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The traditional Chinese herbal formula Shenmai-Yin (SY) and nifedipine have both been

used to treat patients with cardiovascular disorders. Nifedipine is primarily oxidized by

cytochrome P450 (CYP) 3A. The oxidation and pharmacokinetics of nifedipine were studied

in rats in vitro and in vivo to illustrate the interaction of SY with nifedipine. Schisandrol A,

schisandrin A and schisandrin B were identified as the main lignans in SY. In the study

in vitro, the ethanolic extract of SY was used due to the solubility and the extract inhibited

nifedipine oxidation (NFO) activity in a time-dependent manner. Among lignans, schi-

sandrin B caused the most potent inhibition. According to the time-dependent inhibition

behavior, rats were treated with SY 1 h before nifedipine administration. After oral treat-

ment with 1.9 g/kg SY, nifedipine clearance decreased by 34% and half-life increased by

142%. SY treatment decreased hepatic NFO activity by 49%. Compared to the change

caused by ketoconazole, the SY-mediated reduction of nifedipine clearance was moderate.

These findings demonstrate that SY causes a time-dependent inhibition of NFO and

schisandrin B contributes to the inhibition. The decreased nifedipine clearance by SY in

rats warrants further human study to examine the clinical impact of this decrease.

Copyright © 2018, Food and Drug Administration, Taiwan. Published by Elsevier Taiwan
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1. Introduction

Herb-drug interactions that occur via the modulation of cy-

tochrome P450 (CYP)-catalyzed drug oxidation are of

increasing concern during the use of herbal remedies [1,2].

The calcium channel blocker, nifedipine, is currently used for

the treatment of various cardiovascular disorders, including

hypertension and angina. Exposure to a high level of nifedi-

pine may cause cardiovascular side effects, such as headache

and the elongation of the QT interval during the electrical

cycle of the heart. Ginkgo biloba leaf extract increased the

mean maximal plasma concentration (Cmax) of nifedipine by

27% and the duration and severity of nifedipine-induced

headache in participants [3]. Nifedipine is rapidly and

almost completely absorbed from the gastrointestinal tract,

but undergoes extensive hepatic first-pass metabolism,

resulting in an absolute bioavailability of 40e50% in humans

[4]. Nifedipine is primarily oxidized by human CYP3A4 and its

rat homolog, CYP3A1, to generate the inactive pyridine

metabolite, dehydronifedipine [5,6]. The hydroxylated me-

tabolites of dehydronifedipine can be further metabolized by

UDP-glucuronosyltransferase (UGT) to form glucuronides

[7,8]. CYP3A is themain hepatic CYP subfamily in humans and

experimental rodents [9]. In addition to nifedipine, CYP3A

catalyzes structurally diverse substrates including erythro-

mycin, midazolam and testosterone. Differences have been

found in the responses of human CYP3A4-catalyzed oxida-

tions to the effectors, such as a-naphthoflavone [10]. In re-

combinant CYP3A4 system, a-naphthoflavone stimulated 17b-

estradiol 2-hydroxylation, but inhibited testosterone 6b-

hydroxylation.

The oral decoction, Shenmai-Yin (SY), is a prescription

commonly used for the treatment of coronary atherosclerosis

in traditional Chinese medical care in Asia [11,12]. SY is pre-

pared from three herbal medicines, Radix ginseng (Panax

ginseng), Radix ophiopogonis (Ophiopogon japonicus), and the

ripe fruits of Schisandra chinensis. The injectable Shenmai

(“Shenmai injection”, SI), which is developed from SY or

Shendong Yin, is prepared from extracts of Radix ginseng and

Radix ophiopogonis [12e14]. SI reduced midazolam 4-

hydroxylation activity, but stimulated midazolam 1ʹ-hydrox-

ylation activity in assay systems employing recombinant

human CYP3A4 and rat and human liver microsomes [12]. SI

inhibited midazolam 4-hydroxylation activity with a mixed

type of competitive pattern [14]. Intraperitoneal administra-

tion of SI to rats decreased the clearance of midazolam, while

the area under the plasma concentration versus time curve

(AUC) for 4-hydroxymidazolam was decreased and the AUC

for 1ʹ-hydroxymidazolam was increased [12]. These reports

suggested the bifunctional influence of SI on midazolam hy-

droxylations [15]. It was unclear whether SI affected the

metabolism of other important CYP3A drug substrates, such

as nifedipine. The oral effects of SY on the metabolism of

CYP3A substrates have not been explored previously.

