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Single-photon multi-ports router 
based on the coupled cavity 
optomechanical system
Xun Li, Wen-Zhao Zhang, Biao Xiong & Ling Zhou

A scheme of single-photon multi-port router is put forward by coupling two optomechanical cavities 
with waveguides. It is shown that the coupled two optomechanical cavities can exhibit photon blockade 
effect, which is generated from interference of three mode interaction. A single-photon travel along the 
system is calculated. The results show that the single photon can be controlled in the multi-port system 
because of the radiation pressure, which should be useful for constructing quantum network.

Quantum router to combine quantum channels with quantum nodes can create a quantum network so as to dis-
tribute quantum information. Recently, many theoretical proposals and experimental demonstrations of a quan-
tum router have been carried out in various systems. One-dimensional single-photon efficient router in cavity 
QED system has been realized1. By employing the EIT effect to guarantee single photon transportation, Io-Chun 
Hoi et al.2 achieved a single-photon router in microwave regime. Different kinds of schemes of multi-port router 
have also been proposed, for instance cyclic three-level Δ​-type atom system is used to route photon into two cou-
pled cavity arrays3,4. Linear-optical system5–8 also is regarded as a rational candidate of quantum router because 
of easy-control and easy-achieve property despite lack of capacity of routing single photon. Recently, people focus 
their vision on mesoscopic scale devices on account of its nonlinearity and controllability, such as optomechanical 
system9 and cavity electromechanical system10.

Photon-blockade phenomenon resulted from nonlinearity allows only one photon existence, and the sec-
ond photon will be prohibited, which can be used to generate single photon source or to ensure a single photon 
processing. Cavity optomechanical systems, besides its potential application in detecting gravity waves11,12, in 
studying quantum-to-classical transitions13, in performing high precision measurements14–17, in entanglement 
generation18–20 and preservation21 and in processing quantum information16,22–25, are of nonlinearity26–32. But 
this nonlinear strength proportional to g2/ωm is limited by the condition g (the coupling strength of radiation 
pressure) less than ωm (the frequency of the mechanical oscillator), therefore, a lot of effort is devoted to enhance 
the nonlinearity, for instance, adding atoms33, introducing quantum dot34, using coupled cavity optomechanical 
system27 and employing three-mode mixing to generate effective photon blockade35.

In this paper, we put forward a scheme by coupling two cavity optomechanical system. We show that our 
system can be effectively equal to three-mode interaction35 and can exhibit photon blockade. Then we construct 
four output ports by coupling wave guide to the two-cavity-optomechanical system. Our research show that our 
system can work as multiple output ports router under the assistant of mechanical mode, which provide a poten-
tial application for the cavity optomechanical system in multiple router.

Results
In this part, we introduce our model, illustrate the photon-blockade effect of this two-cavity-optomechanical 
waveguide coupled system and study the transport of photons of waveguide under photon-blockade condition.

Model and effective interaction.  We consider the two optomechanical cavities coupled with hop-
ping coefficient J, and the two optomechanical cavities are side-coupled to the fibers respectively. The con-
figuration of the system is shown in Fig. 1a, which is similar with ref. 36 where they utilized the two coupled 
whispering-gallery-mode (WGM) microtoroids coupled to two tapered fibers to experimentally realize parity–
time-symmetric optics, but the mechanical modes are ignored. Taking the mechanical modes into consideration, 
we write the Hamiltonian as
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where Ĥcav describes the free energy of the cavity, ˆ ˆa a( )1 2  and ˆ ˆ† †a a( )1 2  represent the annihilation and creation oper-
ators of cavity modes with the same frequency ω, and the two cavities are pumping with classical field with fre-
quency ωL and intensity ε1, ε2. Ĥom represents the energy of the two mechanical oscillators with frequency ωm and 
their coupling with the cavity fields induced by radiation pressure, where the ˆ ˆb b( )1 2  and ˆ ˆ† †

b b( )1 2  are annihilation 
and creation operators of mechanical oscillators, g is coupling between first (second) cavity field and first (second) 
mechanical oscillator. The Hamiltonian Ĥ f  in Eq. (1) can be written as
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which expresses the two cavity fields coupling with the fibers, where Ô jk = =ˆj O r l( 1, 2; , ) and ωk represent 
annihilation operators and frequency of the fibers with wave number k, and ξ is the strength of coupling. In the 
frame rotating with ∫ω= + + ∑ += −∞
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where Δ​k =​ ωk−​ωL. Now, we introduce the operators
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Figure 1.  Schematic configuration of the single-photon router. (a) The two toroidal cavities with mechanical 
modes coupling to waveguide. (b) The four ports router with quasi-mode. The router consist of optomechanics 
as a single photon source, fibers, phase delayer with delay phase ϕ = π

