿𝑗 ) − 𝑑𝑖3
(𝛿𝑗 )| × max(𝑐𝑖𝐹 (𝛿𝑗 , 𝛿𝑑 ))

+ 1
𝑚

𝑚
∑

𝑖=1

𝑙
∑

𝑗=1
|𝑑𝑖3

(𝛿𝑗 ) − 𝑑𝑖2
(𝛿𝑗 )| × max(𝑐𝑖𝐹 (𝛿𝑗 , 𝛿𝑑 ))

This implies that

𝑑𝐻 (1,2) ≤ 𝑑𝐻 (1,3) + 𝑑𝐻 (3,2)

n similar way, we can prove the results for 𝑑𝑁𝐻 (1,2), 𝑑𝐸 (1,2) and

𝑁𝐸 (1,2).

.2. Categories of plithogenic distance measures

It is evident that PHSS is the generalization of crisp, fuzzy, intu-
tionistic fuzzy and neutrosophic set. On the basis of the degree of
ppurtenance, these distance measures are categorized as:
• Plithogenic crisp distance measure
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• Plithogenic fuzzy distance measure
• Plithogenic intuitionistic fuzzy distance measure
• Plithogenic neutrosophic distance measure

.2.1. Plithogenic crisp distance measure
For any two plithogenic crisp hypersoft sets 1 and 2 over a finite

niverse 𝑈 , the proposed distance measures are as follows:


𝐻 (1,2) =

1
𝑚

𝑚
∑

𝑖=1

𝑙
∑

𝑗=1
|𝛤 𝑖

1
(𝛿𝑗 ) − 𝛤 𝑖

2
(𝛿𝑗 )| × max(𝑐𝑖𝐹 (𝛿𝑗 , 𝛿𝑑 )) (3.5)

𝑑𝑁𝐻 (1,2) =
1
𝑚𝑛

𝑚
∑

𝑖=1

𝑙
∑

𝑗=1
|𝛤 𝑖

1
(𝛿𝑗 ) − 𝛤 𝑖

2
(𝛿𝑗 )| × max(𝑐𝑖𝐹 (𝛿𝑗 , 𝛿𝑑 )) (3.6)

𝑑𝐸 (1,2) =
[

1
𝑚

𝑚
∑

𝑖=1

𝑙
∑

𝑗=1
(𝛤 𝑖

1
(𝛿𝑗 ) − 𝛤 𝑖

2
(𝛿𝑗 ))2 × max(𝑐𝑖𝐹 (𝛿𝑗 , 𝛿𝑑 ))

]
1
2

(3.7)

𝑑𝑁𝐸 (1,2) =
1
𝑛

[

1
𝑚

𝑚
∑

𝑖=1

𝑙
∑

𝑗=1
(𝛤 𝑖

1
(𝛿𝑗 ) − 𝛤 𝑖

2
(𝛿𝑗 ))2 × max(𝑐𝑖𝐹 (𝛿𝑗 , 𝛿𝑑 ))

]
1
2

(3.8)

where 𝛤1
(𝛿𝑗 ) and 𝛤2

(𝛿𝑗 ) represents the crisp value which are either 0
or 1.

3.2.2. Plithogenic fuzzy distance measure
For any two plithogenic fuzzy hypersoft sets 1 and 2 over a finite

niverse 𝑈 , the proposed distances are:

𝐹
𝐻 (1,2) =

1
𝑚

𝑚
∑

𝑖=1

𝑙
∑

𝑗=1
|𝑇 𝑖

1
(𝛿𝑗 ) − 𝑇 𝑖

2
(𝛿𝑗 )| × max(𝑐𝑖𝐹 (𝛿𝑗 , 𝛿𝑑 )) (3.9)

𝑑𝐹𝑁𝐻 (1,2) =
1
𝑚𝑛

𝑚
∑

𝑖=1

𝑙
∑

𝑗=1
|𝑇 𝑖

1
(𝛿𝑗 ) − 𝑇 𝑖

2
(𝛿𝑗 )| × max(𝑐𝑖𝐹 (𝛿𝑗 , 𝛿𝑑 )) (3.10)

