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Abstract

Conventional therapeutic agents have displayed significant shortcomings. For this reason, important achievements have effectively
made in biotechnology for delivering the therapeutic agents to the site of action, and diminish side effects. Polymeric carriers, mi-
celles, dendrimers, liposomes, solid lipid carriers, gold carriers, viral carriers, nanotubes and magnetic carriers incorporating cyto-
toxic therapeutics have developed. To improve biological distribution of therapeutic drugs, some modified carriers have designed
in optimal size and modified surface area. Delivery of carriers to target cells could be done by passive and active targeting.
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1. Context

Conventional therapeutic agents have distributed
non-specifically in body, affecting both target and nor-
mal cells. This phenomenon has reduced the efficient
dose of the drugs reaching the target cells, then caused
suboptimal results due to excessive toxicity (1).

Drug carriers were able to diminish toxicity of the ther-
apeutic agents in neighbor cells and have selectively aug-
mented the amount of drugs accumulated within target
cells (2, 3). Although the beneficial effects of carriers have
been increasing, some obstacles exist in their implementa-
tion for therapeutic purposes. These obstacles include: in-
stability in blood circulation, undesirable bio-distribution,
their own toxicity and lack of oral bioavailability (4).

2. Evidence Acquisition

In this review, we have decided to take a glance at the
following subjects; first, the types and characteristics of
carriers; second, how carriers should develop to improve
their therapeutic efficacy?

3. Results

3.1. Delivery Vehicles

Carriers have used in drug delivery systems have con-
sisted of the simplest form of structures with sizes in the
nm or µm ranges, made of polymers (polymeric carriers,

micelles or dendrimers), lipids (liposomes), solid lipid car-
riers, gold carriers, viruses, nanotubes and magnetic carri-
ers (1).

3.1. Polymeric Carriers

Polymeric carriers have composed of natural or syn-
thetic polymers (Figure 1). Depending on the methods
used for preparation of polymeric carriers, drugs could be
entrapped within the polymer or attached to the carrier
matrix leading to the formation of nano/microcapsules
and nano/microspheres, respectively (5). In our study, we
have reported the synthesis of 166Ho-Poly lactic acid micro-
spheres with solvent evaporation technique (6).

3.2. Polymeric Micelles

Micelles have made of amphiphilic block copolymers
(Figure 1). The hydrophobic region has served as a reservoir
for poorly water soluble drugs, whereas the hydrophilic re-
gion has stabilized the hydrophobic core, and then made
the conjugate water soluble (7).

Polymeric micelles, due to their ability in loading of
lipophilic molecules into the hydrophobic core, have used
to solubilize and deliver poorly water-soluble drugs (8).

Up to now, seven clinical trials using polymeric mi-
celle anticancer drug-targeting systems have done in clini-
cal studies in different phases. Tumor targeting, solubiliza-
tion of water-insoluble drugs and circumvention of multi-
drug resistance (MDR) were the objective of these trials
with various combination of drugs (9, 10).
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Figure 1. Different Types of Nanocarriers Have Used for Drug Delivery

3.3. Dendrimers

Dendrimers have highly branched macromolecules,
composed of several extremely branched monomers that
emerge radially from the central core (Figure 1). The modi-
fiable surface characteristics of dendrimers enable them to
be simultaneously conjugated with several molecules such
as imaging contrast agents, ligands or therapeutic drugs,
and hence have created a multifunctional drug delivery
system (11).

Due to the increasing use of dendrimers in biomedical
applications, the biological properties of dendrimers were
important. Cationic dendrimers were usually hemolytic

and cytotoxic. Their toxicity was generation-dependent
and has increased with the number of the surface groups
(12). There were indications that cationic dendrimers have
cleared rapidly from the blood stream upon the intra-
venous or intrapritoneal injection. Anionic dendrimers
had longer circulation time. Their clearance rate was
generation-dependent, and lower generation would have
longer circulation time (13). Note that the anionic den-
drimers containing carboxylate group were not cytotoxic
in the board range of concentrations (14).