2
 and beam splitters to change photon 

from normal mode to quasi-mode.
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Thus, Ĥ f  can be rewritten as
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We see that the cavity modes are decoupled with the fiber mode +ĉ k and −ĉ k. We switch into the picture rotat-
ing with ∫ ω= − − + ∆ + ++ +
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ˆ ˆ ˆ ˆ† †H U H U iU Ui i , we can rewrite Eq. (5). Considering the condition ω ε+J g{ , } { , }m  and choosing param-
eters ωm =​ 2J, we have the Hamiltonian

ε= ∆ + + + + +− + + − − − − − + − − + − −
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † † † † †H a a a a a a g a a b a a b( ) ( )

2
( ),

(8)si

and

∫
∫ξ

= ∆ + ∆ + +

+ + + . . .

∞

+ + − − + + − −

∞

+ + − −

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

† † † †

† †

H dk d d d d c c c c

dk a d a d h c

[ ( )]

2 [ ] (9)

fi kJ k k k k k k k k k

k k

0

0

where Δ ​kJ = ​ Δ ​k + ​ 2J .  Due to rotat ing-wave approximation,  the terms ε ++ +
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tion are ignored. The Hamiltonian Eq. (8) indicate the three-body interaction between cavities and the oscillator, 
which is exact the same with ref. 35 where the nonlinearity has been analyzed. In a single cavity optomechanical 
system, the effective photon-photon interactions g2/ωm is suppressed by the condition that the mechanical fre-
quency is much larger than the coupling g, i.e., ω  gm , while the three-body interaction (8) has its advantage35 
that photons in the two optical modes can be resonantly exchanged by absorbing or emitting a phonon via 
three-mode mixing; therefore, the restraint ω  gm  can be overcome. Since our system can be simplified as35, one 
can see that the nonlinearity should be exist and does not restrict by the condition ω  gm . Most importantly, the 
Hamiltonian Eqs (8) and (9) exhibit clearly the conversion between the quasi-mode between +â  and −â  under the 
witness of −b̂  so that we can realize the exchange between +d̂ k and −d̂ k. Therefore, with the interaction, we can 
potentially realize four ports router.

Photon Blockade.  Now we first investigate the nonlinearity of the photons within the cavity. The dynamics 
of the system obeys the master equation
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and dissipation rate γm, i =​ 1, 2. The fibers can be considered as a part of environment of the cavity modes with the 
interaction (4), thus, the interaction between the cavities and the fibers can be reduced to the term ˆ ˆLai

. Similarly, 
the interaction (9) also can be reduced into Lindblad form. Because of the larger frequency difference (ω ω m), 
the cavity fields can be treated as in environment with zero thermal photon while for the mechanical oscillators 
they are involved in thermal reservoir. To characterize the nonlinearity of optical modes, we employ the 
equal-time second-order correlation functions

=
〈 〉

〈 〉〈 〉
.

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

† †

† †g
a a a a

a a a a
(0)

(11)
ij

i j j i

i i j j

(2)
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(2)  denotes the self-correlation, and g (0)ij

(2)  (i ≠​ j) express the 
cross-correlation. If the correlation function <g (0) 1ij

(2)  we say the photon anti-bunching, and the limit 
=g (0) 0i

(2)  corresponds to the thorough photon blockade effect, which means that only one photon can exist, 
and the another photon will be blockaded.