Time-dependent CYP inhibitors are oxidized by a CYP to

generate an active metabolite, which irreversibly binds to the

apoprotein or heme of CYP, leading to functional inactivation

[16]. The inhibition of CYP activity shows time-dependence on

the NADPH-fortified oxidation of the inhibitor. Unlike the
competitive inhibition of midazolam 4-hydroxylation by SI

[14], our findings first demonstrate that SY extract inhibits

NFO activity in a time-dependent manner in this report. Guo

et al. [17] reported that the extract of Angelica dahurica

inhibited human liver microsomal testosterone 6b-hydroxyl-

ation activity (CYP3A activity) in a time-dependentmanner. In

rats, a 1-h (h) pre-treatment with A. dahurica extract increased

the Cmax of a CYP3A substrate diazepam whereas the change

in clearance remained unclear [18]. Thus, to examine the

herb-drug interaction, rats were treated with SY for 1 h prior

to nifedipine administration in the pharmacokinetic study.

Ketoconazole is a CYP3A substrate and a competitive inhibitor

of humanCYP3A4 [19] andUGT [20], andwas therefore used as

a control for comparison.
2. Materials and methods

2.1. SY, chemicals and solvents

The pharmaceutical product SY (powdered remedy) was

purchased as powdered remedy from Sun Ten pharmaceu-

tical company (Sun Ten Pharmaceutical Co., Ltd., New Taipei

City, Taiwan) that use GoodManufacturing Practices. Glucose-

6-phosphate, glucose-6-phosphate dehydrogenase, nicotin-

amide adenine dinucleotide phosphate (NADPþ) sodium salt

and nifedipine were purchased from SigmaeAldrich Co. (St.

Louis, MO, USA). Schisandrol A, schisandrin A, and schisan-

drin B were purchased from SunHank Technology Co., Ltd.

(Tainan, Taiwan) and their purities were >98%. Dehy-

dronifedipinewas synthesized and generously provided byDr.

F. Peter Guengerich (Nashville, TN, USA) [5]. Dimethyl sulf-

oxide (DMSO), methanol and dichloromethane were pur-

chased from Merck KGaA (Darmstadt, Germany). Ethanol

(95%) used for the preparation of SY extract was purchased

from Taiwan Sugar Corporation (Tainan City, Taiwan).

2.2. Preparation and chromatographic analysis of SY
ethanolic extract

Due to the presence of excipient, the pharmaceutical product

of SY had a low solubility in DMSO and water. Ethanolic

extract of SY was prepared for the in vitro study. SY powdered

remedy (45 g) were extracted with 300 ml of distilled ethanol

for 48 h on an orbital shaker (75 rpm, room temperature),

filtered and concentrated under reduced pressure at 40 �C
using a rotary evaporator (BÜCHI Labortechnik GmbH, Essen,

Germany). The ethanolic extract was lyophilized (extraction

yield: 19% (w/w)) and stored at �20 �C before being used in the

inhibition study in vitro. To establish the method of chro-

matographic analysis, the SY powdered remedy (1 g) was

extracted with 20 ml of 50% methanol (sonication for 30 min)

and the filtrate was analyzed using an ultra-performance

liquid chromatography (UPLC) system (Acquity, Waters Co.,

MA, USA) equipped with a photodiode array detector and a

Thermo Syncronis C18 column (100 � 2.1 mm, 1.7 mm). Sepa-

ration was performed at a column temperature of 35 �C and a

stepwise gradient of acetonitrile (A) and water (B) was con-

ducted as follows: 0e3min: 2e40% A; 3e6min: 40e55% A; 55%

A for 4 min; 10e12 min: 55e70% A; 12e14 min: 70e80% A;
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14e16 min: 80e100% A. Absorbance at 254 nm was detected.

Lignans were identified based on their retention time and

spectra, which were compared with the standards. The SY

ethanolic extract was dissolved in methanol and subjected to

UPLC analysis. Contents of lignans in the SY methanolic and

ethanolic extracts were determined.