Flexibility in the dendrimer families was due to the fact
that the surface, internal cavity and dendrimer core could
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change for different applications. Most of the applications
of the dendrimers have based on their multifunctional
structure and presence of internal cavities. These proper-
ties make the dendrimers suitable for diverse technolog-
ical applications such as biomedical and industrial appli-
cations (15). Such applications were: in vitro diagnostics
(15), as a contrast agent in MRI (16), delivery of drugs (17),
in boron neutron capture therapy (BNCT) (18), as a vector
in gene therapy (19), and in photodynamic therapy (PDT)
(20).

3.4. Liposomes

Liposomes have known as spherical lipid vesicles that
could be formed via the accumulation of lipids interact-
ing with each other in an energetically favorable manner
(Figure 1). The liposome bilayer could be formed from syn-
thetic or natural phospholipids. The important physical
and chemical properties of a liposome, including perme-
ability, charge density and steric hindrance, have based on
its constituent phospholipids (21).

The use of liposomes as a vehicle in drug delivery sys-
tems had several advantages including diverse range of
morphologies, compositions, ability to envelope and pro-
tect many types of therapeutic biomolecules, lack of im-
munologic response, low cost and their differential release
characteristics (22).

Myocet and Doxil were the fist-approved liposome-
based drugs for cancer treatment. Currently, twenty-one
liposome-based drugs have been testing by clinical trials
(23-25).

3.5. Solid Lipid Carriers

Solid lipid carriers (SLCs), have also referred as lipo-
spheres or solid lipid nanospheres, were solid at human
physiological temperature and had a diameter of 50 - 100
nm (Figure 1). The SLCs could be made from diverse range
of lipids including mono-, di- and triacylglycerols, fatty
acids, waxes and combination of these materials. The SLCs
could be formed by replacing oil with solid lipid in an oil
and water (O/W) emulsion. Also, the SLCs were biodegrad-
able and biocompatible and could be used in human be-
cause of their reduced cytotoxicity (26). These carriers have
formed a lipophilic matrix which enabled the drug to load
onto it. The important factors have been affecting drugs
loading into the SLC matrix were solubility of drug in lipid
(drug must be lipophilic), physical and chemical proper-
ties of lipid or mixture of lipids, crystalline properties of
lipids in biological temperature, and polymorphic form of
the lipids. The SLCs have been investigated for delivery of
various anticancer drugs with promising results in mouse
preclinical phases. Specifically, it has been shown that the

SLCs could help to overcome multi-drug resistance prob-
lems in cancer therapy (26).

Recently, Kaur and Slavcev have reported the pre-
clinical development of a docetaxel nanocarriers against
prostate specific antigen (27).

3.6. Gold Carriers

Gold carriers have consisted of a core of gold atoms
(Figure 1) that could be functionalized through the addi-
tion of monolayer of thiol (SH)-containing groups (28).
Gold carriers could be synthesized in the presence of
thiol-containing groups which form a layer around the
gold atoms and by considering the stoichiometric ratio of
gold to thiol (gold/thiol) utilizing NaBH4 for reduction of
AuCl4-salts (29). Research studies have shown that gold
carriers were not cytotoxic at cellular levels in a number
of human cell lines (30). A recent study has confirmed that
PEGylated gold carriers (10 - 30 nm) have not been able to
cross from human placenta within 6 hours, and could be
used to restrict drug delivery to mother while preventing
teratogenic effects on the fetus (31).

The first clinical trial with gold carriers have done in
2009, in which a 27-nm citrate-coated gold carriers (CYT-
6091) bound with thiolated PEG and TNF-α have empolyed
in patients with solid organ cancers (32).

3.7. Magnetic Carriers

The most unique feature of magnetic carriers (Figure
1) was their reaction to a magnetic force. Magnetic carri-
ers have injected into the bloodstream, and then magnetic
fields have focused over the target site (33). The first report
of a clinical trial has appeared in 1996 (34), in which non-
covalent interactions of epirubicin have used for binding
to 100 nm magnetic carriers, and permanent high-energy
magnets have used to target tumor tissues. Moreover, mag-
netic carriers have attracted attentions because of their po-
tential as contrast agents for magnetic resonance imag-
ing (MRI) and heating mediators (hyperthermia) for can-
cer therapy (35).