Now, we show the nonlinearity by comparing the numerically solution of the master equation Eq. (10) with 
that ′ + ′ˆ ˆH Hcav om are substituted with effective Hamiltonian Eq. (8) where the subscripts i =​ 1, 2 for the superop-
erators ˆ ˆLai

 and ˆ ˆDbi
 are easily changed to i =​ −​, +​ because we assume the two cavity modes as well as mechanical 

modes with equal decay rate respectively. As shown in Fig. 2, we see that the solution of master equation with the 
effective Hamiltonian coincides with that of master equation with original Hamiltonian, which show that the 
effective Hamiltonian method is reliable. We will employ the effective Hamiltonian Eq. (8) in the calculation of 
the photon router procession. More importantly, we observe that g (0)ij

(2)  (i, j =​ −​, +​) achieves their minimum 
values around ∆ = ±−

g
2

, which means that the system can suppress the simultaneous two-photon creations in 
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any of the mode −â  and +â , especially the cross mode between −â  and +â . That is to say, in the coupled two cavity 
optomechanical system, there is most possible only one photon existence. Thus, the property can be potentially 
used as a single photon router if we can control it. The photon-blockade is resulted from three-body interactions 
that lead to destructive interference of optical modes. The conclusion is also obtained in ref. 35 where the destruc-
tive interference is analyzed with eigenstate of the Hamiltonian Eq. (8). The three-body interaction is still depend-
ent on the coupling g see Eq. (8), therefore the strong coupling strength is still welcome. But the nonlinearity is 
not proportional to 

ω
g

m

2
, which means that the nonlinearity is not limited by the condition ωg m.

Single-photon router.  Quantum router is a hinge device for large-scale network communications. How 
to design quantum router arouse a lot of interests1–5,9,10. To satisfy the requirements of quantum information, 
a single-photon quantum router will be demanded. Photon blockade effect is an effective method to realize the 
single-photon router. As we have shown in the Fig. 2, there is a good photon blockade phenomenon in this 
optomechanical system. We can reasonably assume that the device is only allow a single photon transport. 
Therefore we will only consider a single excitation in the system.

Now, we employ the two coupled optomechanical cavities to couple to two waveguide (CRW) shown in 
Fig. 1b. In order to employ the quasi-mode, we introduce medium as phase shifter and beam splitters to generate 
the quasi-mode. One can easy deduce that the four outputs will satisfy the relation Eq. (6). We now calculate the 
photon number of the four ports. Under the Hamiltonian Eqs  (8) and (9), the basis is denoted as 
| 〉− + − +

ˆ ˆn n n n n, , , ,b d dk k
, thus we can write the wave function with only a single excitation as
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In terms of the left- and right-propagation modes, if we assume a photon packet is incident onto the cavity 
from the port −r̂ k, i.e., ∫ µΨ = ∅
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1 , 
where ε and G1 are the linewidth and normalization coefficient of Lorentzian spectrum. The wave function obey 
Schrodinger equation with Hamiltonian = +ˆ ˆ ˆH H Hs f . In the long-time limit,we can find the solution of wave 
function
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The details of calculation can be found in part methods. Therefore, the output photon number of the four 
ports are obtained as
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Figure 2.  (a) Plot a relation between correlation function −−g (0)(2)  and detuning Δ​−, blue dot for solve master 
equation with effective Hamiltonian red dot for original Hamiltonian. (b) Correction g(2)(0) of a+ as function of 
Δ​−. (c) Cross correlation function 

−+g (0)(2)  versus detuning Δ​−. Other parameters are J =​ 2ωm, g =​ 0.03ωm, 
κ =​ 10−3ωm, nmth =​ 0.2, γm =​ κ/200, ε1 =​ 1.1 ×​ 10−4ωm, ε2 =​ −​ε1.
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with  δ γ ε= ′ ± ± +±± g i/ 2 , where δ′​ =​ δ−​Δ​− and γ =​ 2πξ2. The detail can be seen in the section of 
method. We can clearly see that if g =​ 0, = =

+ +
N N 0l

out
r

out( ) ( ) , and ≠
− −

N N( ) 0r
out

l
out( ) ( ) , which means that without 

the mechanical oscillator we only have two-port router, and the optomechanical coupling is necessary for us to 
realize multi-port router.

