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Epigenetic mechanisms in schizophrenia
Schahram Akbarian, MD, PhD 

Schizophrenia is a major psychiatric disorder that lacks 
a unifying neuropathology, while currently available 
pharmacological treatments provide only limited ben-
efits to many patients. This review will discuss how the 
field of neuroepigenetics could contribute to advance-
ments of the existing knowledge on the neurobiology 
and treatment of psychosis. Genome-scale mapping of 
DNA methylation, histone modifications and variants, 
and chromosomal loopings for promoter-enhancer 
interactions and other epigenetic determinants of ge-
nome organization and function are likely to provide 
important clues about mechanisms contributing to dys-
regulated expression of synaptic and metabolic genes 
in schizophrenia brain, including the potential links to 
the underlying genetic risk architecture and environ-
mental exposures. In addition, studies in animal mod-
els are providing a rapidly increasing list of chroma-
tin-regulatory mechanisms with significant effects on 
cognition and complex behaviors, thereby pointing to 
the therapeutic potential of epigenetic drug targets in 
the nervous system.           
© 2014, AICH – Servier Research Group Dialogues Clin Neurosci. 2014;16:405-417.

Introduction

 Schizophrenia (SCZ) is a psychiatric disor-
der defined by positive symptoms such as delusions, 
hallucinations and disorganized thought, and negative 
symptoms such as anhedonia (inability to experience 
pleasure), social withdrawal, and apathy. SCZ reduces 
the lifespan of an affected individual on average by 15 
years, with cardiovascular disease and suicide among 
the chief causes for increased mortality.1-3 In addition, 
the mainstay of antipsychotic intervention is medicinal 
treatment targeting dopaminergic, serotonergic, and 
monoaminergic receptor systems,4,5 but the majority 
of patients still experience an incomplete response to 
treatment.6,7 Currently prescribed antipsychotics exert 
therapeutic effects on psychosis in up to approximate-
ly 75% of patients, but it is the cognitive impairment 
which is often the more disabling and persistent feature 
of schizophrenia.8 It has been a challenge to promote 
rational drug development in SCZ, mainly because of 
the lack of a unifying neuropathology9,10 and a complex 
genetic risk architecture,11,12 which so far have defied 
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any narrowly defined signaling pathways or molecular 
mechanisms representing the majority of affected cases.
 This review will outline how neuroepigenetic ap-
proaches13—broadly defined as the study of chromatin 
structure and function in the developing and adult ner-
vous system, including its role for neuronal and behav-
ioral plasticity—could advance our knowledge on SCZ 
pathophysiology and the underlying genetic risk archi-
tecture and pave the way for novel treatment approach-
es. Epigenetic marks, such as DNA cytosine methylation 
and histone modifications and variants, could be viewed 
as a “molecular bridge” by which myriads of external 
(“environmental”) or internal factors mold and shape 
the nascent genetic material throughout the entire lifes-
pan of a brain cell.14 While a comprehensive discussion 
on epi- (Greek for “over,” “above”) genetic regulation 
in the nervous system would be beyond the scope of 
this review (the reader is referred to recent handbooks 
and special journal volumes in this field, see refs 14-17) 
we have now clearly entered a period with a heightened 
level of enthusiasm for epigenetic approaches in neu-
rology and psychiatry, and SCZ research is no excep-
tion to this trend. This phenomenon is due to a coales-
cence of multiple factors: First, there is knowledge that 
many epigenetic markings remain “plastic” throughout 
all periods of brain development and aging, with ongo-
ing and highly dynamic regulation even in neurons and 
other differentiated cells. Second, some of the chroma-
tin-modifying drugs—histone deacetylase inhibitors 
are a well-known example—exert profound effects on 
brain metabolism and behavior in the animal model.18-21 
Third, monogenetic disorders associated with wide-
spread chromatin defects in brain cover a much wider 
continuum of neurological disease than previously 
thought, ranging from neurodevelopmental defects of 
early life to adult onset psychosis and dementia.22 And 
fourth, there is the emerging concept of transgenera-
tional epigenetic inheritance, including early evidence 
for a role of environmental conditions and nutrition, as 
well as the physical and emotional health of a parent, as 
potential factors modulating the epigenetic state at the 
site of brain-relevant genes in the offspring.23 