3.8. Albumin Carriers

Albumin has been widely employed as a drug carrier.
Albumin would be soluble in both water and ethanol.
Since albumin has presented in human body, it was non-
toxic, and well-tolerated by the immune system. Addition-
ally, albumin due to its higher half-life in blood circula-
tion, had favorable pharmacokinetics and was an interest-
ing drug carrier for passive targeting (36).

Abraxane, the chemotherapy drug paclitaxel has at-
tached to an albumin carrier, was the first drug based on
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an albumin carrier. Abraxane had advantages over pacli-
taxel including increased half-life in the circulation and
lack of hypersensitivity (37). It has thought that Abraxane
has transported into tumor cells by osteonectin or secreted
acidic protein rich in cysteine (SPARC) (38).

3.9. Viral Carriers

Viruses naturally and with great efficiency have in-
fected and delivered their genetic contents to host cells
(Figure 1). Therefore, viruses have increasingly drawn at-
tractions as favorable carriers for drug delivery. Virus-like
particles were genome-free counterparts of viral carriers,
and actually could classify as a subclass of viral carriers. Vi-
ral carriers, derived from plants and bacteria, were invalu-
able carriers, because they were not only biocompatible
and biodegradable, but also they were non-toxic and non-
infectious in humans and other mammals (39). Viral carri-
ers have produced by nature, could regard as one of the ad-
vanced drug delivery systems due to their highly symmet-
rical structure (40, 41). The basic structure of viral carriers
could be manipulated in such a way that its internal cavity
has filled with drug molecules, imaging reagents, whereas
the external surface could be decorated with targeting lig-
ands (42).

3.10. Carbon Carriers

Carbon nanotubes (CNTs) were members of the
fullerene structural family composed of benzene rings
rolled-up into a tubular structure (Figure 1). CNTs had
nanometric dimensions, and they have fallen into two
groups based on their structure; single-walled (SWNTs),
which consisted of one layer of cylinder graphene and
multi-walled (MWNTs) containing multiple concentric
graphene layers. The SWNTs had a diameter about 0.4 - 2
nm and length of 20 - 100 nm, while MWNTs were larger in
size with a diameter in the range of 1.4 - 100 nm and length
from 1 to several µm (43).

The organized structure, ultralight weight, high me-
chanical strength, high electrical conductivity, high ther-
mal conductivity, methalic or semi-methalic behavior and
high surface area (43) were the properties that have caused
CNTs to be a suitable carrier in drug delivery system. Com-
bination of these properties made CNT a unique material
for diverse applications such as biomedical interventions
(44). Increasing interests in use of these properties have
made these materials a good candidate for various applica-
tions including construction of biosensors for detection of
genetic disorders or other molecular abnormalities, sub-
stances for cell growth in tissue regeneration, and in drug
delivery systems for a broad range of diagnostic and ther-
apeutic agents (43).

Non-functional CNTs were intrinsically hydrophobic.
Therefore, the main obstacle in the utilization of CNTs in
biology and medicinal chemistry was the lack of solubil-
ity in most compatible solvents with biological milieu. To
overcome this problem, modification of a CNT surface has
mediated by adsorption, electrostatic interaction or cova-
lent bonding of different molecules that render them hy-
drophilic. These modifications have improved water solu-
bility of the CNTs and their biocompatibility profile. More-
over, due to these modifications, the aggregation of in-
dividual tubes through van der Waals forces has reduced
(43).

In a recent clinical trial study, Jun Yan reported that
CNTs had no toxic side effects on the human body after in-
jection into the tissues around the tumor (45).

3.11. Advantages of Nanoscale Drug Delivery Systems

Biological substances have cleared from the blood
stream according to their size. Small particles (1 - 30 nm)
were rapidly cleared by the kidney. Carriers having size
larger than 30 nm have cleared by reticuloendothelial sys-
tem (RES), which included macrophages located in the
liver and spleen (46). Clearance was also dependent on
endothelial fenestral size (46). The size of fenestrae was
pretty variable. It was difficult to determine the efficacy
and toxicity of drug carriers in different individuals, be-
cause age, sex and genetic predisposition affect rate of
their clearance (47). Whether nanocarriers would take up
by the macrophages or not, depended on opsonization
by the innate immune system (48). Surface properties of
nanocarriers could affect rate of their clearance by RES. A
useful method that has helped large particles escape from
opsonization has developed in Rutgers university in the
1960s (49); In a process that called PEGylation, a polymer,
polyethylene glycol (PEG; [CH2CH2O]n), has conjugated to
a drug carrier.

