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ABSTRACT: The emergence in late 2019 of the coronavirus SARS-CoV-2 has resulted in the
breakthrough of the COVID-19 pandemic that is presently affecting a growing number of
countries. The development of the pandemic has also prompted an unprecedented effort of the
scientific community to understand the molecular bases of the virus infection and to propose
rational drug design strategies able to alleviate the serious COVID-19 morbidity. In this context,
a strong synergy between the structural biophysics and molecular modeling and simulation
communities has emerged, resolving at the atomistic level the crucial protein apparatus of the
virus and revealing the dynamic aspects of key viral processes. In this Review, we focus on how
in silico studies have contributed to the understanding of the SARS-CoV-2 infection mechanism
and the proposal of novel and original agents to inhibit the viral key functioning. This Review
deals with the SARS-CoV-2 spike protein, including the mode of action that this structural
protein uses to entry human cells, as well as with nonstructural viral proteins, focusing the
attention on the most studied proteases and also proposing alternative mechanisms involving
some of its domains, such as the SARS unique domain. We demonstrate that molecular modeling and simulation represent an
effective approach to gather information on key biological processes and thus guide rational molecular design strategies.

KEYWORDS: SARS-CoV-2, molecular modeling, structural biophysics, molecular dynamics, free-energy methods, docking, COVID-19,
drug design, membrane fusion, spike protein, proteases, SARS unique domain, coronavirus

■ INTRODUCTION

A new coronavirus, which emerged in China at the end of 2019
and was soon named SARS-CoV-2, was recognized as the
causative agent of severe acute respiratory syndrome (SARS)
that in some cases evolved into severe pneumonia.1−3 Later, it
was also recognized that SARS-CoV-2 was able to cross the
interspecies barrier4 and was also characterized by a high
transmissibility between humans.5 SARS-CoV-2 has been
recognized as the agent responsible for the coronavirus disease
19 (COVID-19), which, after harshly striking Asia and later
Europe and the America, has presently evolved into a
widespread pandemic.
Although the mortality ratio of COVID-19 is relatively low,6

<2% in younger patients, it increases to 40−60% in subjects
older than 70. The high contagion rate of COVID-19 is also
favored by the fact that some patients are totally
asymptomatic7,8 and hence actively participate in the virus
diffusion. Because of the lack of a vaccine or an efficient
antiviral treatment, almost all countries have introduced social
distancing measures to palliate the virus diffusion that are
significantly affecting both economic and social well-being.9

The scientific community has been particularly active in
answering the call and taking the challenge of characterizing
the main mechanisms related to the COVID-19 diffusion, as

will be clearly demonstrated in the present Review. In addition
to the modeling of the macroscale epidemic diffusion and of
the effects of social distancing on its spread,10−12 a particular
focus has also been devoted to the elucidation of the molecular
mechanisms related to the SARS-CoV-2, including the
infection of the host cell and its reproduction. Indeed, such
a characterization is propaedeutic to rational drug design and
repurposing strategies that should result in the rapid
development of efficient antiviral agents. Much effort has
been put into the resolution of the key protein structure of the
SARS-CoV-2 capsid as well as of the adducts leading to the
interaction with human receptors, mostly performed either via
X-ray diffraction or via cryo-electron microscopy (Cry-
oEM).13−16

Some classes of proteins are particularly important in
dictating the global behavior of the virus, its life cycle, and,
ultimately, its pathogenicity and infectivity rate.17,18 The
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recognition of the host cell and its entry are mediated by the
SARS-CoV-2 spike (S) protein.19,20 The latter is a trimeric
multidomain glycoprotein that is able to specifically recognize
the human angiotensin converting enzyme 2 (ACE2) via its
receptor binding domain (RBD).21 The conformational
changes induced by the RBD/ACE2 interactions ultimately
result in the viral and cellular lipid membrane fusion and hence
in cell infection. Consequently, the RBD and ACE2 represent
ideal targets to counteract the SARS-CoV-2 infection.
Furthermore, considering that ACE2 is present in lung cells
and is involved in the regulation of blood pressure, ACE2
impairment by the coronavirus is one of the possible causes of
severe respiratory stress and possible complications in
hypertense patients.
After cell entry, the viral RNA is translated into nonfunc-

tional global polyproteins that should be precisely processed to
yield the separate final structural proteins (as the S protein)
and nonstructural proteins (Nsp’s). This fundamental step is
assured by proteases,22 which are themselves Nsp’s, and
because of the strategic role of this step in assuring the
maturation and replication of the virus, it also represents a key
therapeutic target to inhibit SARS-CoV-2 propagation. More
specifically, two main proteases have been identified in SARS-
CoV-2, the 3-chymotrypsin-like protease (3CLpro) and the
papain-like protease (PLpro).23,24 Whereas the catalytic
activity of both proteases is similar, important structural
differences should be pointed out, with their active form being
either dimeric or monomeric. Furthermore, some proteases
may also interact with ubiquitine-like sites, becoming involved
in altering the regulation of the cellular signaling, which
hampers the response of the host immune system.
The capacity of this coronavirus in eluding the innate

immune response of the host is one of the reasons for the high
pathogenicity and transmissibility. This capacity can be
partially ascribed to the role played by large Nsp’s, which are
recognized to interact with the ribosome, altering the
translation of the host cell.25,26 Nsp’s are generally multi-
domain proteins, and it has been pointed out that a specific
domain present in SARS viruses, named the SARS unique
domain (SUD), contributes to eluding the immune response
by interacting with host mRNA, either in its native
conformation or in a guanine quadruplex (G-quadruplex)

arrangement.27,28 Potential drugs able to interfere with such
mechanisms could be instrumental in boosting the capacity of
the host cell to eliminate the viral material.
From the previous brief and largely nonexhaustive summary,

it is clear that possible drug targets are diverse, from both a
structural and a functional point of view. In this context, the
possibilities offered by up-to-date molecular modeling and
simulation approaches are of great interest and value. Indeed,
high-throughput molecular simulations, and, in particular, all-
atom molecular dynamics (MD), allow us to represent
complex phenomena taking place between complex systems
at an atomic-scale resolution. They have proven to be
extremely efficient in modeling the interactions and the related
conformational reorganization between proteins, nucleic acids,
and lipid membranes.29−31 Molecular simulations have allowed
us to resolve the complex processes related to, among others,
enzymatic catalysis32−35 and DNA lesion production and
repair36−40 and to unravel the key mechanisms of passive and
active membrane transporters.41−46 These successes have also
been made possible by the impressive development of
computational algorithms, including enhanced sampling and
free-energy methods,47 which nowadays allow us to simulate
the behavior of systems of hundreds of thousands of atoms up
to the microsecond time scale.31,48

Furthermore, large-scale simulations based on the molecular
modeling approach, providing further insight into the structure
and functions of SARS-CoV-2 and hence offering an original
strategy to counteract its actions, have recently been reported
by Amaro,49,50 Chodera,51,52 and collaborators in different
reviews and perspectives.
In the present Review, we critically analyze some of the most

important results obtained by molecular modeling and
simulations in understanding the key functions of SARS-
CoV-2 proteins and in proposing possible novel antiviral
agents, from both a methodological and a biological
perspective. This Review also illustrates the success and
maturity of computational approaches in offering original
responses to complex biological problems.
In this respect, although we are aware of the fact that

different large-scale simulation projects are still being actively
pursued, the effort of the scientific community has already
produced a large amount of results and data since the

Figure 1. (A) Structure of the SARS-CoV-2 spike protein. S1 = receptor binding subunit, S2 = membrane fusion subunit, RBD = receptor binding
domain, TA = transmembrane anchor, IT = intracellular tail. Inspired by ref 61. (B) Negative-stain electron microscopy image of an ACE2 receptor
bound to a SARS-CoV-2 spike protein (left) and diagram of the microscopy image (right). Reprinted with permission from ref 13. Copyright 2020
American Association for the Advancement of Science.
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beginning of the pandemic, especially in molecular simulations.
This offers a deeper vision of the viral basic mechanisms and
also suggests strategies for drug development or repurposing.
One of the aims of our Review is hence to provide an arena to
critically analyze and contextualize all of those efforts and also
resituate them in the perspective of the relationship with the
structural biology and pharmaceutical chemistry communities.