Epigenetic regulation 
in the brain—basic principles

This section is limited to a very brief discussion of epi-
genetic markings that have been implicated in SCZ 

(discussed in the next section). The elementary unit of 
chromatin in the eukaryote cell is the nucleosome, or 
146 bp of genomic DNA wrapped around an octamer of 
core histones, connected by linker DNA and linker his-
tones. The collective set of covalent DNA and histone 
modifications and variant histones provide the major 
building blocks for the “epigenome,” or the epigenetic 
landscapes that define the organization of the genomic 
material into many tens of thousands of transcriptional 
units, clusters of condensed chromatin and other fea-
tures that are differentially regulated in different cell 
types and developmental stages in a multicellular organ 
such as brain (Figure 1).24-28 
 The bulk of DNA modifications exist as cytosine 
methylation (m) and hydroxymethylation (hm).29 The 
mC5 and hmC5 markings show a differential (but not 
mutually exclusive) pattern of genomic occupancy. The 
hmC5 mark broadly correlates with local gene expres-
sion levels30,31 while methyl-cytosine (mC5) markings, 
particularly when positioned around the 5’ end of genes 
is thought to function primarily as negative regulator 
of transcription.32,33 The regulation of chemical histone 
modifications is even more complex than the DNA 
methylation discussed above, and it is now thought that 
there are far more than 100 amino acid residue-specific 
post-translational modifications (PTMs) in a typical 
vertebrate cell,34 including mono (me1), di (me2)- and 
tri (me3) methylation, acetylation, and crotonylation, 
poly adenosine triphosphate (ADP)-ribosylation and 
small protein (ubiquitin, small ubiquitin-like modifier—
SUMO) modification of specific lysine residues, as well 
as arginine (R) methylation and “citrullination,” serine 
(S) phosphorylation, tyrosine (T) hydroxylation, and 
several others.34-36 It is thought that multiple combinato-
rial sets of histone PTMs contribute to functional chro-
matin states that differentially define gene proximal 
promoters and gene bodies as opposed to enhancer and 
other regulatory sequences, condensed heterochroma-
tin, and the “insulator” sequences that compartmental-
ize and provide boundaries for these various domains 
of chromatin (Figure 1).26 Proteins associated with the 
regulation of histone PTM are sometimes referred to 
as “writers,” or “erasers,” or “readers,” essentially dif-
ferentiating between the process of establishing or re-
moving a mark as opposed to its docking functions for 
chromatin remodeling complexes that regulate tran-
scription, or induce and maintain chromatin condensa-
tion.36-38 In addition to these chemical modifications of 
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the genomic DNA and the nucleosomal histones, other 
types of epigenetic regulation include histone variants 
(H3.1, H3.3, H2A.X, H2A.Z, etc) which differ from the 
canonical histones (H3/H4/H2A/H2B) only at very few 
amino acid positions, but robustly affect nucleosome 
stability and compaction.39 In addition there is “supra-
nucleosomal” or “higher-order chromatin” regulation, 

