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ABSTRACT
BCL2 robustly preserves mitochondrial integrity, hence inhibiting innate immune signaling and apoptotic 
cell death in several cell types. Here, we comment on our recent data demonstrating that BCL2 also limits 
the ability of dendritic cells to elicit adaptive immune responses, lending support to a universal immu-
nosuppressive function for the mitochondrial immune checkpoint.
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Main text

Mammalian mitochondria contain a number of molecules that, 
once released in the cytosol or in the extracellular space, mediate 
prominent immunostimulatory functions.1 In line with this 
notion, mitochondrial outer membrane permeabilization 
(MOMP) as regulated by the balance between pro- and antiapop-
totic proteins of the Bcl-2 family2 has been associated with the 
cytosolic accumulation of potentially interferogenic mitochon-
drial DNA (mtDNA) and/or mitochondrial RNA (mtRNA) in 
a number of cell types.3,4 However, cytochrome c, somatic (CYCS) 
release by permeabilized mitochondria generally drives the rapid 
activation of apoptotic caspases via apoptotic peptidase activating 
factor 1 (APAF1), resulting in the engagement of numerous 
immunosuppressive pathways, including (but not limited to) 
several mechanisms that directly quench mtDNA/mtRNA- 
driven type I interferon (IFN) signaling.5–8 Besides suggesting 
that at least part of the therapeutic effects of the FDA-approved 
BCL2 apoptosis regulator (BCL2) inhibitor venetoclax9 might 
originate from restored anticancer immunosurveillance, these 
data support the notion that simultaneously boosting MOMP 
while inhibiting apoptotic caspase activation may establish 
a metastable cell state in malignant cells associated with superior 
immunostimulatory effects. Recent data from our team demon-
strate that the antiapoptotic BCL2 also inhibits the ability of 
dendritic cells (DCs) to elicit adaptive immune responses,10 lend-
ing support to a universal immunosuppressive function for the 
mitochondrial immune checkpoint.

Using an immortalized precursor cell line that can differentiate 
into immature DCs resembling conventional type 1 DCs (cDC1s), 
we performed an unbiased screening to uncover genes that limit 

antigen presentation. BCL2 emerged from this genome-wide 
approach as Bcl2 deletion resulted in a gain-of-function effect. 
Specifically, the loss of Bcl2 endowed cDC1s with improved anti-
gen-presenting capabilities in vitro, an effect that was coupled with 
increased expression of co-stimulatory molecules and superior 
cytokine signaling. Notably, a similar phenotype could be 
observed upon pharmacological BCL2 inhibition with venetoclax, 
but venetoclax failed to improve the antigen-presenting functions 
of Bcl2-/- cDC1s. Moreover, superior antigen presentation as 
effected by cDC1s upon genetic or pharmacological inhibition of 
BCL2 could be reversed by blocking costimulatory DC surface 
molecules such as CD80 and CD86, as well as type I IFN 
receptors.10 Mechanistically, BCL2 inhibition prompted the accu-
mulation of mtDNA in the cytosol of cDC1s, culminating with 
type I IFN secretion downstream of cyclic GMP-AMP synthase 
(CGAS) and stimulator of interferon response cGAMP interactor 
1 (STING1) signaling, and an autocrine/paracrine transcriptional 
reprogramming impinging on type I IFN receptors.10

Driven by these findings, we wondered whether BCL2 inhibi-
tion would elicit a broad immunostimulatory response that could 
boost cancer immunosurveillance in vivo. We found that while 
venetoclax and navitoclax (another pharmacological BCL2 inhi-
bitor) fail to kill mouse fibrosarcoma MCA205 cells and lung 
adenocarcinoma TC1 cells in vitro, they robustly control the 
growth of MCA205 and TC1 lesions established subcutaneously 
in immunocompetent syngeneic hosts, unless the latter lack 
cDC1s, pointing to an immunological mechanism of action. In 
line with this notion, venetoclax improved the sensitivity of an 
endogenous mouse model of hormone receptor (HR)-positive 
breast cancer with superior translational potential11 to radiation 
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therapy (RT), a therapeutic interaction that was entirely abrogated 
by type I IFN receptor blockage.10 Moreover, venetoclax and 
navitoclax administered intravenously to mice were found to 
activate cDC1s in vivo, as indicated by increased expression of 
costimulatory factors, MHC Class II molecules and chemokine 
receptors. High-dimensional immunofluorescence cytometry of 
circulating cDC1s from patients with acute myeloid leukemia 
(AML) receiving venetoclax as part of their disease management 
confirmed the upregulation of same markers. Similar findings 
were obtained when venetoclax was applied to peripheral blood 
mononuclear cells (PBMCs) from healthy donors ex vivo.10 In 
summary, these mouse and human data convergently demon-
strate that pharmacological BCL2 inhibition activates cDC1s.