2.3. Animal treatment, microsomal preparation and
activity determination

Male SpragueeDawley rats (6 weeks old, weight 225e250 g)

were purchased from BioLASCO Taiwan Co., Ltd. (Taipei,

Taiwan). Experimental protocol was reviewed and approved

by the Institutional Animal Care and Use Committee of the

National Research Institute of Chinese Medicine. Before

experimentation, rats were allowed at least a 1-week accli-

mation period in the institutional animal quarters [21]. In

Taiwan, the SY powdered remedy is taken with water (in

suspension) in patients. SY remedy (ground and suspended in

water) was administered to rats using a gastrogavage and

livers were removed after 1-h SY treatment. Control group

was treated with the same dose of water. Livers were

immersed in 1.15% potassium chloride. After several changes

of the potassium chloride solution for reducing the blood

content, liverwetweightwasmeasured andmicrosomeswere

prepared as described previously [21]. Microsomal protein

concentration, CYP content, and activities of reduced NADPþ

(NADPH)-CYP reductase, NFO and UGT were determined [21].

To examine the influence of NADPH-dependent microsomal

oxidation on the SY extract (dissolved in DMSO)-mediated

inhibition, microsomes were pre-incubated with the extract

at 37 �C for the indicated time-period in the presence of a

NADPH-generating system [22]. The final DMSO concentration

was 0.5%. The reaction was then initiated by the addition of

nifedipine and an additional NADPH-generating system was

added to maintain the NADPH level during the NFO assay.

2.4. Pharmacokinetic study

In the kinetic study, experimental protocols involving animals

were reviewed and approved by the Institutional Animal Care

and Use Committee of the National Defense Medical Center,

Taipei. Before experimentation, rats were allowed at least a 1-

week acclimation period in the institutional animal quarters.

The human-equivalent dose of SY in rats was estimated to be

1.2e2.0 g/kg/day, based on a 50e60-kg person (daily dose:

12e16 g) and a body surface area ratio of 6.2 (Table 3 in the

Guidance for Industry, Estimating the Maximum Safe Starting

Dose in Initial Clinical Trials for Therapeutics in Adult Healthy

Volunteers, US Department of Health and Human Services,

FDA, Center for Drug Evaluation and Research, 2005). All the

treatment groups in vivo received nifedipine at the same dose

of 3 mg/kg with a vehicle of 50% polyethylene glycol (PEG) 400

(v/v). In the SY treated groups, ratswere pre-dosedwith 0.95 or

1.9 g/kg SY using a gastrogavage 1 h prior to nifedipine

administration. Due to the CYP3A inhibition, ketoconazole

was acted as a positive control [19] and orally co-administered

with nifedipine to the rats at the dose of 30 mg/kg. The rats

were anesthetized by isoflurane and cannulated with a tail

vein catheter for blood sampling. Blood samples (0.25 ml in
heparinized tubes) were collected at time 0 (pre-dose; blank),

5, 15, 30, 60, 90, 120, 180, 240, and 360 min after nifedipine

administration and 0.25 ml of 0.9% saline was infused back

into the rats to maintain their body fluid volume. Plasma

samples were prepared, protected from light, and stored at

�80 �C until analysis. Livers were removed after blood sam-

pling and microsomal activity was determined as described

above.

2.5. Plasma sample preparation

A simple liquid-liquid extraction was applied for nifedipine

and dehydronifedipine extraction from plasma samples. A

100-ml aliquot of rat plasma was spiked with 50 ml of 3 mg/ml

diazepam (internal standard) and then completelymixedwith

2 ml of n-hexane:dichloromethane (7:3). After centrifuging at

3000� g for 10 min, the upper organic phase was collected and

evaporated to dryness at 40 �C under a stream of nitrogen. The

residue was dissolved in 150 ml of 50% acetonitrile and 3 ml of

the sample solution was subjected to liquid

chromatographyetandem mass spectrometry (LCeMS/MS)

analysis.

2.6. Determination of plasma nifedipine and
dehydronifedipine concentrations

Plasma concentrations of nifedipine and dehydronifedipine

were determined using a LC-MS/MS system (Agilent Tech-

nologies 1200 series high performance liquid chromatography

(Boeblingen, Germany) equipped with a Biosystems-Sciex API

3000 series triple-quadrupole mass spectrometer (Foster City,

CA, USA) and an electronspray ionization (ESI) interface).