𝑑𝐹𝐸 (1,2) =
[

1
𝑚

𝑚
∑

𝑖=1

𝑙
∑

𝑗=1
(𝑇 𝑖

1
(𝛿𝑗 ) − 𝑇 𝑖

2
(𝛿𝑗 ))2 × max(𝑐𝑖𝐹 (𝛿𝑗 , 𝛿𝑑 ))

]
1
2

(3.11)

𝑑𝐹𝑁𝐸 (1,2) =
1
𝑛

[

1
𝑚

𝑚
∑

𝑖=1

𝑙
∑

𝑗=1
(𝑇 𝑖

1
(𝛿𝑗 ) − 𝑇 𝑖

2
(𝛿𝑗 ))2 × max(𝑐𝑖𝐹 (𝛿𝑗 , 𝛿𝑑 ))

]
1
2

(3.12)

where 𝑇1
(𝛿𝑗 ) and 𝑇2

(𝛿𝑗 ) represents the truth membership values from
the interval [0, 1].

3.2.3. Plithogenic intuitionistic fuzzy distance measure
For any two plithogenic intuitionistic fuzzy hypersoft sets 1 and 2

ver a finite universe 𝑈 , the proposed distances are:

𝐼𝐹
𝐻 (1,2) =

1
𝑚

𝑚
∑

𝑖=1

𝑙
∑

𝑗=1
(|𝑇 𝑖

1
(𝛿𝑗 ) − 𝑇 𝑖

2
(𝛿𝑗 )| + |𝐹 𝑖

1
(𝛿𝑗 ) − 𝐹 𝑖

2
(𝛿𝑗 )|)

× max(𝑐𝑖𝐹 (𝛿𝑗 , 𝛿𝑑 ))

(3.13)

𝑑𝐼𝐹𝑁𝐻 (1,2) =
1
𝑚𝑛

𝑚
∑

𝑖=1

𝑙
∑

𝑗=1
(|𝑇 𝑖

1
(𝛿𝑗 ) − 𝑇 𝑖

2
(𝛿𝑗 )| + |𝐹 𝑖

1
(𝛿𝑗 ) − 𝐹 𝑖

2
(𝛿𝑗 )|)

× max(𝑐𝑖𝐹 (𝛿𝑗 , 𝛿𝑑 ))

(3.14)

𝑑𝐼𝐹𝐸 (1,2) =
[

1
𝑚

𝑚
∑

𝑖=1

𝑙
∑

𝑗=1
((𝑇 𝑖

1
(𝛿𝑗 ) − 𝑇 𝑖

2
(𝛿𝑗 ))2 + (𝐹 𝑖

1
(𝛿𝑗 ) − 𝐹 𝑖

2
(𝛿𝑗 ))2)

× max(𝑐𝑖𝐹 (𝛿𝑗 , 𝛿𝑑 ))
]

1
2

(3.15)

𝑑𝐼𝐹𝑁𝐸 (1,2) =
1
𝑛

[

1
𝑚

𝑚
∑

𝑖=1

𝑙
∑

𝑗=1
((𝑇 𝑖

1
(𝛿𝑗 ) − 𝑇 𝑖

2
(𝛿𝑗 ))2 + (𝐹 𝑖

1
(𝛿𝑗 ) − 𝐹 𝑖

2
(𝛿𝑗 ))2)

× max(𝑐𝑖 (𝛿𝑗 , 𝛿𝑑 ))
]

1
2

4

𝐹

(3.16)

here 𝑇1
(𝛿𝑗 ), 𝑇2

(𝛿𝑗 ) and 𝐹1
(𝛿𝑗 ), 𝐹2

(𝛿𝑗 ) represent the truth member-
hips and false memberships of the sets 1 and 2 respectively from the
nterval [0, 1] with the defined constraints 0 ≤ 𝑇 (𝛿𝑗 ) + 𝐹 (𝛿𝑗 ) ≤ 1.