which, at least in the nervous system, has barely been 
explored until now. For example, chromosomal loop-
ings provide scaffolds that enable distal regulatory 
enhancer or silencer elements positioned potentially 
hundred kilobases apart from a gene, to physically in-
teract directly with that gene’s promoter sequences at 
the transcription start site.40 
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Figure 1.  Basic building blocks of the epigenome. The epigenome of a eukaryote (a cell with a well-defined nuclear membrane) is comprised 
of DNA modifications, including (but not limited to) cytosine methylation and hydroxymethylation, and a large number of site and 
residue-specific histone modifications and histone variants, only some of which are shown in this figure as representative examples. 
These molecular building blocks largely define the epigenetic landscapes that organize genomic DNA, often in a locus-specific fashion 
into active transcriptional units (green) including promoter and enhancer sequences (blue) and condensed chromatin including silenced 
genes (red). These epigenetic signatures are thought to distinguish between various cell types and developmental stages sharing the 
same genome.24,25 Many heterochromatic sequences are tethered to the nuclear envelope and pore complex, and also enriched at the 
periphery of the nucleolus (an intranuclear compartment for ribosomal biogenesis). A representative subset of histone variants and 
site-specific lysine (K) residues at histone H3 and H4 N-terminal tail that are potentially modified by methylation and/or acetylation, two 
types of covalent modifications among many others (see text). TSS, transcription start site; Pol, polymerase; hm, hydroxymethylation
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Epigenetic studies in SCZ postmortem brain 
and peripheral tissues—past and future

 
There can be little doubt that despite of the lack of a 
unifying neuropathology, many cases of SCZ are af-
fected by gene expression alterations in the cerebral 
cortex and other brain regions, often including tran-
scripts important for oligodendrocyte function and 
myelination,41-46 or inhibitory and excitatory neuro-
transmission,47-59 among others. It is almost always un-
clear whether these transcriptional changes are directly 
related to the underlying etiology or secondary events 
in the pathophysiology of disease. Given that transcrip-
tional mechanisms are tightly linked to the chromatin 
remodeling and histone modification machinery in the 
nucleus,60,61 it would come as no surprise if some of 
the genes affected by altered expression in SCZ brain 
showed concomitant changes in the epigenetic architec-
ture of their promoters, enhancers, repressor elements 
and other regulatory sequences. To date, the majority 
of studies were focused on the quantification of DNA 
methylation (as a repressive mark) at candidate gene 
promoters, with some of the early work focused on the 
REELIN glycoprotein, the catechyl-O-methyltrans-
ferase COMT, the SOX10 developmental transcrip-
tion factor.62-64 A few studies have measured changes 
in promoter-bound nucleosomal histone modifications, 
including histone acetylation and methylation.65,66 In-
terestingly, DNA methylation and histone modification 
changes at some of the promoters with altered epigene-
tic status in SCZ postmortem brain, including REELIN, 
Glutamate decarboxylase (GAD)1 (encoding GAD67 
GABA synthesis enzyme) and BDNF (brain-derived 
neurotrophic factor) were also found in lymphocyte 
extracts from patients,67-70 which if independently con-
firmed would warrant further examination as potential 
epigenetic biomarkers. 
 At the time of writing, however, very few studies 
have pursued DNA methylation or histone modifica-
tion changes in SCZ on a genome-wide scale in brain 
tissue or peripheral cells,67,71-74 and none of these stud-
ies has harnessed the full power of modern (“next-gen-
eration”) sequencing technology that provides a near 
unbiased view of the distribution of an epigenetic mark 
across the entire genome.75 These modern epigenomic 
mapping technologies, when applied in conjunction 
with whole genome sequencing of specific individuals, 
are expected to inform on epigenetic alterations that 

could be driven by the underlying genetic risk archi-
tecture.76 As an illustrative example for the potential 
benefits when epigenome mappings are combined with 
genotyping, consider a recent report on risk-associated 
genetic variants for the autoimmune disorder multiple 
sclerosis, which showed a striking enrichment for regu-
latory sequences subject to distinct epigenetic decora-
tions in immune cells, with disease-associated chroma-
tin signatures that specifically affected promoters and 
enhancer elements.77 Given that, according to recent 
genome-scale studies conducted in cerebral and cer-
ebellar cortex of control subjects, many hundreds of 
DNA methylation sites are significantly affected by 
single nucleotide polymorphisms (SNPs) and variants, 
some of which separated from the methylation site by 
more than one megabase.78,79 From this, there can be 
little doubt that in SCZ too, a significant portion of the 
epigenetic risk architecture is likely to be ultimately 
driven by the underlying genetic risk variants. Impor-
tantly, many of the DNA polymorphisms— according 
to some estimates, several thousand SNPs each could 
contribute a small but nonetheless significant SCZ 
risk80,81—do not change protein coding sequence and 
do not locate to exonic sequence. Therefore, cell-type 
specific epigenome mappings in normal and diseased 
human brain will be among the few options currently 
available to illuminate the functional and biological sig-
nificance for many of these disease-relevant DNA poly-
morphisms.81