Chromatographic separation was carried out on a C18 column

(Waters Symmetry C18, 4.6 � 100 mm, 3.5 mm) using a mobile

phase composed of 20% A (2 mM ammonium formate and

0.1% formic acid in water) and 80% B (2 mM ammonium

formate and 0.1% formic acid in acetonitrile) at a flow rate of

0.35 ml/min. The column and autosampler were conditioned

at 40 �C and 10 �C, respectively. Acquisition for mass spec-

trometry was performed in positive electrospray ionization

mode and the transitions for precursors to the fragmentation

ion product are listed in Table 1. The ion-source temperature,

the ion spray voltage, and the dwell time were set at 450 �C,
5.5 kV, and 200 ms per channel, respectively. Data were pro-

cessed using Analyst 1.4.2 software (Applied Biosystems-

Sciex, Foster City, CA, USA). Control plasma spiked with

nifedipine and dehydronifedipine at the concentrations from

0.005 to 5 mg/ml were analyzed to establish the standard curve

for quantification. Assay validation including specificity,

selectivity, linearity, stability, recovery and matrix effects of

both analytes were conducted according to the Food and Drug

Administration (FDA) Guidance for Bioanalytical Method

Validation (2001). The lower limit of quantification (LLOQ) was

3.0 ng/ml in plasma.

2.7. Data and statistical analyses

The concentrations of inhibitors required for a 50% inhibition

of activity (IC50) were calculated by curve fitting (Grafit, Eri-

thacus Software Ltd., Staines, UK). The IC50 values for the

https://doi.org/10.1016/j.jfda.2018.10.005
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Table 1 e Multiple reaction monitoring transitions and fragmentation parameters for nifedipine, dehydronifedipine and
diazepam.

Analyte Precursor (m/z) Product (m/z) DP (V) FP (V) CEP (V) CE (eV) CXP (V) RT (min)

Nifedipine 347.0 315.2 36 150 10 36 10 3.40

Dehydronifedipine 345.2 284.3 50 200 10 39 9 3.45

Diazepam 285.1 154.0 55 250 5 36 10 4.27

Diazepamwas used as the internal standard for the chromatographic analysis. Chromatographic separation was carried out as described in the

methods. DP: declustering potential; FP: focusing potential; CEP: cell entrance potential; CE: collision energy; CXP: cell exit potential; RT:

retention time.

Table 2 e Precision and accuracy of intra-day validation of quantification of nifedipine and dehydronifedipine.

Expected concentration
(mg/ml)

Nifedipine Dehydronifedipine

Observed (mg/ml) RSD (%) Accuracy (%) Observed (mg/ml) RSD (%) Accuracy (%)

0.005 0.0053 ± 0.0001 1.9 106.0 0.0053 ± 0.0001 1.9 106.0

0.010 0.0094 ± 0.0004 4.2 94.0 0.0092 ± 0.0002 2.2 92.0

0.025 0.0238 ± 0.0009 3.8 95.2 0.0237 ± 0.0018 7.6 94.8

0.05 0.045 ± 0.001 2.2 90.0 0.046 ± 0.003 6.5 92.0

0.10 0.097 ± 0.002 2.1 97.0 0.095 ± 0.004 4.2 95.0

0.50 0.511 ± 0.013 2.5 102.2 0.496 ± 0.014 2.8 99.2

1.00 1.004 ± 0.094 9.4 100.4 1.053 ± 0.093 8.8 105.3

1.50 1.556 ± 0.025 1.6 103.7 1.556 ± 0.017 1.1 103.7

3.00 3.136 ± 0.097 3.1 104.5 3.116 ± 0.104 3.3 103.9

5.00 5.385 ± 0.184 3.4 107.7 5.408 ± 0.237 4.4 108.2

Rat plasma was spiked with 0.005e5.00 mg/ml nifedipine and dehydronifedipine. The peak area normalized by the area of internal standard had

good linear relationship with the concentrations of nifedipine and dehydronifedipine with the coefficients (r) of 0.9998 and 0.9999, respectively.

Data represent the mean ± SD of 5 determinations.

Table 3 e Precision and accuracy of inter-day validation of quantification of nifedipine and dehydronifedipine.

Expected concentration
(mg/ml)

Nifedipine Dehydronifedipine

Observed (mg/ml) RSD (%) Accuracy (%) Observed (mg/ml) RSD (%) Accuracy (%)

0.005 0.0052 ± 0.0001 1.9 104.0 0.0051 ± 0.0001 1.0 102.0

0.010 0.0097 ± 0.0001 1.0 97.0 0.0097 ± 0.0004 4.1 97.0

0.025 0.0236 ± 0.0011 4.7 94.4 0.0248 ± 0.0017 6.9 99.2

0.05 0.048 ± 0.003 6.3 96.0 0.047 ± 0.002 4.3 94.0

0.10 0.098 ± 0.002 2.0 98.0 0.096 ± 0.002 2.1 96.0

0.50 0.506 ± 0.026 5.1 101.2 0.499 ± 0.012 2.4 99.8

1.00 1.027 ± 0.028 2.7 102.7 0.996 ± 0.027 2.7 99.6

1.50 1.561 ± 0.034 2.2 104.1 1.560 ± 0.025 1.6 104.0

3.00 3.093 ± 0.151 4.9 103.1 3.140 ± 0.066 2.1 104.7

5.00 5.029 ± 0.199 4.0 100.6 5.153 ± 0.092 1.8 103.1

Data represent the mean ± SD of 5 determinations.
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extract-mediated inhibition was divided by the extraction

yield to generate the value expressed as mg SY remedy/ml.