.2.4. Plithogenic neutrosophic distance measure
For any two plithogenic neutrosophic hypersoft sets 1 and 2 over

finite universe 𝑈 , the proposed distances are:

𝑁
𝐻 (1,2) =

1
𝑚

𝑚
∑

𝑖=1

𝑙
∑

𝑗=1
(|𝑇 𝑖

1
(𝛿𝑗 ) − 𝑇 𝑖

2
(𝛿𝑗 )| + |𝐼 𝑖1

(𝛿𝑗 ) − 𝐼 𝑖2
(𝛿𝑗 )|

+ |𝐹 𝑖
1
(𝛿𝑗 ) − 𝐹 𝑖

2
(𝛿𝑗 )|) × max(𝑐𝑖𝐹 (𝛿𝑗 , 𝛿𝑑 ))

(3.17)

𝑁
𝑁𝐻 (1,2) =

1
𝑚𝑛

𝑚
∑

𝑖=1

𝑙
∑

𝑗=1
(|𝑇 𝑖

1
(𝛿𝑗 ) − 𝑇 𝑖

2
(𝛿𝑗 )| + |𝐼 𝑖1

(𝛿𝑗 ) − 𝐼 𝑖2
(𝛿𝑗 )|

+ |𝐹 𝑖
1
(𝛿𝑗 ) − 𝐹 𝑖

2
(𝛿𝑗 )|) × max(𝑐𝑖𝐹 (𝛿𝑗 , 𝛿𝑑 ))

(3.18)

𝑁
𝐸 (1,2) =

[

1
𝑚

𝑚
∑

𝑖=1

𝑙
∑

𝑗=1
((𝑇 𝑖

1
(𝛿𝑗 ) − 𝑇 𝑖

2
(𝛿𝑗 ))2 + (𝐼 𝑖1

(𝛿𝑗 ) − 𝐼 𝑖2
(𝛿𝑗 ))2

+ (𝐹 𝑖
1
(𝛿𝑗 ) − 𝐹 𝑖

2
(𝛿𝑗 ))2) × max(𝑐𝑖𝐹 (𝛿𝑗 , 𝛿𝑑 ))

]
1
2

(3.19)

𝑑𝑁𝑁𝐸 (1,2) =
1
𝑛

[

1
𝑚

𝑚
∑

𝑖=1

𝑙
∑

𝑗=1
((𝑇 𝑖

1
(𝛿𝑗 ) − 𝑇 𝑖

2
(𝛿𝑗 ))2 + (𝐼 𝑖1

(𝛿𝑗 ) − 𝐼 𝑖2
(𝛿𝑗 ))2

+ (𝐹 𝑖
1
(𝛿𝑗 ) − 𝐹 𝑖

2
(𝛿𝑗 ))2) × max(𝑐𝑖𝐹 (𝛿𝑗 , 𝛿𝑑 ))

]
1
2

(3.20)

where 𝑇1
(𝛿𝑗 ), 𝑇2

(𝛿𝑗 ) represents the truth memberships, 𝐼1
(𝛿𝑗 ), 𝐼2

(𝛿𝑗 )
represents the indeterminacy memberships and 𝐹1

(𝛿𝑗 ), 𝐹2
(𝛿𝑗 ) repre-

sents the false memberships of the sets 1 and 2 from the interval
[0, 1] with the defined constraints 0 ≤ 𝑇 (𝛿𝑗 ) + 𝐼 (𝛿𝑗 ) + 𝐹 (𝛿𝑗 ) ≤ 3.

3.3. Plithogenic similarity measure

It is a very emerging concept in every field of science to distin-
guished any two objects when they are closely similar to each other. A
novel concept of PSM is proposed based on the newly developed PDM,
given as

 (1,2) =
1

1 + 𝑑 (1,2)
(3.21)

where the distance 𝑑 (1,2) represents the plithogenic distance,
which may be plithogenic hamming distance 𝑑𝐻 (1,2), normalized
plithogenic hamming distance 𝑑𝑁𝐻 (1,2), plithogenic Euclidean dis-
tance 𝑑𝐸 (1,2), or normalized plithogenic Euclidean distance 𝑑𝑁𝐸 (1,
2). In addition, PSM is termed as plithogenic crisp similarity measure,
plithogenic fuzzy similarity measure, plithogenic intuitionistic fuzzy
similarity measure, or plithogenic neutrosophic similarity measure,
if the degree of appurtenance between the sets under consideration
with their associated distances is crisp, fuzzy, intuitionistic fuzzy, or
neutrosophic respectively.

