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Deregulation of the non-coding genome in leukemia
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ABSTRACT
Methodological advances that allow deeper characterization of non-coding elements in the genome have
started to reveal the full spectrum of deregulation in cancer. We generated an inducible cell model to
track transcriptional changes after induction of a well-known leukemia-inducing fusion gene, ETV6-RUNX1.
Our data revealed widespread transcriptional alterations outside coding elements in the genome. This
adds to the growing list of various alterations in the non-coding genome in cancer and pinpoints their role
in diseased cellular state.
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Approximately 80 % of the genome is transcribed into RNA
species in at least some cell type or at some stage of develop-
ment.1,2 Non-coding regulatory (non-housekeeping) RNAs are
currently defined by their size, genomic location or presump-
tive function. Enhancer RNAs (eRNA), which have a length
span from 0.1 to 10 kb, mainly fall into the category of long
non-coding RNAs (lncRNAs) although they are better defined
by their transcriptional regulatory function. Larger clusters of
enhancers with multiple transcription factor (TF) binding sites
and open chromatin marks are termed super-enhancers and
they define cell identity.3,4 Locations of enhancer elements are
often deduced from certain histone marks (H3K4me1,
H3K27ac), transcription factor binding profiles (p300), or open
chromatin states (eg. DNAse- and ATAC-seq). The develop-
ment of global nascent RNA sequencing techniques, such as
global run-on sequencing (GRO-seq),5 has revealed that tran-
scription of eRNAs is highly correlated with marks such as
H3K27ac (for review see ref. 6) and to transcription at nearby
gene promoters,7,8 and is considered the most reliable mark of
an active enhancer.7,9 The functions of eRNAs are yet unclear:
they can be passive byproducts of transcription or function
actively in recruitment of transcription factors (reviewed in
ref. 10), like in the case of Yin-Yang (YY)1.11

Misregulation of ncRNAs is common in cancer although
recurrent structural variations have been challenging to find.
For example, in a study with whole-genome sequencing of 150
tumor/normal pairs of chronic lymphocytic leukemia, only one
recurrent non-coding mutation cluster was found at a potential
regulatory element.12 However, this may also reflect the lacking
annotations. We recently analyzed whole genome sequencing
data from precursor B-cell acute lymphoblastic leukemia
(pre-B-ALL) in the context of chromatin architecture and
found that the topologically associated domains with the

highest number of breakpoints contained unannotated
ncRNAs.13 Functional studies manipulating lncRNA produc-
tion in leukemia have shown diverse roles in cancer-related
pathways.14-16 In addition, functional studies on enhancers
have highlighted their overall role in cancer, as reviewed in
ref. 17. In leukemia, somatic mutation of a non-coding element
generated a MYB binding site upstream of oncogenic TAL1
locus, and a deletion of the mutated (but not wild type allele)
super-enhancer in a T-ALL cell line decreased expression of
TAL1 and impaired cell survival.18 Altered transcription at
enhancers may also result from structural or quantitative
changes in both enhancer elements and their regulating
proteins. Duplication of NOTCH1-driven MYC enhancer
was observed in T-ALL and its relevance demonstrated in
a mouse knockout model.19 Moreover, aberrations in chro-
matin structure and especially in insulator regions induce
abnormal gene expression, as exemplified by activation of
TAL1 due to a deletion of upstream insulator element.20

Misregulated transcription during delicate differentiation
processes in haematopoietic precursors may also cause
cancer by predisposing to secondary mutations. Conver-
gent transcription and RNA polymerase II stalling strongly
correlate with structural variation clusters and seem to
provide vulnerable regions for RAG and AID mediated
double strand breaks in lymphoma and leukemia.13,21

Although ncRNA expression profiles using microarray or
RNA-seq have been published (eg. refs. 22-26), many
nascent transcripts have remained unnoticed because of
rapid degradation of several ncRNA species. New methods
to address this challenge have emerged, such as GRO-seq,
PRO-seq or TT-seq that enable monitoring various
nascent transcripts and engaged RNA polymerase II in
leukemia.27,28
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We addressed this issue in the ETV6-RUNX1 (E/R, TEL-
AML1) fusion positive leukemia,30 which represents 25 %
of pediatric acute lymphoblastic leukemias, and causes alter-
ations in gene expression that predispose to leukemia.29