We plot the output photon number of the four ports as a function of δ′​ for several values of g in Fig. 3(a–c). If 
g =​ 0 (means without the coupling of radiation pressure), when δ′​ =​ 0 (δ =​ Δ​− denotes that the input photon is on 
resonant with the cavity fields), the single photon will almost transmit into the left port −l̂ k which was equivalent 
to a common cavity waveguide coupled system which present a perfect reflection at resonance region and only 
one peaks (valleys) with linewidth 2γ showing in blue line of Fig. 3(a,b). With the increasing of g, the photon will 
be partially transmitted and partially be reflected, but they are still of one peak (valley). However, with the 
increasing the values of g, for example g =​ 0.05ωm, the single peak (valley) is split into two peaks (valleys) because 
the movable mirror participates the three-body interaction so that we can see the symmetry peaks (valleys). Most 
importantly, the one port input signal can be distributed into four ports see Fig. 3(a–c), while for g =​ 0, we can 
receive only two ports signals 

−
N l  and 

−
N r . Therefore, with the assistant of the two coupled cavity optomechanical 

system, we can realize multi-port router. We parcel the four-port output into two parts +
+ +

N Nl r , +
− −

N Nl r  
because they denote the difference whether the optomechanical coupling is included or not, seeing Fig. 3(d). 
Though we can transport the photon via the optomechanical coupling, the probability of transportation 
+

+ +
N Nl r  is still less than +

− −
N Nl r  under the group of the parameters, which means that the optomechanical 

coupling constant g strong affects the router process.
Besides the optomechanical interaction, the cavity-fiber coupling should also have important influence on the 

router process. As shown in Fig. 4(a–c), we plot the multi-port output photon number under the same optome-
chanical coupling g =​ 0.02ωm but with different cavity-fiber coupling constants γ. For γ =​ 0.05ωm, we can observe 
the split of peaks (valleys). However, with the increasing of γ, even with the same optomechanical interaction g, 
one only can see single peak (valley), which means that strong cavity-fiber coupling can suppress the function of 
optomechanical coupling. That is to say, there is a competitive relation between and cavity-fiber interaction and 

Figure 3.  (a–c) Photon number Nr−, Nl−, 
+

N r  as function of δ′​ for several values of g where γ =​ 0.01ωm.  
(d) + ++

N Nrl  and +
− −

N Nl r  as function of δ′​ with g =​ 0.04ωm. It is naturally satisfied normalized condition 
+ + + =

+ + − −
N N N N 1l r l r . And ε =​ 0.0001ωm all the parameters were normalized by ωm.
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the optomechanical coupling. In order to make clear the match relation, we plot optimized 
+

N r  
+

N( )l  as function 
of the parameters g and γ, shown in Fig. 4(d). We observe that when there is an optimized value 

+
N r  

+
N( )l  along 

the line γ = g
2

, which exhibit that the balance between cavity waveguide coupling and optomechanical interac-
tion is helpful to the multi-port router procession.

Conclusion
We put forward a scheme to realize multi-port router using two coupled cavity optomechanical system. We first 
demonstrate that our system with the Hamiltonian Eq. (8) can be effectively equal to the three-body interaction 
between cavities and the oscillator which has been shown in ref. 35. The nonlinearity in the three-mode mixing is 
not proportion to g2/ωm and can overcome the restraint ω  gm . We also numerically show the nonlinearity and 
correction of the effective interaction. By coupling the two coupled cavity optomechanical system to waveguide, 
we calculate the output photon number of the multi-port router. Our results show that the presented system can 
work as multi-port router under the witness of the optomechanical coupling. Since the two coupled optomechan-
ical cavity is similar with the experiment36 where the optomechanical coupling is ignored. If the optomechanical 
coupling is strong enough, our scheme should be realizable.

Methods
Router.  Now we solve the Schrodinger equation of this system with Hamiltonian = +ˆ ˆ ˆH H Hs f  and wave 
function Eq. (12).