The intravenous adoptive transfer of tumor antigen-primed 
cDC1s mediated some antitumor activity in vivo in immuno-
competent mice bearing established syngeneic neoplasms, an 
immunotherapeutic effect that could be enhanced by (1) har-
nessing Bcl2-/- cDC1s rather than their wild-type counterparts 
or (2) pretreating cDC1s with venetoclax or navitoclax.10 This 
effect was particularly striking in Batf3-/- mice, which naturally 
lack cDC1s and hence exhibit compromised cancer immuno-
surveillance, but was lost in mice devoid of mature T cells. 
Notably, Bcl2-/- cDC1s displayed a transcriptional profile of 
migratory cDC1s, and actually infiltrated pulmonary neo-
plasms more efficiently than wild-type cDC1s.10 BCL2 inhibi-
tion thus conferred functional advantages to cDC1s, de facto 
enhancing their capacity to stimulate immune responses 
against tumor-associated antigens.

The anticancer effects of BCL2 inhibitors were further amplified 
by immune checkpoint blockade with a programmed cell death 1 
(PDCD1, best known as PD-1) inhibitor. Conversely, BCL2 

inhibitors failed to mediate anticancer activity in immunosup-
pressed hosts, including Batf3-/- mice, mice subjected to cDC1 
depletion upon repeated recombinant CYCS injections, as well as 
mice receiving type I IFN receptor-blocking or CD4+ and CD8+ 

T cell-depleting antibodies. Interestingly, venetoclax promoted the 
upregulation of PD-1 and other co-inhibitory receptors on CD8+ 

T cells in vivo, an effect that also depended on the presence of 
cDC1s.10 In summary, these findings suggest that the impact of 
BCL2 inhibition on BCL2-independent cancers, which do not 
undergo apoptosis upon venetoclax administration, is largely 
mediated via the immune system, notably through cDC1 activation.

Taken together, these findings demonstrate that the 
mitochondrial immune checkpoint (Figure 1) is also 
operational in immune cells, hence directly impacting the 
activation of adaptive immune responses.10 It is therefore 
tempting to speculate that BCL2 inhibitors such as vene-
toclax may aggravate conditions mechanistically linked 
with dysregulated type I IFN signaling downstream of 
mitochondrial instability, such as systemic lupus 
erythematosus.12 This possibility, however, has not yet 
been formally explored. Irrespective of this and other 
incognita, mitochondria stand out as critical regulators 
of numerous mammalian (cell) functions, spanning from 
bioenergetic and anabolic metabolism to cell death and 
immunity, likely reflecting their ancient evolutionary ori-
gin as endosymbionts of early proto-eukaryotic cells.
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Figure 1. The mitochondrial immune checkpoint. Mitochondrial integrity as promoted by antiapoptotic members of the Bbcl-2 protein family, such as BCL2 apoptosis 
regulator (BCL2) itself, not only prevents the activation of apoptotic caspases downstream of cytochrome c, somatic (CYCS) accumulation in the cytosol, but also limits 
the spillage of damage-associated molecular patterns (DAMPs) that (either in the cytosol or in the extracellular space) mediate potent immunostimulatory effects. These 
molecules include (but are not limited to) ATP, mitochondrial nucleic acids, formylated peptides, reactive oxygen species (ROS) and cardiolipin. Importantly, the 
mitochondrial immune checkpoint is operational in a number of cell types including immune cells, de facto controlling both innate and adaptive immune responses. 
CGAS, cyclic GMP-AMP synthase; IFIH1, interferon induced with helicase C domain 1; FPR1, formyl peptide receptor 1; P2RX7, purinergic receptor P2X 7; P2RY2, 
purinergic receptor P2Y2; RIGI, RNA sensor RIG-I; mtDNA, mitochondrial DNA; mtRNA, mitochondrial RNA; STING1, stimulator of interferon response cGAMP interactor 1; 
TLR9, toll-like receptor 9.
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