The difference in microsomal CYP content after NADPH-

fortified pre-incubation with the ethanolic extract of SY

remedy was analyzed using a paired t-test. A non-

compartmental model (WinNonlin version 5.3, Pharsight

Corporation, Mountain View, CA, USA) was used for phar-

macokinetic analysis. The Cmax, time taken to reach the Cmax

(Tmax), AUC, half-life (t1/2), apparent volume of distribution

(Vd/F), and clearance (CL/F) were estimated. Differences be-

tween >2 sets of data were analyzed by one-way analysis of

variance followed by a post-hoc Dunnett's test (for the com-

parison with the control) using SPSS software (version 17.0,

SPSS Inc., Chicago, IL, USA). The differences in metabolic
ratios between the control and ketoconazole-treated rats were

analyzed using a Student's t-test. A p value < 0.05 was

considered statistically significant.
3. Results

3.1. Chromatographic analyses of SY extracts

The method for chromatographic analysis of SY has been

established using the filtrate obtained from the methanol

extraction of SY remedy. The chromatograms identified

lignans, schisandrol A, schisandrin A and schisandrin B, in this

methanolic extract (Fig. 1A), with spectral characteristics

https://doi.org/10.1016/j.jfda.2018.10.005
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(Fig. 1B, left panel) comparable to those of the purified stan-

dards (Fig. 1B, right panel). The ethanolic extract showed a

similar chromatographic profile (Fig. 1C). The linear ranges of

schisandrol A, schisandrin A and schisandrin B were 1.0e200

(r2 ¼ 0.9999), 1.0e200 (r2 ¼ 0.9999) and 0.5e200 (r2 ¼ 0.9996) mg/

ml, respectively. By using this chromatographic method,

quantitative determination of the lignans in SY remedy showed

that the lignan contents determined using the ethanolic

extraction (0.561 ± 0.006mg/g schisandrol A, 0.101 ± 0.001mg/g

schisandrin A, and 0.200 ± 0.003 mg/g schisandrin B) were

higher than those using methanol for extraction

(0.124 ± 0.005 mg/g schisandrol A, 0.0213 ± 0.0002 mg/g schi-

sandrin A, and 0.0254 ± 0.0016mg/g schisandrin B). In addition,

SY remedywas insoluble in either water or DMSO. Thus, the SY

remedy and its ethanolic extract were used in the following

in vivo and in vitro studies, respectively.

3.2. Effects of ketoconazole, SY ethanolic extract and
lignans on rat liver microsomal NFO activity

Ketoconazole inhibited NFO activity with an IC50 value of

1.73 ± 0.21 mg/ml (Fig. 2A). After NADPH-fortified pre-
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incubation, the IC50 value of ketoconazole increased to

3.50 ± 0.65 mg/ml, potentially due to the degradation of keto-

conazole (e.g. microsomal oxidation of ketoconazole). After

the pre-incubation of microsomes with SY extract, the IC50

value for SY extract-mediated inhibition of NFO was reduced

from >6.0 to 3.97 ± 0.46 mg powdered remedy/ml (Fig. 2B). To

examine the dependence on pre-incubation time,microsomes

were pre-incubated with SY extract for 5, 10, or 15min prior to

determining the NFO activity. The vehicle control retained

80%e96% activity after 5e15 min pre-incubations (Fig. 2C).