■ SARS-CoV-2 SPIKE GLYCOPROTEIN: STRUCTURE
AND DYNAMICS OF CORONAVIRUSES TROJAN
HORSE

Following the identification of the new pathogen as a bat
SARS-type betacoronavirus in January 2020,53 the structure of
the SARS-CoV-2 S protein complexed with the human zinc
peptidase ACE2 was rapidly resolved at the atomic level by
several research groups.13,14,19,54−57 Because of its fundamental
function, the S protein has become a promising target to fight
the SARS-CoV-2 infection. As shown in this section, the
ultimate goal is to use this knowledge to rationally design
vaccines, neutralizing antibodies, and antiviral agents with the
general purpose of blocking S-protein recognition and
preventing cellular infection.

Structure, Biology, and Dynamics of the Spike
Glycoprotein

Enveloped viruses such as SARS-CoV-2 need to fuse with the
host cellular membrane to gain entry into the cell.58 This step,
although thermodynamically favorable, has an important
energetic barrier and therefore is catalyzed by viral fusion
proteins expressed on the viral envelope, namely, the S
proteins. Such proteins also determine the viral host range, that
is, the spectrum of cells they can infect, the tissue tropism, and
the induction of the host immune response.20

The viral S transmembrane protein is a class I fusion protein
composed of three segments: an ectodomain, a single-pass
transmembrane anchor, and a short tail inside the virus (Figure
1A).13,20 The ectodomain is constituted by a trimer of S1
subunits, whose main function is to recognize the host
receptor, connected to the viral envelope through an S2
subunit, in charge of fusing the viral and host membranes.
Prior to the host recognition, the SARS-CoV-2 S protein is in a
metastable prefusion state.13 When a subunit S1 binds to a
host ACE2 receptor by means of the specific RBD region, the
prefusion trimer of S1 subunits is destabilized, inducing a
relatively large conformational change that leads the system to
the postfusion state.20 Afterward, the S1 subunits are released

while the S2 subunit produces the fusion of the cellular and
viral membranes, allowing the insertion of the viral genome
into the host cell.20 The RBD subunit oscillates between two
hinge-like conformations, namely, “up/open” and “down/
closed” (see Figure 1A).13 Whereas the former conformation is
more flexible59,60 and is able to bind the ACE2 receptor, in the
down state, the RBD is hidden or buried, is more rigid, and is
unable to recognize the host cell. Interestingly, it has been
reported that different from the former SARS-CoV, the down
state prevails in the SARS-CoV-2 RBD, contributing to hiding
the highly immunogenic RBD surface.61 It has been suggested
that this feature contributes to the evasion of the host immune
system surveillance, delaying the innate immune response and
giving rise to longer infective periods that increase the spread
of the contagion.61 The partial loss of the potential infectivity
of SARS-CoV-2 due to the preference of the RBD down
conformation is compensated by a higher affinity of the RBD
up state toward ACE213,62,63 and by a preactivation furin-
sensitive cleavage site, which is absent in the previous SARS-
CoV, that can facilitate the crossing of the interspecies
barrier.61 Henderson et al. have reported a fine control of these
up/down configurations and discussed the implications in the
development of vaccines and in the evolution of the SARS-
CoV-2 pathogenicity.64

Recently, Tian and Tao60 applied a combination of the
Markov state model, transition path theory, and machine
learning methodologies to analyze two independent MD
trajectories of the up and down states performed by Shaw
and coworkers.65 The authors characterized the transition
between the two SARS-CoV-2 RBD states and quantified their
relative prevalence, revealing a stunning 95.5% preference for
the down state, in agreement with experimental observations.61

Moreover, multiple paths involving different intermediates
leading from the down to the up state were identified and
quantified in terms of probability.60 The most probable
channel is illustrated in Figure 2A and has been estimated to
have a probability of the 23.7%. On the contrary, Gur et al.
have estimated the free-energy landscape connected within the
down-to-up transition, highlighting the role of salt bridges and
solvent accessibility and identifying an intermediate semiopen
state (see Figure 2B).66 The existence of the intermediate state
also participates in lowering the global free-energy barriers that
should be overcome during the transition. The energetic
penalty of the rate-limiting step has been estimated to be
∼3kBT. On the contrary, Xu and coworkers67 have analyzed
the distribution of the bending angle between the S1 and S2

Figure 2. (A) Most probable transition (23.7%) from a “down” to an “up” state in the SARS-CoV-2 RBD. The color code is blue (down) → red
(down) → green (up) → orange (up) → yellow (up). ACE2 is represented in gray. Reprinted with permission from ref 60. Copyright 2020
Informa UK Limited. (B) Energy landscape for the down → up transition of SARS-CoV-2 RBD. Reprinted with permission from ref 66. Copyright
2020 AIP Publishing.
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subunits, evidencing that an angle of at least 52.5° is required
to recognize ACE2.
Like in other viruses, such as HIV, the S protein of SARS-

CoV-2 is extensively glycosylated.68−70 Glycan shields play an
important role in protecting epitopes from antibody neutral-
ization, contributing to the eluding of the host immune
response and diminishing the efficiency of therapeutic agents.
Therefore, a detailed knowledge of the glycosylation sites and
their dynamics is a prerequisite to understand the infection and
to develop vaccines and other treatments. Grant et al.71 have
performed extended MD simulations to study the role of the S-
protein glycan shield in modulating the antigen exposition and
the accessibility of known antibodies to their corresponding
antigens. The authors estimate that the glycosylation shields ca.
40% of the surface susceptible to being recognized by
antibodies and highlight the RBD region of the S1 subunit
as the most accessible and largest antigenic surface of the
whole S protein. This result is coherent with the necessary
recognition of the ACE2 receptor by the RBD and the
consequent formation of the protein complex. Conversely, it
has been also suggested that the RBD domain might be O-
glycosilated at the Thr323 position,70,72 an occurrence that
could also have implications in the RBD/ACE2 recognition
mechanism and in the design of possible inhibitors of this
process. The precise role of glycosylation is, however, still
debated, which is also due to the inherent difficulties in the
experimental structural resolution, and further studies are
required to clarify this possibility. In this context, a full-length
model of the glycosylated SARS-CoV-2 S protein, in both the
open and closed states, was recently built by Amaro and
coworkers73 to interpret, at an atomistic level, the role of
glycans on the spike protein structure and dynamics using all-
atom MD simulations in the microsecond range.
Very recently, the structure−function relationship of the

fully glycosylated SARS-CoV-2 spike protein was unveiled by
the decomposition of unbiased MD simulations. In this way,
spike substructures were identified by an energy criterium to
possibly act as antibody binding sites.74

Molecular Basis of the Human ACE2 Recognition

As recently reported by Li and coworkers,61 the binding mode
of SARS-CoV-2 S to ACE2 is similar to the one of the SARS-
CoV S protein, even though the affinity of SARS-CoV-2 RBD
is higher.13,55,62,63,75,76

The superior affinity of the SARS-CoV-2 RBD for human
ACE2 compared with other related coronaviruses, including
SARS-CoV, was also confirmed by different molecular
modeling and simulation studies,63,67,77−83 whereas other

computational studies reported small or negligible differ-
ences,84−87 in contrast with the latest experimental find-
ings.13,19,55,61,62 The variability of the results can be explained,
in part, by differences in the specific MD setup, the choice of
the model systems, and the methods of analysis.
A great deal of attention has been devoted to the

identification of the key interactions that drive the RBD/
ACE2 recognition in both SARS-CoV and SARS-CoV-2
viruses. Coarse-grained88 and biased MD simulations89

indicate that the process occurs without any stable
intermediate. There is consensus over the fact that noncovalent
interactions, in particular, an extended network of multiple
hydrogen bonds, dominate the recognition. Other interactions
such as π-stacking or water/amino acid bridges have also been
deemed relevant.63,89 Garcıá-Iriepa et al. have performed all-
atom MD simulations on top of the recently resolved RBD/
ACE2 complex,14 quantifying the most important hydrogen
bonds that sustain the binding of the viral RBD to the ACE2
peptidase domain (PD).89 The most important protein−
protein interactions involve amino acids located at the α and β
interfaces of the PD, as shown in detail in Figure 3A. Whereas
this feature is conserved in both SARS-CoV and SARS-CoV-
2,19 Linial and coworkers demonstrated, by means of MD
simulations, substantial differences between SARS-CoV-2,
SARS-CoV, and the human coronavirus HCoV-NL63.84