4. Mathematical modeling and AI based decision making for
COVID-19 suspects

In this section, an algorithm is developed based on the newly
developed plithogenic distance and similarity measures between PHSSs.
Furthermore, the algorithm is implemented in a specific scenario to see
the results.
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4.1. Algorithm of the proposed method

Let 𝑈 be a universe of COVID-19 suspects such that  = {𝑠1,
𝑠2,… , 𝑠𝑘} ⊆ 𝑈 be the set of alternatives or suspects under consid-
eration,  = {𝛼1, 𝛼2,… , 𝛼𝑛}, 𝑛 ≥ 1, be a finite set of attributes or
symptoms, and 𝐵 = {𝛼1, 𝛼2,… , 𝛼𝑚}, 𝑚 ≤ 𝑛 be the set of chosen
symptoms, i.e., 𝐵 ⊆ . Let 𝐶 = 𝐴1 × 𝐴2 × ⋯ × 𝐴𝑛 be the cartesian
product of the sets 𝐴1, 𝐴2,… , 𝐴𝑛 containing the attribute values of the
attributes 𝛼1, 𝛼2,… , 𝛼𝑛 respectively, such that these sets are disjoint,
i.e., 𝐴𝑖 ∩ 𝐴𝑗 = 𝜙, with 𝑖, 𝑗 = {1, 2,… , 𝑛}. Each alternative 𝑠 ∈  is
allocated a degree of appurtenance 𝑑(𝑠, 𝛿) w.r.t. each attribute value
𝛿, and 𝑑(𝑠, 𝛿) can be fuzzy, intuitionistic fuzzy or neutrosophic degree
of appurtenance. The aim of the specialist (doctor) is to examine the
chosen suspects whether they are infected from the COVID-19 or not,
and if they are infected, then what is severity of the disease in order
to draw a suitable conclusion on each suspect. For this purpose, an
efficient AI based method is proposed. The construction steps of the
proposed algorithm are as follows:

Step 1: Specialist allocates a fuzzy degree of appurtenance to each
suspect w.r.t. each symptom, represented by PHSS 1.

Step 2: Construct a set of established values of the symptoms of
disease under study according to the sub-symptoms based on their
severity, represented by PHSS 2.

Step 3: Measure the distance between PHSSs 1 and 2, using the
proposed novel distance measures, i.e., plithogenic hamming distance
and plithogenic Euclidean distance measures given as follows:

𝑑𝐻 (1,2) =
1
𝑚

𝑚
∑

𝑖=1

𝑙
∑

𝑗=1
|𝑑𝑖1

(𝛿𝑗 ) − 𝑑𝑖2
(𝛿𝑗 )| × max(𝑐𝑖𝐹 (𝛿𝑗 , 𝛿𝑑 )) (4.1)

𝑑𝐸 (1,2) =
[

1
𝑚

𝑚
∑

𝑖=1

𝑙
∑

𝑗=1
(𝑑𝑖1

(𝛿𝑗 ) − 𝑑𝑖2
(𝛿𝑗 ))2 × max(𝑐𝑖𝐹 (𝛿𝑗 , 𝛿𝑑 ))

]
1
2

(4.2)

where 𝑚 represents the number of chosen attributes and 𝑙 represents
the number of attribute values of each attribute.

Step 4: To check how much they are similar, calculate the plithog-
enic similarity based on plithogenic distance measures between the
specialist allocated values and their corresponding established values.

 =  (1,2) =
1

1 + 𝑑 (1,2)

where 𝑑 (1,2) may be any plithogenic distance from the proposed
PDM. The PSM between any two PHSSs 1 and 2 are plithogenic-
similar if and only if  ≥ 0.5, where 0.5 is threshold value, keeping
in mind that this value may be different in normalized plithogenic
distances.

Step 5: If  < 0.5, it implies that the suspect is not infected.
Step 6: If  ≥ 0.5, the suspect is infected and the decision will

be made based on the severity of the infection by following the cases
mentioned below:

• If 0.5 ≤  < 0.7, the suspect needs to be quarantined at home
with proper isolation.

• If 0.7 ≤  < 0.9, the suspect needs to be quarantined at a
facilitation center.

• If 0.9 ≤  ≤ 1, the suspect must be sent to the hospital for proper
treatment.

A systematic procedure of the proposed algorithm is given in
Fig. 4.1.