Without pre-incubation, SY extract (3 mg powdered remedy/

ml) caused a 27% decrease in NFO activity. After 5-, 10-, and

15-min pre-incubations, SY extract decreased NFO activity by

33 ± 10%, 41 ± 6%, and 49 ± 2% (mean ± SD), respectively. The

plot of natural logarithm (ln) values of the remaining activities

versus the pre-incubation time clearly showed that the ab-

solute value of the slope was increased in the presence of SY

extract. Pre-incubation with SY extract decreased the spec-

trally detected CYP content by 19 ± 5% (Fig. 2D). These results

revealed that SY-mediated inhibition was enhanced by pre-

metabolism, indicating the presence of one or more time-

dependent CYP3A inhibitors.
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Fig. 2 e Effects of NADPH-fortified pre-incubation with ketoconazole (A), SY extract (BeD) and lignans (E) on rat liver

microsomal NFO activity or CYP content in vitro. In panels (A) and (B), the activities were determined without (�) and with

(C) a 10-min NADPH-fortified pre-incubation of microsomes with ketoconazole or SY extract. In panel (C), NFO activity was

determined after the pre-incubation of microsomes with the vehicle (DMSO) or the SY extract (3 mg powdered remedy/ml)

for the indicated time-periods. Data represent the mean ± standard error of the mean (SEM) of three rats. Panel (D) shows

the reduction of spectrally determined CYP content in microsomes pre-incubated with or without SY ethanolic extract at a

concentration corresponding to 5 mg powdered remedy/ml for 15 min. The right and left panels show the changes of

representative CO-difference spectra and CYP contents (dot and dashed line) in microsomes of individual rats, respectively.

The bars show the mean ± SEM of 4 rats, *p < 0.05. In panel (E), microsomal NFO activity was determined after microsomes

were pre-incubated with increasing concentrations of schisandrin A or schisandrin B in the presence of NADPH for 10 min.

The results show the mean ± SEM of 3 rats.
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After NADPH-fortified pre-incubation of microsomes with

SY lignans for 10 min, schisandrin B appeared to cause the

most potent inhibition of NFO activity with an IC50 of

3.48 ± 0.43 mM (Fig. 2E). The pre-incubation with schisandrin A

caused a 48% decrease of NFO activity when its concentration

was increased to 100 mM. Microsomal NFO activity was not

decreased by schisandrol A at a concentration as high as

100 mM (data not shown). Among the main lignans identified

in SY, these results indicated that schisandrin B made the

main contribution to SY-mediated NFO inhibition.

3.3. Method validation of LC-MS/MS analyses of
nifedipine and dehydronifedipine in plasma

The study yielded a mean recovery greater than 83.5% for all

analytes. The 14-day (�80 �C) stabilities of nifedipine and
dehydronifedipine in plasma samples were 95.1e102.1% and

99.6e100.8%, respectively. Thus, plasma samples were

thawed only once and subjected to chromatographic analysis

within 3 days. The standard calibration curves had good

linearity over the concentration range (0.005e5 mg/ml) of

nifedipine and dehydronifedipine with the coefficients (r) of

0.9998 and 0.9999, respectively. In addition to the relative

matrix effects of all the analytes, which were less than 4.3%,

the absolute matrix effects including the internal standard

diazepam were quite limited since the peak area ratios of

standards in plasma to those in methanol were always higher

than 93.1%. The intra-day (Table 2) and inter-day (Table 3)

relative standard deviation (RSD) of the plasma analyses

spiked with increasing concentrations of nifedipine and

dehydronifedipine were 1.0e9.4% and 1.0e8.8%, respectively.

The accuracies of the determination of nifedipine and
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dehydronifedipine were 90.0e107.7% and 92.0e108.2%,

respectively.

3.4. Effects of ketoconazole and SY treatments on the
pharmacokinetics of nifedipine and dehydronifedipine in
rats

Ketoconazole co-treatment caused 3- to 6-fold increases in the

nifedipine t1/2 and AUC values (AUC0�t and AUC0�∞), a 68%

increase in the Cmax, and an 84% decrease in clearance (Table

4, Fig. 3). Ketoconazole increased the Cmax, AUC0�t, AUC0�∞,

and t1/2 parameters of dehydronifedipine by 3-, 4-, 13-, and 6-

fold, respectively. Ketoconazole significantly decreased the

Vd/F and clearance of dehydronifedipine by 50% and 89%,

respectively. The metabolic ratio of dehydronifedipine to

nifedipine was significantly decreased (a 48% decrease) by

ketoconazole at 5 min after nifedipine administration, but not

at time-points >15 min after nifedipine administration (Fig. 3,

inset). Acute treatmentwith 0.95 g/kg SY increased the Cmax of

nifedipine by 52% (Table 4; Fig. 3, upper panel). When the dose

was elevated to 1.9 g/kg, SY increased the t1/2 of nifedipine by

142% and decreased nifedipine clearance by 34%, whereas the

change of dehydronifedipine pharmacokinetics was minimal

(Fig. 3, lower panel). Results revealed that the clearance of

nifedipinewas significantly reduced in rats treatedwith a high

dose of SY remedy.