Indeed, SARS-CoV-2 has the largest interaction area involving
the largest number of RBD/ACE2 contacts,81 whereas SARS-
CoV interacts through fewer amino acids but via stronger hot
spots, and HCoV-NL63 RBD recognizes a different region of
ACE2, as schematically shown in Figure 3B.84

Using MD simulations, Spinello et al.63 have built Pearson-
based matrices to evaluate the cross-correlation of the ACE2
residues with the RBD of SARS-CoV-2 and SARS-CoV,
respectively. A larger correlation for SARS-CoV-2 has been
found, and the pivotal role of some of its mutated residues
(e.g., Asn501 and Phe486) in increasing the strength of the
interaction between the two protein domains has been
evidenced.63 These results globally support the hypothesis of
the stronger binding of SARS-CoV-2 RBD to ACE2,
compensating the dominant down conformations of the S1
subunits of the S protein.61

SARS-CoV-2 Mutations and Animal ACE2 Receptors

SARS-CoV-2 mutations potentially leading to multiple viral
strains and hence to the possible emergence of more
pathogenic agents are also actively studied in detail using in
silico methodologies. By analyzing 791 viral genomes of
different SARS-CoV-2 strains, Alfaro and coworkers59 found

Figure 3. (A) Most important amino acids involved in the SARS-CoV-2 RBD/ACE2 PD complexation. Amino acids color code: red (negatively
charged), blue (positively charged), green (polar), cyan (neutral His ε-protonated). Reprinted from ref 89. (B) Schematic representations of the
ACE2 recognition by the RBD of different coronaviruses. Reprinted from ref 84. Copyright 2020 by the authors. Licensee MDPI, Basel,
Switzerland. Distributed under the terms and conditions of the Creative Commons Attribution (CCBY) license.
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that the S2 subunit fusion is much less affected by mutations
than the RBD. This fact seems to indicate that changes in the
protein units directly involved in the membrane fusion may
produce dysfunctional viruses that are unable to infect host
cells. Consequently, the S2 subunit should be considered as a
robust target for potential antiviral drugs given its high
conservation and low mutation tolerance.59 Notwithstanding,
certain residues of the RBD have also been deemed
indispensable for the efficient recognition of human
ACE2.79,90,91 On the contrary, Ou et al.77 have reported that
mutations in the RBD of SARS-CoV-2 observed from strains

with different geographical distributions actually enhance the
binding to ACE2, indicating that some RBD polymorphs might
even be more infectious and hence increase the diffusion of the
pandemic.
The variability of ACE2 and hence the ability of SARS-CoV-

2 to infect other species, cross the interspecies barrier, and
develop zoonosis92 has been computationally addressed by
simulating animal ACE2 proteins.92−96 Pach et al.94 have
studied several mutants of ACE2 belonging to cat, dog, ferret,
hamster, mouse, rat, and red squirrel by means of MD
simulations. The authors found molecular descriptors that

Figure 4. (A) Chemical structure of different flavonoids. (B) Relevant binding hot spots of different flavonoids with human ACE2 including
binding energies (kcal/mol) and histogram of the distances between the RBD and ACE2-PD centers of mass for (C) diosmin and (D) rutin.
Adapted from ref 89.
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could predict the susceptibility of these animals to being
infected, alerting that red squirrels could suffer from SARS-
CoV-2 infection. They also predicted that certain mutations in
dogs, rats, and mice could lead to effective SARS-CoV-2
infections. These studies are also extremely relevant in the aim
of finding or creating suitable animal models for experimenta-
tion.94 Furthermore, the possible influence of distinct ACE2
polymorphs in the infectivity and severity of COVID-19 has
been also reported.97−99

Rational Design of RBD/ACE2 Inhibitors

The capital function of the viral S protein and the advances
achieved in characterizing the molecular bases of the RBD/
ACE2 binding have motivated a considerable number of

experimental and computational studies, aiming at identifying
potential antiviral agents susceptible to inhibiting RBD/ACE2
recognition.100−102 A commonly followed strategy, necessary
also to cope with the societal and sanitary urgency induced by
the pandemic, is to repurpose already approved drugs with
known pharmacokinetics and toxicological profiles to possibly
obtain a significant antiviral effect.103−107

Several known antivirals, including the famous remdesivir,
have been or are currently being tested against SARS-CoV-
2,108 with some of them undergoing clinical trials.109−111

Whereas the mode of action usually consists of the inhibition
of the viral RNA polymerase, proteases, or neuramini-
dases,112−115 the anti-influenza drug Arbidol116 has recently

Figure 5. (A) Chemical structure of plicamycin (mithramycin). (B) Histogram of the distances between the centers of mass of the RBD and the
ACE2 PD measured from extended MD simulations. (C) Representative snapshots of the two plicamycin conformations in equilibrium at the
interface-β. (D) Potential of mean force (PMF) corresponding to the RBD/ACE2 complexation in the absence and in the presence of plicamycin.
(E) Snapshots of the complex in the presence of plicamycin at interface-β, at its free-energy minimum (bound), and as separated structures.
Reprinted from ref 89.
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been proposed as an inhibitor of the trimerization at the S2
subunit of the S protein.117 On the contrary, the efficacy of
antimalarial drugs chloroquine and hydroxychloroquine, which
have been compassionately administered in severe COVID-19
patients, is being intensely debated.118−121 Several modes of
action have been hypothesized, although the specific molecular
mechanism or mechanisms responsible for the in vitro
inhibition of SARS-CoV-2 remain unclear.122 The benefit/
risk balance of the combination of hydroxychloroquine with
the antibiotic azithromycin has been questioned as well.123−126

Fantini and coworkers127 used MD simulations to study the
molecular mechanism of action of these combinations of drugs.
The authors do not exclude possible synergistic effects:
whereas hydroxychloroquine is directed toward the ACE2
protein of the host cell, azithromycin interacts with the SARS-
CoV-2 S protein. The binding site, however, is located not at
the RBD but at a ganglioside binding site in the lateral regions
of the S protein.127,128 Other studies combining machine
learning and molecular docking did not point out remarkable
interactions between azithromycin and the viral S protein,
although other glycopeptide and macrolactam antibiotics
showed inhibition potential.129 Hence, no clear evidence
unequivocally identifying the molecular bases of the proposed
therapeutic protocol can, at the moment, be invoked.
Flavonoids are a broad family of natural compounds with

antioxidant, antibiotic, antinflammatory, anticancer, and
antiviral properties.130,131 Because of their known biological
properties, general safety, and broad availability, recent studies
have tackled their potential activity to block the SARS-CoV-2
RBD.132−136 Among the different flavonoids, hesperidin (see
the structure in Figure 4A), a compound present in citrus fruits
and other vegetables,137 has shown the ability to block the
RBD/ACE2 interaction (as well as the main viral protease),138

even motivating large-scale extraction processes for massive
production.139

Garcıá-Iriepa et al. have studied the potential ability of the
flavonoids diosmin, rutin, and naringin (Figure 4A) to inhibit
RBD/ACE2 recognition by means of both docking and all-
atom MD simulations.89 Molecular docking revealed three
relevant binding hot spots on the human ACE2 protein, the
loop and the PDs at interface α and interface β, with estimated
binding affinities of ∼6−9 kcal/mol (Figure 4B). The
destabilization of the RBD/ACE2 complex was highlighted
by MD simulations, in particular, by measuring the distance
between the center of mass of the RBD and ACE2 PD. Despite
the promising binding energies for diosmin, the MD results
indicate the poor destabilization of the RBD/ACE2 complex
for this flavonoid, given the limited distance distributions with
respect to the control (RBD/ACE2 complex in the absence of
drug; see Figure 4C). In contrast, the effect of rutin is more
pronounced, yielding larger RBD−ACE2 distances for all three
binding hot spots (Figure 4D).89 These results evidence that
even though docking studies are a first and necessary step for
the preliminary assessment of a potential drug activity against
SARS-CoV-2, further analyses, including extended MD
simulations, are required to validate and quantify the inhibition
potentiality.
A large number of antibiotics have also been tested by means

of docking studies against the viral RBD.140−143 Plicamycin
(also known as mithramycin; see the structure in Figure 5A) is
clinically used as an anticancer agent144,145 and shows a
promising interaction with ACE2, in particular, at interface β, a
region that is directly involved in the recognition of the viral
RBD (see Figures 4B and 5B,C).89