With the help of an inducible E/R cell model and GRO-seq,
we explored dynamics of gene expression and the activity
of their regulatory elements simultaneously, exposing the
transcriptional circuitry downstream of the E/R fusion
(Fig. 1).30 We analyzed enhancers based on eRNA

correlation with GRO-seq signal change at differentially
expressed genes (transcript-centric approach). Secondly, we
generated an enhancer-centric approach that directly
applied the statistical framework on eRNA levels to identify
significantly regulated enhancers (enhancer annotation was
based on H3K27ac and RUNX1 ChIP-seq data) and corre-
lated these changes to that of nearby transcripts. We found
at least one similarly altered putative enhancer element
within C/¡400 kb for almost all the deregulated coding
transcripts using transcript-centric approach. E/R regulated
approximately 20% of transcribed regions with RUNX1
ChIP peaks, and 5% of CD19/20 (B-cell)-related enhancers.
Interestingly, CD19/20 specific super-enhancers were mostly
downregulated, implying a way for E/R to arrest cell
differentiation.

It has been proposed that any transcription may possess
regulatory activity. A recent study showed that half of the
studied transcribed gene loci (12 lncRNA and 6 mRNA)
regulated a nearby gene in cis independently of whether the
locus was a coding or non-coding one.31 As the non-coding
genome is only weakly conserved,1,32 most non-coding
regions may function in a way which is not dependent on
the sequence of transcript itself but rather the sequence of
its promoter or its location in the genome. In the case of
E/R leukemia, we classified 57 deregulated novel lncRNAs
(over 5 kb long) as either potential eRNAs or lncRNAs
based on the GRO-seq signal. One fourth of the novel and
3 of 7 annotated transcripts were concordantly differentially
expressed in RNA-seq data with 8 E/R-positive and 9 other
subtype pre-B-ALL patients.30 For example, KCNQ1OT1,
which acts in epigenetic regulation,33-35 was upregulated in
our E/R cell model GRO-seq and the patient
RNA-seq data. Signal changes at ZEB1 and ZEB1-AS1 serve
as an example of a simultaneous downregulation of gene
and its promoter-associated RNA, with ZEB also being
linked to cancer36,37 and late B cell differentiation.38 Func-
tional roles of the novel transcripts in E/R leukemia
remains to be explored in future. Nascent RNA profiles of
diagnostic patient samples of distinct ALL subtypes will
give further insights into the derailed transcriptional net-
work downstream of the oncogenic TF fusions.

Already, thousands of regulatory lncRNA transcripts39

and hundreds of thousands of enhancer regions have been
found. It is now known that ncRNAs are widely specific to
a certain cell type and developmental stage. For example,
most lncRNAs that are expressed at various stages of mouse
B cell development are not expressed in a closely related T-
cell lineage.40 A recent study noted that distal regulatory
elements varied across distinct haematopoietic lineages so
that they are better discriminators of cell identity than
mRNA levels.41 This was also reflected in our work, where
we noticed that sample separation based on quantification
of global eRNA transcription was equally good as that based
on quantification of transcription at protein coding
regions.30 We can assume that the increasing knowledge of
the interplay between various elements of genome and their
transcriptional products will significantly contribute to our
understanding of the diverse types of leukemia and cancer
in near future.

Figure 1. (A) A schematic representation of the ETV6-RUNX1 (E/R, TEL-AML1)
fusion protein resulting from a recurrent t(12;21) translocation in pediatric pre-B
acute lymphoblastic leukemia. ETV6-RUNX1 includes the pointed (PNT) domain of
ETS variant 6 (ETV6) but lacks the ETS domain that is involved in DNA binding of
the normal TF protein. The 480 aa long RUNX1 variant 1 (AML-1c, NP_001745) is
illustrated with the point mutation R201Q in the Runt domain which impedes its
DNA binding capability (this was used to generate E/Rmut in ref. 30). ID D Runx
inhibitory domain. (B) GRO-seq signal (nascent RNA transcription) is shown for E/R-
negative as red and E/R-positive samples as blue tracks at an example genomic
region. Signals above and below the axis indicate plus and minus strands, respec-
tively. RUNX1 ChIP peaks in SEM cells (GSE42075, ref. 42) and an enhancer marker
H3K4me1 ChIP-seq in B-cells (GM12878, ref. 2) are shown and coincide with the
GRO-seq signal. Three enhancer regions that are downregulated by E/R via
RUNX1-mediated binding are highlighted. Nalm6-E/R D 24h expression of E/R in a
pre-B-ALL cell line; REH D E/R-positive cell line; pre-B-ALL other D E/R-negative
patient; pre-B-ALL E/RC D E/R-positive patient.
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