4.2. Implementation of the proposed method

Let 𝑈 be the universe of discourse, such that  = {𝑠1, 𝑠2,… , 𝑠5} ⊆ 𝑈
be a set of COVID-19 suspects. In order to monitor the suspects, the
attributes or symptoms are as follows:

𝛼1 = Fever
𝛼 = Dry cough
5

2

Fig. 4.1. Proposed COVID-19 model flowchart.

𝛼3 = Tiredness
𝛼4 = Difficulty breathing or shortness of breath
𝛼5 = Chest pain or pressure
𝛼6 = Loss of speech or movement
𝛼7 = Aches and pain
𝛼8 = Sore throat
𝛼9 = Diarrhea
𝛼10 = Conjuctivitis
𝛼11 = Headache
𝛼12 = Loss of taste or smell
𝛼13 = Rash on skin, or discoloration of fingers
Each symptom is further categorized to low (𝐿), medium (𝑀) and

high (𝐻), which have mild symptoms, moderate symptoms, and severe
symptoms, respectively, to analyze the severity of the disease in terms
of their attribute values correspondingly for better diagnoses. That is,

𝛿(𝑖, 1) = 𝐿,

𝛿(𝑖, 2) = 𝑀,

𝛿(𝑖, 3) = 𝐻,

where 1 ≤ 𝑖 ≤ 13. The suspects under observations recorded by the
symptoms lies in the specific region where these suspects come from
are as 𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5, 𝛼6, 𝛼9, 𝛼11. Each suspect under observation is al-
located a hypothetical fuzzy degree of appurtenance correspondingly to
each chosen attribute w.r.t some constraints designed by the specialist
to check the validity of the method, is given in Table 1.

Each symptom has a dominant attribute value 𝛿𝑑 from the chosen
symptom, and the fuzzy contradiction degree 𝑐𝐹 of each chosen at-
tribute between the attribute value and the dominant attribute value
is given in Table 2.

A PHSS 1 is constructed and represented the data in tabular form
with the opinion of the specialist field expert doctor, given in Table 3.

The established values of chosen symptoms by the experts are
mentioned in Table 4.
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Table 1
Fuzzy degree of appurtenance of each alternative w.r.t. each attribute value.

Symptoms Severity Suspects
𝑠1 𝑠2 𝑠3 𝑠4 𝑠5

L 0.58 0.52 0.20 0.50 0.15
𝛼1 M 0.75 0.68 0.29 0.55 0.32

H 0.93 0.86 0.19 0.72 0.22

L 0.60 0.58 0.10 0.42 0.20
𝛼2 M 0.69 0.62 0.25 0.51 0.29

H 0.83 0.76 0.30 0.64 0.36

L 0.64 0.58 0.19 0.46 0.12
𝛼3 M 0.79 0.60 0.29 0.57 0.31

H 0.77 0.72 0.20 0.65 0.20

L 0.71 0.65 0.27 0.50 0.29
𝛼4 M 0.88 0.80 0.35 0.68 0.33

H 0.97 0.90 0.40 0.65 0.50

L 0.70 0.59 0.17 0.52 0.26
𝛼5 M 0.82 0.71 0.24 0.64 0.30

H 0.96 0.85 0.30 0.79 0.42

L 0.70 0.61 0.21 0.59 0.29
𝛼6 M 0.95 0.75 0.40 0.80 0.20

H 0.97 0.92 0.28 0.70 0.17

L 0.20 0.11 0.13 0.10 0.20
𝛼7 M 0.31 0.14 0.26 0.28 0.30

H 0.60 0.24 0.35 0.39 0.40

L 0.25 0.30 0.22 0.21 0.22
𝛼8 M 0.29 0.40 0.35 0.44 0.35

H 0.32 0.51 0.44 0.30 0.40

L 0.45 0.46 0.50 0.62 0.10
𝛼9 M 0.49 0.45 0.10 0.53 0.19

H 0.60 0.59 0.12 0.60 0.18

L 0.11 0.41 0.20 0.22 0.33
𝛼10 M 0.19 0.15 0.34 0.40 0.27

H 0.32 0.38 0.51 0.35 0.43

L 0.70 0.61 0.13 0.33 0.16
𝛼11 M 0.60 0.50 0.10 0.55 0.14

H 0.34 0.62 0.18 0.60 0.10

L 0.19 0.41 0.20 0.50 0.20
𝛼12 M 0.26 0.30 0.36 0.40 0.45

H 0.35 0.45 0.60 0.46 0.52

L 0.10 0.22 0.40 0.38 0.40
𝛼13 M 0.32 0.31 0.21 0.50 0.49

H 0.40 0.60 0.43 0.60 0.58

Table 2
Contradiction degrees with corresponding dominant value.