∫
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Figure 4.  (a–c) Photon number Nr−, Nl−, 
+

N r  as function of δ′​ for several values of γ =​ 0.005ωm, 0.02ωm, 0.03ωm 
represented by blue, red, green line respectively, where g =​ 0.02ωm. (d) Photon number 

+
N l  

+( )N r  versus γ and g 
when δ′​ =​ 0. The dash black line highlight the maximum of output. G1 is a normalization coefficient to guarantee 
+ + + =

+ + − −
N N N N 1l r l r , ε =​ 0.0001ωm all the parameters were normalized by ωm.
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We assume that initially the cavity is in the vacuum state, and a single photon with the waveguide, i.e., |0, 0, 0, 
1k, 0〉​ is prepared in a wave packet with a Lorentzian spectrum, the initial condition reads µ =

δ ε∆ − +
(0)k

G
ik

1 . 
Using Laplace transformation, the differential equations Eq. (17) become
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In the long-time limit, the coefficients μk(∞​) and ηk(∞​) are obtained after inverse Laplace transformation as

µ
γ

γ
µ

η γ
γ

µ

∞ =
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where γ =​ 2πξ2 denoting the cavities loss into the waveguide. If there is no the other decay except the exchange 
between the cavities and the waveguide, γ will be equal to the decay rate of the cavity which we have mentioned in 
Fig. 2. In terms of the left- and right-propagation modes, if we assume a photon packet is incident onto the cavity 
from the port r−k, then the initial state can be written as

∫ ∫µ µ|Ψ 〉 = |∅〉 = + |∅〉
∞

−

∞

− −ˆ ˆ ˆdk r dk d c(0) (0) 1
2

(0)( ) ,
(20)k k k k k

0 0

which means that the single photon input from the port r−k can be considered as a superposition between a qua-
siparticle −d̂ k and a quasiparticle −ĉ k. In the long-time limit, the wave function becomes under the Hamiltonian 
Eqs (8) and (9)

∫ µ µ|Ψ → ∞ 〉 = + + ′ + |∅〉
∞ − ∆

− − − −
− ∆

+ + + +ˆ ˆ ˆ ˆt dk e r r l l e r r l l( ) [ (0) ( ) (0) ( )]k
i t

k k k k k
i t

k k k k
0

k kJ

where the first bracket with the factor − ∆e i tk  can survive without Hamiltonian Eq. (8), while the second bracket 
with the factor − ∆e i tkJ  survive only under the condition Eq. (8) existence. In other words, the photon on the ports 
r−k and l−k can be detected even without the mechanical mode, however, if we would like to obtain photon on the 
port r+k and l+k, the coupling between the mechanical mode and cavity field is necessary. Then we obtain

γ γ
γ

γ γ
γ

γ
γ

=
+ ∆ + ∆ + −
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=
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k
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k
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2 2

2 2 2
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2 2

and the output photon number in Eqs (14), (15) and (16).

References
1.	 Aoki, T., Parkins, A., Alton, D., Regal, C., Dayan, B., Ostby, E., Vahala, K. & Kimble, H. Efficient Routing of Single Photons by One 

Atom and a Microtoroidal Cavity. Phys. Rev. Lett. 102, 083601 (2009).
2.	 Hoi, I. C., Wilson, C. M., Johansson, G., Palomaki, T., Peropadre, B. & Delsing, P. Demonstration of a single-photon router in the 

microwave regime. Phys. Rev. Lett. 107, 073601 (2011).
3.	 Zhou, L., Yang, L. P., Li, Y. & Sun, C. P. Quantum routing of single photons with a cyclic three-level system. Phys. Rev. Lett. 111, 

103604 (2013).
4.	 Lu, J., Zhou, L., Kuang, L. M. & Nori, F. Single-photon router: Coherent control of multichannel scattering for single photons with 

quantum interferences. Phys. Rev. A 89, 013805 (2014).
5.	 Lemr, K., Bartkiewicz, K., Černoch, A. & Soubusta, J. Resource-efficient linear-optical quantum router. Phys. Rev. A 87, 062333 

(2013).
6.	 Yan, W.-B., Liu, B., Zhou, L. & Fan, H. All-optical router at single-photon level by interference. EPL (Europhysics Lett.) 111, 64005 

(2015).
7.	 Chen, X.-Y., Zhang, F.-Y. & Li, C. Single-photon quantum router by two distant artificial atoms. J. Opt. Soc. Am. B 33, 583–588 

(2016).
8.	 Yuan, X. X., Ma, J. J., Hou, P. Y., Chang, X. Y., Zu, C. & Duan, L. M. Experimental demonstration of a quantum router. Sci. Rep. 5, 

12452 (2015).
9.	 Agarwal, G. S. & Huang, S. Optomechanical systems as single-photon routers. Phys. Rev. A 85, 021801 (2012).



www.nature.com/scientificreports/

8Scientific Reports | 6:39343 | DOI: 10.1038/srep39343

10.	 Jiang, C., Chen, B. & Zhu, K.-D. Demonstration of a single-photon router with a cavity electromechanical system. J. Appl. Phys. 112, 
033113 (2012).