 The potential benefits of including genotype infor-
mation when analyzing epigenetic alterations in brain 
(or peripheral tissues) of specific cases diagnosed with 
SCZ also became apparent in some of the aforemen-
tioned candidate gene studies. The GAD1 promoter 
(chr. 2q31), which regulates GAD67 γ-aminobutyric 
acid (GABA) synthesis enzyme expression, could serve 
as an illustrative example. The GAD67 transcript is 
downregulated in cerebral and cerebellar cortex of a 
significant portion of subjects diagnosed with schizo-
phrenia, depression, or autism, and this type of altera-
tion may contribute to desynchronization of cortical 
networks and cognitive dysfunction due to defective 
GABAergic inhibition.50,82-87 Interestingly, a haplotype 
(a group of neighboring SNPs that are in linkage dys-
equilibrium with each other) positioned within few Kb 
from the GAD1 transcription start site confers genetic 
risk for accelerated loss of frontal lobe gray matter88,89 
and, via epistatic interaction with catechol-o-methyl-
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transferase (COMT) alleles regulating synaptic dopa-
mine, modulates prefrontal GABA levels. 90 Notably, 
subjects with schizophrenia who are biallelic for this 
GAD1 promoter-associated risk haplotype, in striking 
contrast to cases with the protective alleles, show a sig-
nificant deficit in prefrontal GAD67 transcript together 
with a shift in the epigenetic decoration of the sur-
rounding chromatin, with loss of a facilitative histone 
methylation marking (histone H3 trimethyl-lysine 4) 

and excess of a repressive mark, histone H3 trimethyl-
lysine 27 (Figure 2).66 Interestingly, these disease-asso-
ciated changes in local chromatin templates at specific 
gene promoters apparently are accompanied by addi-
tional alterations in higher order chromatin structures, 
because decreased GAD1/GAD67 expression in SCZ 
prefrontal cortex (PFC) is accompanied by a weaken-
ing of a long range promoter-enhancer loop that nor-
mally interconnects regulatory sequences positioned 
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Figure 2.  Multiple layers of epigenetic dysregulation for the GAD1 promoter in SCZ prefrontal cortex. (top) A haplotype, comprised of at least five 
single-nucleotide polymorphisms within a few Kb from glutamate decarboxylase (GAD)1 transcription start site confers genetic risk for 
childhood-onset schizophrenia and accelerated loss of gray matter88 and is associated with decreased GAD1 gene expression in cerebral 
cortex of subjects on the psychosis spectrum. The at-risk haplotype, through yet unknown mechanisms, is in diseased individuals as-
sociated with decreased GAD1 gene expression, and a shift from open chromatin with high levels of the permissive marks, histone H3-
trimethyl-lysine 4 (H3K4me3) and H3-acetyl-lysine 27 to a more repressive state with the open marks H3K4me3 and H3K27ac replaced 
by a restrictive mark, H3K27me3. As a result, there are lower levels of transcription factors and phospho-activated RNA II polymerase 
(POI) at the proximal portions of the GAD1 gene.65,66 In addition to these changes in the epigenetic architecture of the GAD1 promoter, 
there are additional alterations in higher order chromatin. These include a chromosomal loop formation that physically connects en-
hancer sequences 50 kilobases upstream of the GAD1 gene with the GAD1 promoter and transcription start sites. These regulatory 
sequences are enriched with AP-1 (activating protein 1) transcription factor binding site and likely to promote GAD1 gene expression. 
In the PFC of some subjects with SCZ, there is a significant decrease in the GAD1 promoter-enhancer interaction frequency.91 
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50Kb upstream of GAD1 with the gene’s transcription 
start site and proximal promoter. 91 Therefore, some of 
the risk-associated DNA polymorphisms at regulatory 
noncoding sequences could impact not only the epigen-
etic status of local chromatin structures but even exert 
“long-range” effects and impact epigenetic regulation 
of sequences that are positioned many kilobases further 
up- or downstream (Figure 2). Hence, one could expect 
that future epigenetic studies in SCZ postmortem brain 
will increasingly harness genotype information to ex-
plore whether epigenetic changes at the site of regu-
latory noncoding sequences are affected by underlying 
genetic variation related to disease risk81 or working 
memory and other cognitive functions often compro-
mised in psychosis.92