Symptoms Dominant 𝐿 𝑀 𝐻

𝛼1 H 0.95 0.70 0.00
𝛼2 H 1.00 0.60 0.00
𝛼3 M 0.45 0.00 0.60
𝛼4 H 1.00 0.75 0.00
𝛼5 H 0.97 0.80 0.00
𝛼6 M 0.40 0.00 0.58
𝛼9 L 0.00 0.50 0.90
𝛼11 L 0.00 0.58 0.95

To measure the distance between the specialist recorded values and
stablished values, plithogenic hamming and Euclidean distances are
easured between them using the Eqs. (4.1) and (4.2), and the results

re given in Table 5.
Now, plithogenic similarity based on plithogenic distance is evalu-

ted to examine the severity of the infectedness of the suspects under
bservation to measure plithogenic-similarity is mentioned in Table 6.

From Table 6, the values of the hamming and euclidean similarity
easures are obtained efficiently. From these values, a decision for the

uspects are taken based on the obtained values which is represented
n Table 7.

The graphical representation of these suspects is given in Fig. 4.2.
6

Table 3
Fuzzy degree of appurtenance allocated by the specialist to the suspects.

Symptoms Severity Suspects
𝑠1 𝑠2 𝑠3 𝑠4 𝑠5

L 0.58 0.52 0.20 0.50 0.15
𝛼1 M 0.75 0.68 0.29 0.55 0.32

H 0.93 0.86 0.19 0.72 0.22

L 0.60 0.58 0.10 0.42 0.20
𝛼2 M 0.69 0.62 0.25 0.51 0.29

H 0.83 0.76 0.30 0.64 0.36

L 0.64 0.58 0.19 0.46 0.12
𝛼3 M 0.79 0.60 0.29 0.57 0.31

H 0.77 0.72 0.20 0.65 0.20

L 0.71 0.65 0.27 0.50 0.29
𝛼4 M 0.88 0.80 0.35 0.68 0.33

H 0.97 0.90 0.40 0.65 0.50

L 0.70 0.59 0.17 0.52 0.26
𝛼5 M 0.82 0.71 0.24 0.64 0.30

H 0.96 0.85 0.30 0.79 0.42

L 0.70 0.61 0.21 0.59 0.29
𝛼6 M 0.95 0.75 0.40 0.80 0.20

H 0.97 0.92 0.28 0.70 0.17

L 0.45 0.46 0.50 0.62 0.10
𝛼9 M 0.49 0.45 0.10 0.53 0.19

H 0.60 0.59 0.12 0.60 0.18

L 0.70 0.61 0.13 0.33 0.16
𝛼11 M 0.60 0.50 0.10 0.55 0.14

H 0.34 0.62 0.18 0.60 0.10

Table 4
Established values of chosen symptoms.
Attributes 𝐿 𝑀 𝐻

𝛼1 0.59 0.75 0.95
𝛼2 0.62 0.70 0.85
𝛼3 0.68 0.77 0.82
𝛼4 0.71 0.90 1.00
𝛼5 0.70 0.85 1.00
𝛼6 0.76 0.90 1.00
𝛼9 0.40 0.59 0.70
𝛼11 0.43 0.65 0.74

Table 5
Distance measures.
Suspects 𝑑

𝐻 (1 ,2) 𝑑
𝐸 (1 ,2)

𝑠1 0.0710 0.0905
𝑠2 0.2219 0.2557
𝑠3 1.3272 1.4428
𝑠4 0.4397 0.5105
𝑠5 1.3055 1.4131

Table 6
Similarity measures.
Suspects 

𝐻 (1 ,2) 
𝐸 (1 ,2)

𝑠1 0.9338 0.9170
𝑠2 0.8184 0.7963
𝑠3 0.4297 0.4094
𝑠4 0.6946 0.6620
𝑠5 0.4337 0.4144

Table 7
Suspects decision.