11.	 Ma, Y., Danilishin, Shtenfan L., Zhao, Chunnnong, Miao, Haixing, Korth, W. Z., Chen, Yanbei, Ward, Robert L. & Blair, D. G. 
Narrowing the Filter-Cavity Bandwidth in Gravitational-Wave Detectors via Optomechanical Interaction. Phys. Rev. Lett. 113, 
151102 (2014).

12.	 LIGO Scientific Collaboration. Observation of a kilogram-scale oscillator near its quantum ground state. New J. Phys. 11, 073032 
(2009).

13.	 Ghobadi, R., Kumar, S., Pepper, B., Bouwmeester, D., Lvovsky, a. I. & Simon, C. Optomechanical Micro-Macro Entanglement. Phys. 
Rev. Lett. 112, 080503 (2014).

14.	 Zhang, K., Bariani, F., Dong, Y., Zhang, W. & Meystre, P. Proposal for an Optomechanical Microwave Sensor at the Subphoton Level. 
Phys. Rev. Lett. 114, 1–6 (2015).

15.	 Barzanjeh, S., Guha, Saikat, Weedbrook, Christian, Vitali, David, Shapiro, Jeffrey H. & Pirandola, Stefano Microwave quantum 
illumination. Phys. Rev. Lett. 114, 1–5 (2015).

16.	 Kippenberg, T. J., Schliesser, A. & Gorodetsky, M. L. Phase noise measurement of external cavity diode lasers and implications for 
optomechanical sideband cooling of ghz mechanical modes. New Journal of Physics 15, 015019 (2013).

17.	 Chen, Y. Macroscopic quantum mechanics: theory and experimental concepts of optomechanics. J. Phys. B At. Mol. Opt. Phys. 46, 
104001 (2013).

18.	 Vitali, D. et al. Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98, 1–4 (2007).
19.	 Bai, C.-H., Wang, D.-Y., Wang, H.-F., Zhu, A.-D. & Zhang, S. Robust entanglement between a movable mirror and atomic ensemble 

and entanglement transfer in coupled optomechanical system. Sci. Rep. 33404 (2016).
20.	 Mu, Q., Zhao, X. & Yu, T. Memory effect induced macroscopic-microscopic entanglement. Phys. Rev. A 94, 012334 (2016).
21.	 Cheng, J., Zhang, W.-Z., Zhou, L. & Zhang, W. Preservation Macroscopic Entanglement of Optomechanical Systems in non-

Markovian Environment. Sci. Rep. 6, 23678 (2016).
22.	 Zhang, W.-Z., Cheng, J., Liu, J.-Y. & Zhou, L. Controlling photon transport in the single-photon weak-coupling regime of cavity 

optomechanics. Phys. Rev. A 91, 063836 (2015).
23.	 Li, W., Jiang, Y., Li, C. & Song, H. Parity-time-symmetry enhanced optomechanically-induced-transparency. Sci. Rep. 6, 31095 (2016).
24.	 Dalafi, A., Naderi, M. H., Soltanolkotabi, M. & Barzanjeh, S. Controllability of optical bistability, cooling and entanglement in hybrid 

cavity optomechanical systems by nonlinear atom–atom interaction. J. Phys. B At. Mol. Opt. Phys. 46, 235502 (2013).
25.	 Xu, X.-W. & Li, Y. Controllable optical output fields from an optomechanical system with mechanical driving. Phys. Rev. A 92, 

023855 (2015).
26.	 Gong, Z. R., Ian, H., Liu, Y. X., Sun, C. P. & Nori, F. Effective hamiltonian approach to the Kerr nonlinearity in an optomechanical 

system. Phys. Rev. A 80, 065801 (2009).
27.	 Ludwig, M., Safavi-Naeini, A. H., Painter, O. & Marquardt, F. Enhanced Quantum Nonlinearities in a Two-Mode Optomechanical 

System. Phys. Rev. Lett. 109, 063601 (2012).
28.	 Liao, J.-q., Law, C. K., Kuang, L.-m. & Nori, F. Enhancement of mechanical effects of single photons in modulated two-mode 

optomechanics. Phys. Rev. A 92, 013822 (2015).
29.	 Liu, Y.-L., Liu, Z.-P. & Zhang, J. Coherent-feedback-induced controllable optical bistability and photon blockade. J. Phys. B At. Mol. 