Epigenetics and “gene x environment” 
interactions

 
It is obvious that the very concept of epi- (“over,” 
“above”) genetics lends itself towards molecular mod-
els for “gene x environment” interactions in the field 
of biological psychiatry and virtually any other field of 
biomedical research.93 From a heuristic perspective, the 
idea that myriads of external or internal factors could 
leave a long-lasting molecular imprint in the genome 
of our brain cells is extremely appealing to the neuro-
biological models of SCZ and related disorders, which 
often are viewed as neurodevelopmental in origin but 
cannot be fully explained by genetic risk. Some of the 
well-established risk factors, such as maternal infection 
during prenatal development with various types of vi-
ruses, pathogenic bacteria or parasites, are estimated to 
play a significant role (“population-attributable risk”) 
in more than 30% of SCZ cases.94 Indeed, symptoms of 
psychosis may not surface until early adulthood, but a 
multitude of primary disease mechanisms could have 
operated as early as the prenatal period and in infancy.95 
Furthermore, DNA and histone methylation mappings 
in the developing human cerebral cortex suggest that 
neuronal epigenomes specifically (and to some degree 
the non-neuronal constituents of cortex as well) are in 
the prenatal period and early childhood subject to pre-
sumably preprogrammed waves of DNA hydroxymeth-
ylation and methylation and histone H3K4 lysine (de)
methylation at thousands of loci. In contrast, changes 
during the subsequent phases of maturation and ag-
ing are comparatively minor in relation to these earlier 

periods.78,96-99 Thus, there is considerable potential for 
“epigenetic plasticity,” particularly during the critical 
periods of human cortical development. Whether or 
not adverse environmental influences operating during 
these early time windows could indeed result in lasting 
and maladaptive “imprints” in our brain cells’ chroma-
tin is difficult to test. However, evidence from postmor-
tem studies is in support of the hypothesis that early life 
experience may indeed leave a lasting epigenetic im-
print in the human brain. For example, abnormal neu-
ronal expression and DNA methylation of the NR3C1 
glucocorticoid receptor distinguishes suicide victims 
who experienced childhood abuse from those who did 
not (100) and there is evidence other additional genes 
and loci are epigenetically altered in adult brain after 
exposure to early life trauma.101-103 In addition, some of 
the genes that become frequently dysregulated in the 
cortex of adult SCZ, including aforementioned GAD1/
GAD67 GABA synthesis gene,104 are highly regulated 
across the extended period of prefrontal development, 
with expression levels ramping up slowly from the pre-
natal period at least until early adolescence,66,105 with 
dynamic changes in promoter-bound DNA methyla-
tion and histone methylation and acetylation continu-
ing across the entire lifespan.65,66,96 This would, just as in 
the case of the aforementioned glucocorticoid receptor 
gene, indicate heightened epigenetic vulnerability of 
the GAD1 gene in early life. Indeed, this hypothesis re-
ceived recent report from animal studies, because in the 
adult male rat, hippocampal Gad1 expression and open 
chromatin-associated histone acetylation are positively 
influenced by the level of maternal care in the postnatal 
period, while repressive Gad1-promoter DNA meth-
ylation was negatively influenced.106 Likewise, prenatal 
exposure to the alkylating and antimitotic agent methyl-
azoxymethanol (MAM) causes decreased Gad1 expres-
sion and histone H3K4 methylation in adult rat pre-
frontal cortex,107 a finding that is of interest given that 
similar changes were observed in clinical samples.66,108 
Other types of prenatal adverse events, such as exces-
sive maternal immune activation and activation of cyto-
kine signaling, could result in prefrontal cortex of adult 
offspring in widespread changes of the GABAergic 
transcriptome, including Gad1,109 together with altered 
expression and epigenetic regulation of other SCZ 
susceptibility genes, including Disrupted-in-Schizo-
phrenia 1 (DISC1) in the prefrontal cortex of adult 
offspring.110,111 These types of epigenetic vulnerability 
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may extend to other brain regions and an even wider 
developmental period. For example, it had recently 
been reported that stress in adolescent animals could, in 
the context of a Disc1 mutation, result in altered DNA 
methylation at the tyrosine hydroxylase gene promoter 
in dopaminergic projection neurons of the ventral mid-
brain.112 Furthermore, a number of genes epigenetically 
dysregulated in SCZ could be modulated, even in a fully 
matured brain. For example, in the cortex of adult mice, 
the synthetic nicotinic acetylcholine receptor agonist 
varenicline, like nicotine in doses comparable to those 
reported in heavy smokers, reduces DNA methylation 
load at the Gad1 gene promoter, thereby increasing 
Gad1 expression.113,114 These findings, taken together, 
leave little doubt that environmental factors are likely 
to impact proper epigenetic regulation of SCZ-relevant 
genes across the entire lifespan.