Similarity index Decision Suspects

0 ≤  < 0.5 Safe zone 𝑠3 , 𝑠5
0.5 ≤  < 0.7 Home Isolation 𝑠4
0.7 ≤  < 0.9 Quarantine center 𝑠2
0.9 ≤  ≤ 1 Hospital treatment 𝑠1
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Fig. 4.2. Plithogenic-similarity of suspects.

Table 8
Comparative analysis of COVID-19 suspects using hamming similarity measure (HSM)
and plithogenic hamming similarity measure (PHSM)

Suspect HSM Decision PHSM Decision

𝑠1 0.9259 Hospital treatment 0.9338 Hospital treatment
𝑠2 0.7897 Quarantine center 0.8184 Quarantine center
𝑠3 0.3941 Safe zone 0.4297 Safe zone
𝑠4 0.6633 Home Isolation 0.6946 Home Isolation
𝑠5 0.3949 Safe zone 0.4337 Safe zone

Table 9
Comparative analysis of COVID-19 suspects using Euclidean similarity measure (ESM)
and plithogenic Euclidean similarity measure (PESM)

Suspect ESM Decision PESM Decision

𝑠1 0.9132 Hospital treatment 0.9170 Hospital treatment
𝑠2 0.7782 Quarantine center 0.7963 Quarantine center
𝑠3 0.3910 Safe zone 0.4094 Safe zone
𝑠4 0.6465 Home Isolation 0.6620 Home Isolation
𝑠5 0.3924 Safe zone 0.4144 Safe zone

It is obvious from the graph, there is a danger zone above the line
0.5, while below the line, there is a safe zone. Hence, the vertical bars
of the suspects which are below the danger zone line, are safe, while
those who are above this line, are in danger (see Fig. 4.2).

5. Comparative analysis

To authenticate the proposed plithogenic distances, we compare our
results with the usual hamming and Euclidean distance measures given
in the Eqs. (5.1) and (5.2) given below:

𝑑𝐻 (1,2) =
1
𝑚

𝑚
∑

𝑖=1

𝑙
∑

𝑗=1
|𝑑𝑖1

(𝛿𝑗 ) − 𝑑𝑖2
(𝛿𝑗 )| (5.1)

𝑑𝐸 (1,2) =
[

1
𝑚

𝑚
∑

𝑖=1

𝑙
∑

𝑗=1
(𝑑𝑖1

(𝛿𝑗 ) − 𝑑𝑖2
(𝛿𝑗 ))2

]
1
2

(5.2)

where 𝑚 represents the number of chosen attributes and 𝑙 represents
the equal number of attribute values of each attributes.

Now, plithogenic similarity based on plithogenic distance is com-
pared with the usual similarity based on usual distances to examine
the severity of the infection in the suspects. The comparative analysis
of hamming similarity measure with plithogenic similarity measure is
shown in Table 8.

The comparative analysis of Euclidean similarity measure with
plithogenic similarity measure is shown in Table 9.

It can been seen that the proposed plithogenic distance and similar-
ity measures are reliable and efficient in producing results.
7

6. Conclusion

In this article, plithogenic distance and similarity measures on
plithogenic hypersoft sets are defined for making intelligent decisions
on COVID-19 suspects. For this purpose, mathematical modeling of
COVID-19 suspects is structured into an MCDM problem by using the
concept of plithogenic hypersoft set in a fuzzy environment and a novel
algorithm is implemented on the problem, based on newly developed
plithogenic distance and similarity measures. The algorithm of the
proposed method not only detects the infection in the suspects, but also
explain its severity. Mathematically, the proposed plithogenic distance
and similarity measures satisfy the basic properties of distance and
similarity measures and obey the results of relevant theorems. For
the validation of the proposed algorithm, the results are calculated
with the corresponding Euclidean and Hamming distance and similarity
measures and a comparative analysis is performed. The obtained results
prove the validity of the proposed algorithm and its efficiency in
producing AI based decision making. The scope of the study can be
extended to pattern recognition, image processing, picture science,
in different environments like pythagorean fuzzy environment, 𝑞-rung
orthopair fuzzy environment, spherical fuzzy environment, etc.
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