3.5. Effect of SY treatment on hepatic activities of
CYP3A and UGT in rats

Oral administration of 1.9 g/kg SY remedy for 1 h did not cause

a significant change of the ratio of liver to body weight (Fig. 4).

Consistent with the decrease in CYP content after pre-

incubation of microsomes with SY extract in vitro (Fig. 2D),

oral administration of SY remedy to rats decreased the spec-

trally (CO-difference spectrum) detected hepatic CYP content

in rats by 20% (Fig. 4). However, results of immunoblotting

analysis of microsomal CYP3A showed that acute SY
Table 4 e Effects of ketoconazole and SY remedy on the pharm
in rats.

Parameters Control Ketoconazole

Nifedipine

Cmax (mg/ml) 2.30 ± 0.19 3.69 ± 0

Tmax (h) 0.42 ± 0.05 0.85 ± 0

AUC0�t (h$mg/ml) 4.3 ± 0.3 13.5 ± 1

AUC0�∞ (h$mg/ml) 4.6 ± 0.3 29.5 ± 4

t1/2 (h) 1.2 ± 0.2 7.1 ± 1.

Vd/F (l/kg) 1.19 ± 0.21 1.02 ± 0

CL/F (l/h/kg) 0.68 ± 0.05 0.11 ± 0

Dehydronifedipine

Cmax (mg/ml) 0.04 ± 0.01 0.10 ± 0

Tmax (h) 0.70 ± 0.12 1.80 ± 0

AUC0�t (h$mg/ml) 0.12 ± 0.02 0.46 ± 0

AUC0�∞ (h$mg/ml) 0.14 ± 0.02 1.77 ± 0

t1/2 (h) 2.0 ± 0.1 12.3 ± 3

Vd/F (l/kg) 68.9 ± 9.0 34.3 ± 7

CL/F (l/h/kg) 23.7 ± 2.9 2.6 ± 1.

Rats were orally treated with 3 mg/kg nifedipine together with ketoconaz

rats in the ketoconazole-treated group and 6 rats in control and SY-treat
treatment did not decrease the immunoreactive protein level

(supporting information). The mean degradation half-life of

rat CYP3A2 was estimated to be 12e27 h [23]. The inactivated

CYP might keep immunoreactivity but was not spectrally

detected. The SY treatment caused a 49% decrease in hepatic

NFO activity without affecting the activities of NADPH-CYP

reductase (microsomal electron-transfer partner of CYP) and

UGT in rats. Results showed that hepatic CYP content andNFO

activity were decreased in rats treated with SY remedy.
4. Discussion

The aqueous extract of Schisandra fruit and a minor lignan in

S. chinensis, schisantherin A (gomisin C), caused a time-

dependent inhibition of human liver microsomal erythro-

mycin N-demethylation activity (mainly catalyzed by CYP3A4)

[24]. Themain S. chinensis lignans, including schisandrin A and

schisandrin B inhibited rat liver microsomal oxidation activity

toward midazolam in a time-dependent manner [25].

Although lignans generally had low water solubility, lignans

including schisandrins were identified in plasma samples of

rats treated with the pharmaceutical product or extract of S.

Chinese [26,27] and humans taking Wuzhi tablet [28]. The oral

bioavailability of schisandrol A in herbal extract (38e78%) was

higher than purified schisandrol A (16%) in rats [27]. Oral

administration of 8 and 16 mg/kg schisandrin B to rats

decreased midazolam 10-hydroxylation activity [29]. Schisan-

drins A and B increased the AUC0�24 and AUC0�∞ values of the

CYP3A substrate tacrolimus in rats [30]. Results of chromato-

graphic analysis revealed that schisandrins A and B were

retained after preparation of SY decoction, from which the

powdered remedy was made. Our findings provided the first

evidence that schisandrin B strongly inhibited rat liver

microsomal NFO activity with an IC50 value comparable to or

less than those for inhibiting human liver microsomal

oxidation activities toward testosterone and erythromycin

[24] when 10-min NADPH-fortified pre-incubation was
acokinetic parameters of nifedipine and dehydronifedipine

(30 mg/kg) SY (0.95 g/kg) SY (1.9 g/kg)