Chromatin regulators linked to SCZ 
via evidence from genetics and 

functional genomics
 
To date, mutations and structural variants in perhaps up 
to 50 genes, each encoding a different chromatin regu-
lator, have been linked to a wide range of neurodevel-
opmental syndromes, including rare monogenic forms 
of autism.115 Importantly, however, chromatin defects 
in brain were traditionally considered static lesions 
of early development that occurred in the context of 
rare genetic syndromes, but it is now clear that muta-
tions and maladaptations of the epigenetic machinery 
cover a much wider continuum, including adult-on-
set neurodegenerative disease.22,116,117 Thus, there is a 
small but rapidly growing list of cases diagnosed with 
schizophrenia who harbor mutations in genes encoding 
chromatin regulators, including methyl-DNA binding 
proteins, histone modifiying enzymes and transcrip-
tion factors. Thus, mutations and changes in the amino 
acid sequence of the neurodevelopmental susceptibil-
ity gene Methyl-CpG-binding protein 2 (MECP2, best 
known as the “Rett Syndrome” gene) are thought play 
causal roles in some SCZ cases.118,119 Furthermore, gene 
duplication of the histone methyltransferase KMT1D/
EHMT1 or the MYTL1 transcription factor have been 
linked to some cases with SCZ.120,121 
 Such types of mono- or oligogenic forms of psy-
chosis due to mutations in gene encoding a chromatin 
regulator are believed to be very rare and certainly not 

representative for the large majority of subjects on the 
SCZ spectrum. However, biological pathway analyses, 
after combining a diverse group of datasets, including 
risk loci from genome-wide association (GWAS) and 
copy number variant (CNV) studies and transcrip-
tomics from diseased brain tissue, point to a broader 
contribution of the chromatin and nucleosome assem-
bly machinery to the genetic risk architecture and neu-
robiology of schizophrenia.122,123 This includes the major 
histocompatibility (MHC) locus, spanning 4 to 7.6 Mb 
on chromosome 6p21.32-p22.2, and as one of the most 
intensely explored regions of the human genome, it has 
been consistently implicated in SCZ genetics as early 
as 1974.124,125 Interestingly, in a recent study on whole-
genome gene expression profiles in lymphoblastoid cell 
lines (LCLs) from 413 SCZ cases and 446 controls, mul-
tiple histone variants encoded within the MHC region, 
including HIST1H2BD, HIST1H2BC, HIST1H2BH, 
HIST1H2BG and HIST1H4K, emerged among the top 
differentially expressed transcripts in the disease co-
hort126 and are likely to take part in complex chromo-
somal loopings that define local genome architectures 
at this locus in brain cells.127

Epigenetic therapies for SCZ?