The RBD/ACE2 complex destabilization was further
quantified by determining the binding free energy using a
combination of metadynamics146 and adaptative biased force
(eABF),147 that is, the meta-eABF method.148,149

The results of Garcıá-Iriepa et al. revealed a 2 kcal/mol
destabilization of the RBD/ACE2 complex in the presence of

Figure 6. (A) Free-energy profile corresponding to the ACE2 folding. (B) Druggable pockets of the late intermediate state, colored in magenta.
(C) Chemical structures of mefloquine and hydroxychloroquine, which showed potential inhibition of the ACE2 late intermediate. (D) Snapshot of
mefloquine inside the binding pocket of the ACE2 late intermediate. Reprinted and adapted from ref 150. Distributed under the terms and
conditions of the Creative Commons Public Domain Dedication (CC0 1.0).
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the drug as compared with the nondrugged situation.
Furthermore, the RBD/ACE2 distance at the free-energy
minimum is increased by ∼5 Å with respect to the drug-free
system, supporting the mode of action of plicamycin as a
possible antiviral against SARS-CoV-2 (Figure 5D,E).89

An alternative strategy to inhibit the RBD/ACE2 binding
has been recently proposed by Boldrini et al., in this case
directed only toward the human receptor.150 The authors
propose to hamper the ACE2 maturation at a post-translational
level by designing inhibitors for specific folding intermediates.
As a result, the downregulation of ACE2 would limit the
number of receptors susceptible to binding the SARS-CoV-2 S
protein and stopping the infection. The free-energy profile
corresponding to the folding process was computed through
biased MD simulations, revealing two intermediate conforma-
tions (early and late intermediates; see Figure 6A). Only the
late intermediate was found to be druggable, for which two
specific pockets were identified. A database of approved drugs
was tested to identify potential blockers of these two pockets
(Figure 6B). Among the 35 hits, the authors identified
mefloquine and hydroxychloroquine as compounds showing
possible anti-SARS-CoV-2 activity in vitro (Figures 6C,D).150

Despite the interest of this strategy for antiviral purposes, care
should be taken in examining the possible side effects due to
the decrease amount of active ACE2 receptors.
The design of oligopeptides based on ACE2 sequences and

able to bind to the RBD has been recently proposed to
selectively target the viral material.151,152 Oligopeptides present
several advantages with respect to traditional small drugs: (i)
They cover large surfaces of the binding hot spots through
multiple contacts, (ii) the interactions are based on protein−
protein recognition and therefore are highly specific, (iii)
because they are based on human ACE2 sequences, they are
unlikely to trigger unwanted immune responses, and (iv) they
can be potentially combined with nanoparticle carriers.153 By
using extended MD simulations, Han and Kraĺ151 have studied

four peptides based on the ACE2 PD (see Figure 7A−E),
analyzed their stabilities through the root-mean-square
deviation (RMSD) values (Figure 7F), and assessed their
ability to bind SARS-CoV-2 RBD by estimating the binding
energies (Figure 7G). The sequences were designed to mimic
several regions of ACE2, although the majority of crucial
amino acids (up to 15) necessary for the RBD recognition
belong to the α1-helix and are present in all prototypes.
Globally, all peptides showed very promising results, exhibiting
similar binding energies as compared with the full ACE2
PD.151 A similar peptide was modeled by Pentelute and
coworkers152 and synthesized using automated fast-flow
peptide synthesis, whereas its specific binding affinity toward
SARS-CoV-2 RBD was quantified experimentally through
biolayer interferometry. The peptide binds the viral RBD with
a low 49 nM affinity; several modifications that enhance the
binding capacity have, however, been proposed on the basis of
MD simulations.154,155

A strategy previously used against SARS-CoV relies on the
use of peptides to bind the S2 subunit.156 Oligopeptides
derived from the S2 heptad repeats 1 and 2 (HR1 and HR2,
respectively) have been proposed. HR1 and HR2 are known to
associate to form a six-helix bundle fusion core that is crucial to
allow the cellular/viral membrane fusion. Thus HR2 analogues
able to effectively bind HR1 structures would block the
membrane fusion and therefore halt viral infection. This
strategy has been recently assessed for SARS-CoV-2 by Ling
and coworkers.157 Indeed, MD simulations reveal that the
HR2-like peptides are able to bind HR1 with a free binding
energy of −33.4 kcal/mol. These results are also coherent with
the observed high conservation of the S2 genome between
SARS-CoV and SARS-CoV-2.
Using a computational model of the complex between the S-

protein of SARS-CoV-2 and the human ACE2 receptor, a
supercomputer-based molecular docking was recently per-
formed by Smith and Smith,158 revealing that 77 ligands bind

Figure 7. (A−E) Representation of inhibitors 1−4 and the control c (α1-helix shown in red) complexed with the SARS-CoV-2 RBD (blue). (F)
Analysis of the stabilities of 1−4 and c through the root-mean-square deviation (RMSD) values. (G) Analysis of the ability of 1−4 and c to bind
SARS-CoV-2 RBD by estimating the binding energies. Reprinted from ref 151.
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strongly to either the S-protein/ACE2 interface or the isolated
S protein.

■ SARS-CoV-2 PROTEASES

Although the SARS-CoV-2 genome is rather large, being
formed by an RNA strand of ca. 30 000 nucleobases, it encodes
a relatively low number of proteins, which can be divided into
structural and nonstructural proteins (Figure 8).159 Whereas
structural proteins are required to generate viral particles, 16
nonstructural proteins (Nsp1−16) are responsible for the
diverse virus functionalities, mainly focusing on replication and
survival in the host cell. SARS-CoV-2, such as other
betacoronaviruses, translates, once inside the host cell, two
overlapping polyproteins (pp1a and pp1ab) that are respon-
sible for encoding all nonstructural and structural proteins. The
latter evolve into mature virions inside intermediate compart-
ments formed by the host endoplasmic reticulum and the
Golgi apparatus before being excreted to the extracellular
region.160 The viral replication is initiated by the cleavage of
both pp1a and pp1ab polyproteins161,162 to generate all 16
nonstructural proteins.
Initially, two proteases encoded within the polyproteins

Nsp5, corresponding to 3-chymotrypsin-like protease
(3CLpro), and Nsp3, corresponding to papain-like protease
(PLpro)undergo autocleavage. Once generated, 3CLpro and
PLpro cleave the polyprotein, including RNA-dependent RNA
polymerase (RdRp), helicase (Hel), exonuclease (exoN),
endoribonuclease (NendoU), and an S-adenosyl-methionine-
dependent ribose 2′-O-methyltransferase (2′-O-MT). Because
of their positions within the polyprotein, PLpro is responsible

for the formation of Nsp1−3, whereas 3CLpro accounts for the
formation of the other Nsps (Nsp4−16).163
Although all structural and nonstructural proteins could be

of potential interest for drug repurposing (see, e.g., the
potential binding mechanism of remdesivir to RdRp)164 due to
their fundamental relevance in the viral replication process, the
following sections are dedicated to the modeling and
simulation of drugs that possibly inhibit 3CLpro and PLpro
functions. Furthermore, it is established that 3CLpro acts as a
homodimer, although only one of the monomers contains the
active binding site.165 On the contrary, PLpro, although
proposed by crystallography23 to be accessible in different
aggregation states, was shown to biologically act only as a
monomer.
3CLpro Structure, Domains, And Catalytic Active Site

As already mentioned, 3CLpro is responsible for the catalytic
cleavage of at least 11 polyprotein sites, whereas PLpro cleaves
only 3 of them (Figure 8). Because 3CLpro cleaves at more
sites than PLpro, the former has been the object of more
structural and computational studies and is a much better
characterized target for anticoronaviral agents.166−168

To rationalize the design of potential antiviral agents
targeting 3CLpro, it is essential to define the protease
structural details such as its catalytic active site, domains,
and quaternary structure. In this regard, SARS-CoV-2 3CLpro
significantly resembles the analogous SARS-CoV enzyme,
sharing a 96% sequence identity.24 The active 3CLpro
homodimer consists of two protomers, each of them composed
of fewer than 310 residues (Figure 9a). Each protomer can be
divided in three different domains (Figure 9b).165,167,169,170

The dimerization takes place via the interaction between the

Figure 8. SARS-CoV-2 genome structure, including structural and nonstructural proteins.