Opt. Phys. 48, 105501 (2015).
30.	 Flayac, H., Gerace, D. & Savona, V. An all-silicon single-photon source by unconventional photon blockade. Sci. Rep. 5, 11223 (2015).
31.	 Rabl, P. Photon blockade effect in optomechanical systems. Phys. Rev. Lett. 107, 063601 (2011).
32.	 Wang, H., Gu, X., Liu, Y.-x., Miranowicz, A. & Nori, F. Tunable photon blockade in a hybrid system consisting of an optomechanical 

device coupled to a two-level system. Phys. Rev. A 92, 033806 (2015).
33.	 Zhou, L., Han, Y., Jing, J. & Zhang, W. Entanglement of nanomechanical oscillators and two-mode fields induced by atomic 

coherence. Phys. Rev. A 83, 052117 (2011).
34.	 Tang, J., Geng, W. & Xu, X. Quantum interference induced photon blockade in a coupled single quantum dot-cavity system. Sci. Rep. 

5, 9252 (2015).
35.	 Kómár, P., Bennett, S., Stannigel, K., Habraken, S., Rabl, P., Zoller, P. & Lukin, M. Single-photon nonlinearities in two-mode 

optomechanics. Phys. Rev. A 87, 013839 (2013).
36.	 Chang, L., Jiang, Xiaoshun, Hua, Shiyue, Yang, Chao, Wen, Jiangming, Jiang, Liang, Li, Guanyu, Wang, Guanzhong & Xiao, Min. 

Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators. Nature Photonics 8, 524–529 (2014).

Acknowledgements
We would like to thank Wei-bin Yan for helpful discussions. This work was supported by the NSF of China under 
Grant No. 11474044.

Author Contributions
X.L. and L.Z. designed the research, X.L. did the analytic calculations, W.Z.Z. provided help in numerical 
calculation and prepared figures, B.X. had an important contribution to modify manuscript, L.Z. revised the 
manuscript and provided overall theoretical support.

Additional Information
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Li, X. et al. Single-photon multi-ports router based on the coupled cavity 
optomechanical system. Sci. Rep. 6, 39343; doi: 10.1038/srep39343 (2016).
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2016

http://creativecommons.org/licenses/by/4.0/

	Single-photon multi-ports router based on the coupled cavity optomechanical system

	Results

	Model and effective interaction. 
	Photon Blockade. 
	Single-photon router. 

	Conclusion

	Methods

	Router. 

	Acknowledgements
	Author Contributions
	﻿Figure 1﻿﻿.﻿﻿ ﻿ Schematic configuration of the single-photon router.
	﻿Figure 2﻿﻿.﻿﻿ ﻿ (a) Plot a relation between correlation function and detuning Δ​−, blue dot for solve master equation with effective Hamiltonian red dot for original Hamiltonian.
	﻿Figure 3﻿﻿.﻿﻿ ﻿ (a–c) Photon number Nr−, Nl−, as function of δ′​ for several values of g where γ =​ 0.
	﻿Figure 4﻿﻿.﻿﻿ ﻿ (a–c) Photon number Nr−, Nl−, as function of δ′​ for several values of γ =​ 0.



 
    
       
          application/pdf
          
             
                Single-photon multi-ports router based on the coupled cavity optomechanical system
            
         
          
             
                srep ,  (2016). doi:10.1038/srep39343
            
         
          
             
                Xun Li
                Wen-Zhao Zhang
                Biao Xiong
                Ling Zhou
            
         
          doi:10.1038/srep39343
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 The Author(s)
          10.1038/srep39343
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep39343
            
         
      
       
          
          
          
             
                doi:10.1038/srep39343
            
         
          
             
                srep ,  (2016). doi:10.1038/srep39343
            
         
          
          
      
       
       
          True
      
   