Antipsychotics are the mainstay of the pharmacologi-
cal treatment of SCZ, but the majority of patients show 
an incomplete response with an unfavorable disease 
course.128 Much of the problem revolves around the neg-
ative and cognitive symptoms that are responsible for 
the debilitating effects of SCZ and often do not respond 
to pharmacological treatment.129 It remains to be seen 
whether or not the knowledge gained by the field of neu-
roepigenetics will contribute towards improved treat-
ment options in the future. Interestingly, both typical an-
tipsychotics acting as dopamine D2 receptor antagonists 
and atypicals with a more mixed receptor profile affect 
DNA methylation and histone modification levels in ce-
rebral cortex and striatum, two key nodes in the neural 
circuits of psychosis.19,130-132 It is currently unclear wheth-
er these observations, which are mostly of a correlative 
nature, indeed would indicate a critical role of chromatin 
regulatory mechanisms for antipsychotic drug action. In 
the following, inhibition of histone deacetylase activity 
will be discussed as one of the potential avenues for new 
antipsychotic drug research. As further discussed below, 
there are significant challenges that need to be overcome 
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before such type of epigenetic therapy would be given 
serious considerations.
 Histone acetylation is associated with a more flex-
ible and “open” chromatin state, thereby facilitating 
gene expression; one example of this is that it enables 
enhancer and other regulatory sequences separated 
from a gene target site by thousands of kilo- or even 
megabases, to engage with distant promoters in chro-
mosomal loop formations.133 Histone acetylation is 
regulated by the opposing effects of histone acetyl-
tansferases (HATs) and deacetylases (HDACs). There 
are at least 18 different HDACs encoded in the human 
genome, which are commonly divided into four classes, 
based on their equivalents in yeast.134 Class I includes 
HDAC1, 2, 3, and 8, class II/IIa include HDAC 4,5,6,7,9, 
and 10, and HDAC11 is the sole representative of class 
IV (134); all these HDACs are defined by a zinc ion 
site in the catalytic binding pocket which also explains 
why many classical HDAC inhibitor (HDACi) drugs, 
including  short-chain fatty acids (eg, butyrates), relat-
ed compounds (eg, sodium valproate) and trichostatin 
A,134 have a broad profile and act on multiple HDACs 
(note that the clinically effective doses of valproate, as 
a mood stabilizer and anticonvulsant, are below those 
required to induce histone hyperacetylation in brain).135 
Class III HDACs, which are also known as sirtuins, are 
defined by a different catalytic site, without the zinc ion 
but with nicotineamide dinucleotide (NAD+) as an es-
sential cofactor.134 Most, or perhaps all of the HDACs 
are thought to target various nuclear and cytoplasmic 
non-histone proteins for deacetylation.134 
 Interestingly, expression of the class I histone 
deacetylase, HDAC1 was increased (on average 30% to 
50%) in the prefrontal cortex and hippocampus of mul-
tiple SCZ postmortem brain cohorts.84,136-138 Therefore, 
abnormal HDAC1 expression in corticolimbic circuitry 
is a type of molecular pathology representative for a 
significant portion of subjects with SCZ. Furthermore, 
overexpression of Hdac1 in young adult mouse pre-
frontal cortex resulted in robust impairments in work-
ing memory, increased repetitive behaviors and abnor-
mal locomotor response profiles in novel environments, 
in conjunction with dysregulated expression of more 
than 300 transcripts, including several that are located 
in the MHC risk locus on chromosome 6p21.3-22.1. 138 
Interestingly, Hdac1 expression becomes successively 
downregulated during the course or postnatal develop-
ment, which could point to a neurodevelopmental etiol-