Figure 9. (a) 3CLpro crystal structure (PDB ID 6LU7). Protomers A and B are depicted in blue and purple, respectively. The inhibitor placed in
the binding pocket of each protomer is depicted in van der Waals representation and in yellow. (b) Representation of one protomer, highlighting its
three domains, the loop connecting domains II and III, and the N-finger.
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N-finger and domain II of the protomers and is essential to
ensure the catalytic activity.165,169,171 Indeed, the shape of the
substrate binding site is strongly influenced by the dimeriza-
tion. As for the catalytic site, it consists of a dyad composed of
His41 and Cys145 lying in the cleft between domains I and II
and bears strong similarities with the one described for the
3CLpro of SARS-CoV.165,167,169,170

Because of the well-characterized structure and its appeal as
drug target, numerous potential 3CLpro antiviral agents have
already been proposed.24,159,172−174 In this regard, docking
studies have been widely used to rapidly screen a large number
of lead compounds based on their affinity with the 3CLpro
binding pocket,175−181 whereas MD has mainly been
performed to confirm the stability of the selected docking
poses for each antiviral.175,182−185 Some simulation studies
have been reported that focus on rationalizing the drug−
3CLpro interactions by quantifying the strength of the binding
process via free-energy calculations.173,174,181,186,187

The most used173,181−183,188−190 3CLPro crystal structure is
the dimer complexed with an inhibitor and resolved by Jin et
al.191 (Figure 9a); the crystal structure of the apo form has
been recently released by Zhang et al.24

3CLpro Antivirals Screening through Molecular Docking

Molecular docking has become an increasingly important tool
to assist and stimulate drug discovery because it can model the
interaction between a small molecule and a protein at the
atomic level, allowing a fast and computationally cheap
prescreening of drug candidates. It also allows the prediction
of the ligand conformation as well as its position and
orientation within the binding sites (usually referred to as
the pose) and binding affinities. The first studies faced the
problem that the crystallographic structure of SARS-CoV-2
3CLpro was not available and hence relied on homology
modeling;175,176 the experimental resolution of the 3CLpro
structure boosted a huge increase in molecular docking
studies.176−180,192

When the binding site is known, selecting a reasonably small
docking box around the hot spot (i.e., focused docking)

reduces the computational time. However, other competitive
binding sites can be artificially neglected when using this
strategy. Focused docking has been used to perform the
structure-based virtual screening of a library of 1000 covalent
protease inhibitors and 16 United States Food and Drug
Administration (FDA)-approved protease inhibitors. Three
compounds, including paritaprevir and simeprevir (Figure 10),
were identified as potential 3CLpro inhibitors.179

The focused-docking approach has also been used by Peele
et al.178 to test 24 plant compounds with antiviral properties,
22 FDA-approved antiviral drugs, and 16 antimalarial drugs.
Lopinavir (an anti-HIV drug), amodiaquine (an antimalarial
drug), and theaflavin digallate (a plant-based phenol
derivative) were selected as potential SARS-CoV-2 therapeu-
tics (Figure 10) due to the good affinity for the active site of
3CLpro.178

Although the binding site of 3CLpro is known, blind-
docking approaches, targeting the whole protein, have also
been considered. In this regard, Yu et al.177 have studied the
possible interactions of ribavirin and remdesivir (antiviral
drugs), chloroquine (antimalarial), and luteolin (flavonoid)
with 3CLpro (Figure 10). Luteolin was found to bind the
SARS-CoV-2 3CLpro with high affinity, occupying the same
binding site as the standard N3 inhibitor. Chloroquine was also
found to stably bind 3CLPro, suggesting that protease
inhibition could represent a secondary mechanism of action
of this potential drug.122 Gonzaĺez-Paz et al.192 performed a
blind-docking study to predict the binding of the B1a and B1b
forms of the wide-range antiparasitic drug ivermectin (Figure
10) to 3CLpro, suggesting that ivermectin B1a binds with a
higher affinity than ivermectin B1b. Lobo-Galo et al.180 used a
multiscale approach in which blind docking was first used to
pinpoint the principal potential binding cavities, most often
corresponding to the active site, and this region was
subsequently selected for further focused docking. The authors
screened thiol-reacting FDA-approved drugs including capto-
pril (antihypertensive drug) and found that disulfiram, used to
treat chronic alcoholism, has promising antiviral properties
(Figure 10). Macchiagodena et al.181 have applied an

Figure 10. Chemical structure of commercial drugs used as potential inhibitors of the SARS-CoV-2 main protease 3CLpro.
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interesting computational strategy that includes the combina-
tion of molecular docking and ligand generative adversarial
network (LIGANN) methods to generate new ligands that
match the shape and the chemical characteristics of the binding
pocket, thus resulting in a de novo drug design. On the basis of
molecular docking calculations, five noncommercially available
compounds have been identified that exhibit the highest
binding affinity toward 3CLpro (Figure 11).
On the one hand, both focused- and blind-docking

calculations can be followed by MD simulations (see the
next section) or by binding free-energy calculations to further
refine the relevance of the docked poses. The latter strategy
was adopted for carfilzomib (an approved anticancer drug
acting as a proteasome inhibitor) in the interaction with
3CLpro, in which the binding free energy of the most relevant
docking pose was found to be −13.8 kcal/mol.143

On the other hand, instead of preselecting molecular ligand
structures based on the biological function or chemical
intuition, docking methods can be applied as an extensive
virtual screening tool, scanning up to 1.3 billion compounds, as
was performed in the identification of potential 3CLpro
inhibitors.193,194

Molecular Dynamics Simulations to Evaluate the Potential
Activity of 3CLpro Antivirals

In addition to the screening provided by docking, further
studies including dynamic sampling are essential to evaluate
the favorable drug−3CLpro interactions and their stability
along the simulation time. Indeed, MD studies were performed
to first assess the molecular bases of the SARS-CoV-2 3CLpro
catalytic function, including the impact of the enzyme
dimerization195 and the definition of the ligand anchor site
within its pocket.183

Different families of drugs targeting 3CLpro have been
studied through dynamics simulation approaches with mainly
two aims: (i) identifying the most promising antiviral drugs
based on their interaction with 3CLpro, belonging to families
of compounds whose inhibition activity against SARS-CoV-2
has not yet been proved, and (ii) rationalizing the interaction
patterns and possibly the mechanisms of action for agents
whose anti-SARS-CoV-2 activity has already been proposed.
The first approach has mainly concerned studies based on

drugs with significant activity against other viruses. Examples
include the natural phytochemicals α-ketoamide(11r), baicalin,
cyanidine 3-glucoside, glabridin, and hypericin.196−199 A
comprehensive MD study of rutin (see Figure 4A) has also
been performed to understand its interaction inside the
3CLpro binding pocket, allowing the proposition of rutin
analogues with an enhanced interaction.187 Regarding natural
products, marine compounds have also been proposed as
3CLpro inhibitors and have been studied through modeling
approaches, hence identifying the derivatives with the most
favorable and stable interactions.184 Apart from natural
products, other research groups have focused on FDA-
approved antimicrobial drugs (such as viomycin) or other
already known drugs (such as carfilzomib, eravacycline,
valrubicin, lopinavir, elbasvir, streptomycin, and oftasceine,
among others) to showcase, thanks to MD simulations, those
with the highest potential.188

Regarding the works focused on investigating the 3CLpro
inhibitors that already show promising experimental results
against SARS-CoV-2, the combination of experimental data
and modeling results allows us to determine the binding
mechanism and the specific interactions that enhance the
stability of the drug inside the 3CLpro pocket. For instance,
entecavir and nelfinavir revealed their structural differences and
the concomitant influence on the binding affinity and stability
inside the 3CLpro pocket,183 showing that the physical−
chemical knowledge derived from simulation studies is quite
valuable for future proposals of drugs or derivatives. Another
example is the work of Sk et al.,186 in which, taking advantage
of the available crystal structures of 3CLpro in the interaction
with two inhibitors (α-ketoamide and Z31792168), the
authors disentangled through MD simulations the molecular
origin (electrostatic, van der Waals, polar, or nonpolar
interactions) of the binding mode providing structural stability
to the drug−protein complex.186