3.12. Size and Surface Properties of Carriers

In order to be effectively delivered towards the target
tissues, carriers should be able to remain in the blood cir-
culation for adequate duration of time. Unmodified con-
ventional carriers have used in drug delivery systems have
cleared from blood stream by RES depending on their size
and surface characteristics (50). Therefore, the fate of in-
jected carriers could be controlled by modulation of their
size as well as surface characteristics.

3.13. Particle Size

Particle size was the most important characteristics of
carrier systems. It has determined the in vivo distribution,
biological fate, toxicity and the targeting ability of carrier
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systems (51). The size of nanoparticles have used in drug
delivery systems should be large enough to prevent from
leakage into the blood capillaries. On the other hand, it
should be small enough to escape from macrophages lo-
cated in RES (1). In our study, microspheres have synthe-
sized with a diameter of 5 - 10 µm without any leakage to
the other organs (6).

3.14. Surface Properties of Carriers

Apart from the size of carriers, the surface proper-
ties of carriers were another important factor affecting
their half-life and fate in blood stream. Surface hydropho-
bicity of carriers has determined the opsonization. Sur-
face non-modified carriers have opsonized and cleared
by the macrophage of RES. Hence, to prolong the circu-
lation of carriers in vivo and to increase the likelihood
of the success in drug targeting by carriers, it was nec-
essary to minimize the opsonization. This was possible
with two procedures including surface coating of carriers
with hydrophilic polymers such as PEG, and construction
of carriers from biodegradable block copolymers with hy-
drophilic and hydrophobic domains (7, 52).

3.15. Types of Targeted Drug Delivery

As outlined above, targeted drug delivery not only has
increased the therapeutic effect of drugs, but also, dimin-
ished the cytotoxicity to adjacent cells. For the achieve-
ment of such conditions, passive targeting and active tar-
geting, have both used.

3.15.1. Passive Targeting

Passive targeting was the preferential accumulation of
therapeutic agents in target tissues according to physico-
chemical or pharmacological factors of the disease. For ex-
ample, in cancer treatment, Because of higher metabolic
demand, cancer cells were required for neovascularization
near the tumor mass to supply the oxygen and nutrients
(53). This has resulted in disorganized tumor vessels with
numerous pores showing enlarged gap junctions between
endothelial cells (53). These unique characteristic of tumor
vessels has called enhanced permeability and retention ef-
fect, have enabled the macromolecules such as nanocarri-
ers to selectively accumulate in a tumor tissue (3).

Another example of passive targeting was acidic en-
vironment of tumor cells. A tumor microenvironment
would often be hypoxic; Lack of oxygen has caused the tu-
mor cells use glycolysis pathway to get extra energy leav-
ing the extracellular microenvironment acidic (54). Some
sorts of pH-sensitive liposomes have designed so that they
are stable in physiologic pH but they have disintegrated,
and release the drug into targeted tissues that have pH less

than physiologic one, such as microenvironment of tumor
cells (55).

3.15.2. Active Targeting

Passive targeting with carriers, however, encountered
multiple obstacles included: mucosal barriers, nonspecific
uptake of the particle and non-specific delivery of the drug
(56). Attachment of a ligand or antibody to the carriers,
active targeting, was an approach suggested to diminish
these restrictions (2).

4. Conclusions

Thanks to complex cellular network in body, delivery
of drug to its specific site has been a difficult task. On the
basis of the evidence summarized in this review, targeted
drug delivery has been coming forward as one of the ad-
vanced technique in the field of nanomedicine in the di-
agnosis and treatment of diseases. Advancement in the
field of nanomedicine has been increasing, such that mul-
tifunctional carriers that allowed concurrent imaging and
therapy have been developed.
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