ogy for the observed excessive HDAC1 expression in 
adult SCZ.138 Interestingly, Hdac2 which like Hdac1 is 
a class I HDAC (see above) has also recently been im-
plicated in SCZ. Specifically, overexpression of Hdac2 
in a mouse prefrontal cortex resulted in SCZ-like phe-
notypes, including diminished prepulse inhibition.19 On 
the other hand, conditional deletion of Hdac2 in post-
natal forebrain neurons resulted in improved attention-
al set-shifting in the adult,139 which would suggest that 
alterations in expression or activity of HDAC2 result in 
very complex brain phenotypes, dependent on cell type 
and developmental stage.
 These findings would suggest that drug-induced in-
hibition of neuronal and/or glial HDACs could result 
in a therapeutic effect for SCZ. However, there are sig-
nificant challenges to explore this hypothesis in a clini-
cal context. As discussed in in a recent review,135 there 
are newly developed potent HDAC inhibitor drugs 
(HDACi) either approved or in clinical trials, such as 
the benzamide-based MS-275 (tradename Entinostat), 
which crosses the blood-brain barrier and when orally 
administered indeed exerts a therapeutic effect in pre-
clinical models of traumatic brain injury and neurode-
generation.140,141 However, these drugs, which are most-
ly used as anticancer agents, broadly inhibit multiple 
HDAC isoforms, lack CNS specificity, and, while not 
directly cytotoxic, nonetheless exhibit a safety profile 
that would mandate additional investigations prior to 
any experimental use in psychiatric patients.135 In ad-
dition, animal studies suggest that HDACi potentially 
augment therapeutic effects of atypical antipsychotic 
drugs19,142 and antidepressants.143-146 However, such 
types of combination treatments and polypharmacy 
would require even stricter safety criteria as compared 
with single drug regimens. We have argued that it may 
be premature to initiate trials with HDACi or other epi-
genetic drug targets in SCZ, but given that this is a rap-
idly evolving field, pending the availability of HDACi 
with favorable safety profiles, such trials should then 
given serious consideration.135 Interestingly, the human 
genome also encodes 50 proteins containing “bromodo-
mains,” which essentially recognize and bind acetylated 
histone lysine residues147 and are thought to provide an 
important scaffold to recruit transcriptional proteins. 148 
The interaction acetyl-lysine binding pocket of these 
proteins is considered “druggable” and already identi-
fied as potential therapeutic target in some cancers and 
inflammatory disease.148 Some of the bromodomain 
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containing proteins, including BRD1, are differentially 
regulated in cerebral cortex and hippocampus after 
electronconvulsive seizures149 and could provide impor-
tant drug targets to treat conditions such as SCZ that 
are associated with transcriptional dysregulation in the 
cerebral cortex and other forebrain areas.

Conclusion

An increasing number of genes encoding chromatin 
regulators are linked to mono- and polygenic forms of 
neurodevelopmental disease, including some cases with 
schizophrenia. Furthermore, it is generally accepted 
that a significant portion of the genetic risk architec-
ture of schizophrenia is positioned outside of coding 
sequences and in regulatory elements for gene expres-
sion (promoter, enhancers, repressors etc). Such types of 
regulatory elements are commonly defined by virtue of 
specific types of histone modifications and other types 
of epigenetic decorations, and therefore the combined 
epigenomic/genomic analyses in specific disease cases 

is expected to provide deep insights into the underlying 
molecular mechanisms of disease. Early findings from 
postmortem brain studies link some of the gene expres-
sion alterations in schizophrenia to changes in promoter-
bound DNA methylation and post-translational histone 
modifications. However, the field lacks larger-scale stud-
ies that map on a comprehensive and genome-wide scale 
the various epigenetic markings in diseased tissue. Such 
studies are urgently needed, particularly because a num-
ber of animal studies link developmental risk factors, 
including maternal immune activation during pregnancy 
and rearing conditions in the early postnatal period, and 
certain drugs and toxins, to lasting epigenetic alterations 
in offspring brain. Finally, many chromatin regulators are 
considered “druggable” and bear potential promise for 
novel treatments of schizophrenia and other neuropsy-
chiatric diseases.  o
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