Most of the published studies making use of MD simulations
evaluate the stability of the initial binding poses through the
analysis of: (i) the RMSD of both the 3CLpro and the drug,
(ii) the root-mean-square fluctuation (RMSF), and (iii) the
radius of gyration (Rg). These three descriptors are essential in
evaluating the pose stability, as the RMSD determines the

Figure 11. Chemical structure of noncommercial compounds used as potential inhibitors of the SARS-CoV-2 main protease 3CLpro.181
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structural stability, the RMSF reveals the drug effect on the
system flexibility and fluctuations, and Rg is indicative of the
compactness of the global structure (refs 143, 173, 175, 184,
185, 187, 188, 190, and 200). In addition, more specific
criteria, such as the development of particular hydrogen bonds
and hydrophobic interactions, are crucial to discriminate
between potential or not efficient drugs because they
ultimately determine the position of the drug with respect to
the 3CLpro. Indeed, to show inhibitory activity, the ligand
should be firmly placed inside the binding pocket, lay close to
the catalytic dyad, and possibly interact with the S1, S2, and S4
units, as shown in Figure 12.183,184,186−188

For instance, Huynh et al.183 revealed that the clinically
approved entecavir drifts from the starting docking pose to a
novel stable location (Figure 13b). In the initial conformation,
the drug establishes hydrogen bonds with residues Thr26,
His41, and Gly143 (Figure 13b), whereas in the final

conformation, the drug keeps the interaction with His41 but
establishes two novel hydrogen-bonds with Glu166 and Ala189
(Figure 13b). As a matter of fact, the final drug location
corresponds to a secondary pose already obtained by the
docking study. This work constitutes a glaring example of the
fact that the stability of the docking poses should be, when
possible, confirmed by MD simulations because the explicit
consideration of the solvent and the inherent protein flexibility,
as well as the time evolution, could influence the interactions
between the protein and the drug, changing the rank order of
the docking poses.
Another example is the work published by Mahanta et al.

focused on the study of some FDA-approved drugs for antiviral
repurposing.188 In the case of viomycin, the analysis of the
hydrogen-bond interactions within the 3CLpro binding site
reveals that the drug moves deeply inside the binding pocket,
reaching a quite stable position and developing robust
interactions at the end of the MD simulation. The comparison
of the hydrogen-bond interactions of viomycin placed at the
bottom of the pocket with the ones observed for the already
reported reference N3 demonstrates that the binding of
viomycin is significantly stronger.
To better quantify the precise positioning of the drug in the

binding pocket and the balance of noncovalent interactions
leading to its stability, different analyses can be performed. In
particular, the position of the drug and its extension inside the
cavity can be analyzed through the evaluation of solvent-
accessible surface area (SASA) and, based on this concept,
through the contact area between the drug and the 3CLpro
binding pocket. As described by Huynh et al.,183 the
comparison of the contact area computed along the MD
simulation for two different drugs allowed us to conclude that
one of them does not completely fill the 3CLpro binding
pocket due to its small size, hence indicating a weaker
interaction. In other cases, the calculation of the SASA along
the MD simulation has allowed differentiation of the expansion
or the shrinking of 3CLpro when binding to different
drugs.182,186,200

Huynh et al. studied the behavior of rutin (Figure 4A) as a
possible 3CLpro inhibitor.187 After analyzing the MD
simulation, it was concluded that hydrophobic interactions
between the drug and binding site, essential for drug
stabilization, were missing for rutin due to the large number
of hydroxyl groups. The authors used this knowledge to design
a more hydrophobic analogue of rutin, in which two methyl
groups replaced two hydroxyl groups in each sugar moiety.
This analogue showed much stronger hydrophobic interactions
with the binding site, placing the drug deeply into the 3CLpro
pocket.
When performing molecular simulations involving many

different drugs, the principal component analysis (PCA) is
useful to classify the compounds in different groups depending
on the evolution of the drug−protein interaction along the
simulation time.182,186 For instance, the PCA based on the MD
simulation of five phytochemicals revealed that the three most
stable drugs (α-ketoamide(11r), cyanidin 3-glucoside, and
baicalin) share similar dynamic and interaction patterns inside
the 3CLpro binding site.182

Going beyond equilibrium MD, free-energy methods can be
used to obtain the binding free energy of the drug−protein
complex. However, free-energy methods are diverse, and, as
usual, high accuracy is invariably accompanied by a high
computational cost. As an example, Sk et al.186 have estimated

Figure 12. 3CLpro binding site defined by the S1, S2, and S4 units.
The catalytic dyad composed of His41 and Cys145 is also depicted.

Figure 13. (a) Green points depict the center of mass of the drug
during the MD simulation. Hydrogen bonds between the drug and
the 3CLpro binding pocket for (b) the starting structure (most stable
docking pose) and (c) the pose after MD simulation. Figure adapted
from ref 183.
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the binding free energy of 3CLpro with two drugs (α-
ketoamide and Z31792168), resorting to the highly approxi-
mated but computationally inexpensive molecular mechanics
Poisson−Boltzmann surface area (MM-PBSA)201−208 strategy.
The decomposition of the total free energy in its different
energetic components increases the details of the description.
By analyzing the results presented in Figure 14a, the authors
concluded that the binding is mostly driven by van der Waals
(ΔEVdW) and electrostatic (ΔEelec) interactions and nonpolar
solvation free energy (ΔGnp), indicating ΔEVdW as the leading
contribution. Conversely, the polar solvation free energy
(ΔGpol) and the configurational entropy (−TΔS) destabilize
the interaction.
The authors pushed the analysis to understand the

contribution of some specific amino acids on the binding
free energy by using the molecular mechanics/generalized
Born surface area (MM-GBSA) approach,209−213 which
provides a per-residue decomposition of the binding free
energy. Their results (Figure 14b,c) evidence that for α-
ketoamide, the number of residues significantly contributing to
the binding free energy is larger than that for Z31792168,
which is in line with the more negative total binding free
energy computed for the former drug (Figure 14a). Similar
binding free-energy analyses have been reported by Wang et
al.,143 in this case focusing on neutral and charged clinically

approved drugs, such as carfilzomib, lopinavir, elbasvir, and
streptomycin, among others, finally selecting carfilzomib as the
most efficient inhibitor.
MD simulations coupled to a regression model correlating

the binding energy and molecular descriptors have also been
proposed to establish the 3CLpro-inhibiting capabilities of the
long-debated chloroquine and hydroxychloroquine drugs. The
interactions with some active-site residues (Cys145, His41)
show that aminoquinoline analogs should result in more
suitable choices.214

Hybrid Quantum Mechanics/Molecular Mechanics Studies
of 3CLpro

If the chemical reactivity plays an important role in protein−
substrate systems, as is the case for catalytic activity, then the
region of the molecular system undergoing chemical reactions
must be described by quantum mechanics (QM) methods,
surrounded by the rest of the macromolecular environment,
treated by molecular mechanics (MM), to get insights into the
reaction free-energy profile. This results in the so-called QM/
MM approaches, which have been widely adopted with
different flavors in biochemistry and biology in the last several
years.215,216

In the context of the properties of SARS-CoV-2 3CLpro,
QM/MM studies revealed the possibility to discriminate
between reactive and nonreactive enzyme−substrate com-

Figure 14. (a) Total binding free energy (ΔGbind) and the van der Waals (ΔEVdW), electrostatic (ΔEelec) interactions, polar solvation free energy
(ΔGpol), nonpolar solvation free energy (ΔGnp), and the configurational entropy (−TΔS) components for both drugs under study. (b)
Contribution of each residue to the total binding free energy for both drugs, α-ketoamide and Z31792168, in the left and right panels, respectively.
Figure adapted with permission from ref 186. Copyright 2020 Informa UK Limited.
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plexes.217 Also, these multiscale simulation methods allowed it
to be firmly established that the free-energy landscape is
associated not only with the substrate binding but also, more
importantly, with different steps of the proteolysis reaction, as
described by the corresponding transition states.218 Moreover,
this helped in elucidating how SARS-CoV-2 3CLpro differs in
the mechanism of action compared with other cysteine
proteases.219

Papain-like Protease Catalytic Site and Ubiquitin-like
Domains: A Multifunctional Protein

The papain-like protease (PLpro) is recognized as an attractive
target for antivirals,23 although it is much less studied as
compared with 3CLpro. Like 3CLpro, PLpro is primarily a
cysteine protease (Figure 15c). PLpro recognizes the
tetrapeptide Leu-X-Gly-Gly, a motif that is found at the Nsp
1/2, Nsp 2/3, and Nsp 3/4 borders.220,221 Even though PLpro
and 3CLpro share the same primary function, some in vitro
studies have outlined that PLpro has two additional proteolytic
functions: the removal of ubiquitin (Ub) and the removal of a
Ub-like protein named interferon-stimulated gene product 15
(ISG15).161,162,222−224 These two additional functions are
available due to the presence of two Ub and Ub-like binding
subsites on the protein surface (SUb1 and SUb2 in Figure
15b,d). Hence, the PLpro function is not only restricted to the
initiation of the viral replication process through the cysteine
protease catalytic activity, as deubiquitinating and deISGylat-
ing activities also compete with the response of the immune
system.225−227 Indeed, the infected host cell can stimulate,
through ubiquitination and ISGylation, the production of
interferon-stimulated gene products as cytokines and chemo-
kines, known for their antiviral properties.228,229 Indeed,
ISGylation can fight the virus through the sequestration and
degradation of viral proteins.230−232 Hence, the activity of
PLpro can substantially reduce the secondary immune
response, conferring to SARS-type viruses an additional
survival mechanism.
Structurally, PLpro offers some advantages for the in silico

design of anti-SARS-CoV-2 drugs. This enzyme is active as a
monomer, and hence no information on aggregation states is
required. Moreover, a monomer implies a reduced number of

atoms compared with a dimer or a trimer, allowing longer
simulation times to be reached, which are usually required to
efficiently sample flexible protein structures and their
interactions with the proposed drugs. Also, the presence of
three different binding domains as possible antiviral targets
(the cysteine protease active site, SUb1 and SUb2) makes
PLpro a highly attractive multifunctional target.
Despite these favorable characteristics, some challenges need

to be faced when proposing PLpro inhibitory mechanisms:
The protease substrate is composed of a conventional catalytic
triad (Cys112−His273−Asp287)23 that is partially solvent-
exposed, with side chains hampering any contact with the
catalytic triad. Indeed, a nearby gate has to be accessed by the
polypeptide undergoing catalytic cleavage, identified as Leu-X-
Gly-Gly subsites (Figure 15a). On the basis of the prescreening
of a library of >50 000 compounds, also followed by synthetic
optimization, it was indeed found that drugs can be designed
to close such a gate by inducing a loop closure that shuts down
catalysis at the active site.233

SUb1 and SUb2 binding subsites are much less studied and
hence are less characterized. Therefore, a deeper under-
standing of these additional PLpro proteolytic functions is
envisaged to improve the specificity of the inhibitor design.
From a functional point of view, whereas the deubiquitinating
activity is more established, the deISGylating activity is not
completely understood,234,235 although its effects on the
immune response during a viral infection are documented.236

From a structural point of view, when looking at the SARS-
CoV-2 PLpro’s X-ray structure, a majority of hydrophobic
exposed side chains can be identified at both the SUb1 and
SUb2 surfaces. Similar to the previous SARS-CoV PLpro, the
presence of SUb1 as a C-terminal domain and SUb2 as a N-
terminal domain is confirmed, with both domains being distant
from the catalytic site and both being active for deubiquiti-
nation and deISGylation.222 The flexibility and thus specificity
of SUb1 and SUb2 subdomains was demonstrated in mouse
hepatitis virus (MHV) PLpro by altering the binding of Ub
and ISG15 through the change of a single amino acid (Asp to
Ala), in turn leading to pathogenic modifications.234−236

Comparing the pp1ab polyprotein of SARS-CoV and SARS-

Figure 15. (a) Papain-like protease (PLpro, PDB ID: 6W9C). The structures of (b) SUb1, in blue, (c) the active site, in red, and (d) SUb2, in
yellow, are highlighted.
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CoV-2, a moderate 83% sequence similarity is observed in the
PLpro region, hence raising the question of whether SARS-
CoV PLpro antivirals can be directly used to inhibit SARS-
CoV-2 PLpro. In more detail, focusing on SUb1, differences in
six amino acids are found (SARS-CoV residues in paren-
theses), Ser170(Thr), Tyr171(His), Tyr216(Leu), Gln195-
(Lys), Thr225(Val), and Lys232(Gln), suggesting electrostatic
and steric modifications.163

PLpro Inhibitors of the Catalytic Active Site

The vast majority of the in silico search for potential antivirals
against the action of PLpro is dedicated to the inhibition of the
catalytic active site. This is mainly due to the fact that 3CLpro
and PLpro share the same basic features of a cysteine protease.
Hence, the same antiviral compound could, in principle,
interact with the same type of protein subdomain. Never-
theless, we know that 3CLpro and PLpro have different
inhibiting subsites as entry gates for the cleavable polypeptides,
so this represents a challenging goal. From a methodological
point of view, such multitarget studies were usually performed
by applying molecular-docking techniques followed, in most of
the cases, by virtual screening based on the calculated binding
energy. By using these approaches, luteolin was proposed to
bind with high affinity to 3CLpro (ca. −5.5 kcal/mol) and
even more to PLpro (ca. −7.0 kcal/mol) due to the formation,
in the latter case, of three hydrogen bonds with Asn180,
Arg105, and Phe185.177

Evidently, the low computational cost offered by docking
can be of high interest when comparing a large set of ligands,
including compounds proposed by experimentalists or
previously used to treat other infections. For example, Hosseini
et al. proposed a set of promising inhibitors showing a possibly
stronger effect with respect to the known and highly debated
remdesivir, lopinavir, and ritonavir (acting against
3CLpro).237,238 The authors previewed a higher inhibition
effect by docking PLpro with paritaprevir, glecaprevir,
velpatasvir, amaryl, trypan blue, raltegravir, ledipasvir, and
simeprevir (all of them within a really narrow 0.5 kcal/mol
energy difference). This long list also shows how docking
techniques are proficient for proposing alternative compounds,
although they lack in the identification of a clearly emerging
lead compound. A similar approach was employed by Wu et
al., considering an even larger set of drugs,239 divided
according to their use: Ribavirin, valganciclovir, and thymidine
(antiviral drugs); chloramphenicol, cefamandole, and tigecy-
cline (antibacterial drugs); chlorphenesin carbamate (muscle

relaxant drug); and levodropropizine (antitussive drug) were
all found to have high binding affinity to PLpro.
In a similar study, the focus was instead placed on the

different activities of the drugs, and the most suitable target
was finally proposed depending on the type of interaction with
the protease.240 In this case, ritonavir, lopinavir, and darunavir
(anti-HIV drugs) were considered, and it was finally suggested
that darunavir should be more selective for recognizing PLpro
instead of 3CLpro. Nevertheless, additional docking studies
suggest that darunavir could also be a suitable choice to bind
3CLpro,241,242 highlighting the relevance of this particular anti-
HIV drug as a potential anti-COVID-19 clinical drug.
Different from molecular docking, bioinformatic criteria,

using network proximity analyses of drug targets, can help to
identify candidate molecules, also including potential drug
combinations, via the exploration of not only one target but
also the complete human interactome. As an example, it was
proposed that a combination of mercaptopurine and melatonin
can constitute a combination therapy for SARS-CoV-2 by
targeting PLpro, ACE2, c-Jun signaling, and anti-inflammatory
pathways in a synergistic way.240

On the opposite side of the spectrum, to have high-value
chemical insights about reliable potential antivirals, it is
necessary to increase the complexity of the molecular modeling
technique. MM-GBSA was used by Huang et al. to assess the
interaction of omeprazole, methicillin, and tolazamide with
PLpro.243 Omeprazole was proposed as the best candidate, as
strong interactions in inhibiting the Leu-X-Gly-Gly region were
identified (Figure 16a). In particular, a synergy between polar
and hydrophobic interactions was highlighted: hydrogen bonds
with Ser212, Glu214, and Lys217 and π stacking of
omeprazole’s phenyl group with Tyr213 (Figure 16b).
The same MM-GBSA method was also performed on a

different set of drugs, and it was found that elbasvir binds
stably to RdRp, Hel, and PLpro.244

Definitively much more accurate, from a physicochemical
point of view, are fully atomistic enhanced sampling non-
equilibrium simulations such as alchemical transformations,
which were employed to measure the dissociation constant of
hydroxychloroquine from 3CLpro, PLpro, and RdRp. It was
concluded that the drug could act as a mild inhibitor for all
three targets and especially for PLpro.245 The proposed drug
interacts with the Leu-X-Gly-Gly inhibition region close to the
catalytic site. In more detail, the chosen computational
approach is based on the Hamiltonian replica exchange

Figure 16. (a) Omeprazole, methicillin, and tolazamide PLpro binding site. (b) Insights into the interactions between PLpro and omeprazole.
Reprinted from ref 243. Distributed under the terms and conditions of the Creative Commons Attribution (CCBY) license.
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method (HREM) coupled to nonequilibrium alchemical MD
simulations (i.e., HREM/NE methodology).246,247

PLpro Inhibitors of the Ubiquitin-like Domains

Very few studies focus on the possible inhibition of SUb1 and
SUb2 domains, which also happen to be the PLpro region
showing the largest sequence differences when comparing
SARS-CoV and SARS-CoV-2, hence increasing the difficulty of
the task. Some structural insights of the interaction of SARS-
CoV-2 PLpro with Lys48-linked diubiquitin (Lys48-Ub2) and
ISG15 were proposed by MD studies.248 Through extensive
simulations (1 μs), it was found that mISG15 binds more
tightly to the same PLpro subsite than Lys48-Ub2. On the basis
of this result, the authors proposed GRL-0617 to be the
inhibitor, which was already identified as a noncovalent
inhibitor of PLpro in previous SARS viruses.248 This
assumption was based on the observation that the conserved
Tyr268 could bind to GRL-0617, as in previously identified
PLpros, blocking the entry of the ISG15 C-terminus while
approaching the subsite. Interestingly, GRL-0617 does not
inhibit PLpro’s involved in Middle East respiratory syndrome
(MERS) infections because Tyr268 is replaced by a Thr
residue.

■ OTHER SARS-CoV-2 TARGETS

In addition to the previously mentioned SARS-CoV-2 targets,
common to diverse coronaviruses, four other biomolecular
targets have been proposed to inhibit SARS-CoV-2. These are
(i) the SUD,25,26,239,249−252 (ii) the RdRp,15,16,239,253,254 (iii)
the Hel,239,255,256 and (iv) the N-terminal RNA binding
domain of the nucleocapsid protein.257,258 Interestingly, the
SUD, RdRp, and Hel all belong to coronavirus nonstructural
proteins. Apart from the molecular-docking approaches dealing
with RdRp244,253,259−261 and Hel,239 little interest has been
dedicated to MD simulations,256 and hence we expect those
targets to become the objects of further studies.
A different role can be assigned to the SUD, which is able to

interact with oligo(G) nucleic acids of the host, like G-
quadruplexes, to hamper the defensive response of the host,
thus favoring viral infection of human cells.25,250,251 Moreover,
the SUD has recently been reported to promote the
stabilization of the E3 ubiquitin ligase RCHY1, which degrades
the antiviral factor p53.252

The key role of the SUD in coronavirus activity has
motivated Hognon et al.262 to study its binding with a RNA G-
quadruplex to explain the role of the noncanonical nucleic acid
structure in the dimerization process. The investigation was
performed using a combination of equilibrium and enhanced
sampling classic MD simulations together with the evaluation
of the 2D free-energy profile (Figure 17).262 Two stable
interaction modes between the SUD and a model RNA G-
quadruplex have been evidenced, in which the oligonucleotide
resides either at the interface between the SUD units (dimeric
mode, Figure 17b) or close to one of the monomers
(monomeric mode, Figure 17c). The 2D free-energy profile
has shown not only that the dimeric mode is slightly favored,
leading to a binding free energy of ∼6 kcal/mol, but also that
the presence of the RNA avoids the opening of the SUD units
to lead to an open inactive conformation (Figure 17d). Overall,
these results highlight the importance of the G-quadruplex
interaction to stabilize the dimeric conformation of SUD and
pave the way for the rational design of efficient therapeutic

agents aiming at perturbing this interaction, hence enhancing
the host defenses against the virus.

■ CONCLUSIONS
Molecular modeling and simulation techniques have achieved a
high degree of maturity that allows their use to answer key
biological questions, especially concerning rational drug design
development. This assumption has been proven particularly
true in the case of the global fight against the COVID-19
pandemic. Indeed, modeling and simulation have comple-
mented experimental studies, offering a clear picture of the
molecular bases of the main SARS-CoV-2 protein functions
and highlighting possible targets to reach their inhibition. The
use of multiscale modeling, in which the level of theory used is
carefully tailored to the physical−chemical property that
should be determined and which can be progressively
increased, has allowed large libraries of existing compounds
to be screened. This combined approach is fundamental in
speeding up the quest for efficient antiviral treatments that are
effectively capable of counteracting the high SARS-CoV-2
transmissibility. Furthermore, key protein targets may be
considered, related to either to the cell infection (S protein) or
the viral material maturation (proteases). The role of other
nonstructural proteins and, in particular, their effect on eluding
the host immune response, can also be efficiently tackled by
molecular modeling and simulation techniques. If molecular
docking was largely popular and mainstream for drug-design
purposes, then the necessity to include long-time-scale MD
simulations, also coupled to enhanced sampling techniques to
obtain free-energy profiles, would have proven its fundamental
role.
In the present Review, we have focused on classical-based

molecular simulations. However, QM or QM/MM approaches
are expected to be of great utility in providing information on

Figure 17. (a) 2D free-energy profile for the interaction between a
SUD dimer (SUDA, SUDB) and an RNA G4 structure, including (b)
dimeric and (c) monomeric binding modes. (d) SUD conformation.
Reprinted from ref 262.
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the specific chemical mechanisms of the protease enzymes or
in the development of covalent-based inhibitors. Bioinformatic
procedures were also considered for their capacity to estimate
multi-target-based or synergic therapeutic protocols. The
computational techniques reviewed here are therefore crucial
actors of the fight that the scientific community has undertaken
against SARS-CoV-2, especially when applied in tight
collaboration with structural, molecular, and cellular biology
researchers. This has been made possible by the great
advancement in the methodological development experienced
in the last several years, which has allowed us to treat complex
systems and come closer to the real biological conditions while
maintaining an atomistic resolution. It has also been facilitated
by the mobilization of the computer centers of many countries
and research agencies, which has provided an unprecedented
computational power to the effort. With this Review, we have
aimed at collecting and rationalizing the huge amount of data
produced. Because the field is extremely dynamic and
constantly evolving, the completeness of this Review cannot
be granted; however, we are confident that we have identified
some of the most important and relevant studies from either a
methodological or an applicative point of view. Clearly, in
answering the call against SARS-CoV-2, molecular modeling
and simulation have demonstrated once more their status and
their role as a fundamental and complementary tool to
preview, analyze, and rationalize complex biological phenom-
ena happening in complex environments. As such, they have
reinforced their key position in the scientific panorama and in
their capacity to tackle fundamental societal issues.
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Antonio Franceś-Monerris − Universite ́ de Lorraine and
CNRS, LPCT UMR 7019, F-54000 Nancy, France;
Departament de Quiḿica Fiśica, Universitat de Valeǹcia, 46100
Burjassot, Spain; orcid.org/0000-0001-8232-4989;
Email: antonio.frances@uv.es

Giampaolo Barone − Department of Biological, Chemical and
Pharmaceutical Sciences and Technologies, Universita ̀ degli
Studi di Palermo, 90128 Palermo, Italy; orcid.org/0000-
0001-8773-2359; Email: giampaolo.barone@unipa.it

Marco Marazzi − Department of Analytical Chemistry, Physical
Chemistry and Chemical Engineering and Chemical Research
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