.40* 3.50 ± 0.34* 2.48 ± 0.11

.54 0.25 ± 0.00 0.33 ± 0.05

.6* 5.2 ± 0.36 5.3 ± 0.5

.2* 5.5 ± 0.34 7.1 ± 0.7

6* 1.7 ± 0.2 2.9 ± 0.5*

.13 1.32 ± 0.19 1.73 ± 0.26

.02* 0.56 ± 0.04 0.45 ± 0.06*

.02* 0.05 ± 0.01 0.04 ± 0.00

.55* 0.29 ± 0.05 0.58 ± 0.08

.11* 0.11 ± 0.01 0.13 ± 0.02

.53* 0.13 ± 0.02 0.24 ± 0.04

.9* 1.9 ± 0.5 4.8 ± 0.8

.4* 61.0 ± 13.3 89.7 ± 14.4

0* 24.3 ± 3.2 15.2 ± 3.3

ole or 1 h after SY treatment. Results represent the mean ± SEM of 5

ed groups. CL/F: apparent clearance. *, p < 0.05.
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Fig. 3 e Effects of ketoconazole and SY remedy on the pharmacokinetics of nifedipine and dehydronifedipine in rats.

Nifedipine (3 mg/kg) was administrated to rats together with ketoconazole (K, 30 mg/kg) or 1 h after receiving SY remedy.

Plasma nifedipine (upper panel) and dehydronifedipine (lower panel) concentrations were determined. The metabolic ratio

of plasma dehydronifedipine to nifedipine in control and ketoconazole-treated group are shown in the inset (*p < 0.05). The

results show the mean ± SEM of 5 rats in the ketoconazole-treated group and 6 rats in the control and SY-treated groups.
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performed. However, rat NFO activity was not inhibited by

100 mM schisandrol A and the inhibition by schisandrin A was

moderate. According to the content in SY and the potent NFO

inhibition, schisandrin B plays a primary role in the SY-

mediated NFO inhibition. In addition to schisandrin B, other

ingredients, including schisantherin A [24], flavonoids and

ophiopogonone A (in Radix ophiopogonis) [12], may also be

involved in NFO inhibition by SY. The interactions between

constituents of the component herbs did not eliminate the

inhibitory effect of SY on NFO.

Nifedipine is a poorly water-soluble drug with a water

solubility of 5.9 mg/ml at 25 �C [31]. Thus, PEG was commonly

used in the preparation of nifedipine solution for rat treat-

ment in pharmacokinetic studies. Results of our determina-

tion showed that control rats had a nifedipine half-life of

1.2 h, which was similar to previous reports that the half-life

of nifedipine after oral dosing was ranged from 0.5 to 1.2 h

when nifedipine was prepared using PEG [32e34]. The Tmax

was 0.25e0.47 h. However, compared to the results in rats

treated with nifedipine in PEG-containing solution, the ter-

minal half-life (9.7 h) and Tmax (0.71 h) of nifedipine were

longer when rats were treated with nifedipine suspended in

water (10 mg/ml) at an oral dose of 10 mg/kg [35]. Even that

the rat dose was 3.3-fold higher than the dose we used, the

Cmax and AUCinf of nifedipine were 49% and 129% of our

determinations, respectively. To our best knowledge, there

were four reports discussing the pharmacokinetics of dehy-

dronifedipine. In three of these reports, the AUC ratio of the
dehydronifedipine to nifedipine was 38% in rats treated with

nifedipine suspension (in water) [35e37] However, in the

other one report published by Han et al. [6], the AUC0�t ratio

of dehydronifedipine to nifedipine was 2.7 ± 0.3%, which was

identical to our result of 2.7 ± 0.5% in rats. When the nifed-

ipine suspension was administered to rats, the half-life of

dehydronifedipine was surprisingly long (15.7 h) [35]. This

long half-life may come from that the plasma concentration

slowly declined in the terminal elimination phase due to the

slow release and the prolonged absorption of nifedipine.

Consequently, the elimination half-life of dehydronifedipine

they predicted was longer than our observation (2.0 h) and

the AUCinf of dehydronifedipine might be overestimated

[35,37], leading to the high AUC ratio of dehydronifedipine to

nifedipine. In 1.9 g/kg SY-treated group, hepatic NFO activity

decreased, leading to the decreased clearance and prolonged

half-life of nifedipine. The pronounced change of plasma

nifedipine concentration primarily occurred in the elimina-

tion phase. Although the AUC0�∞ could be overestimated due

to that plasma nifedipine level decreased slowly and

remained high at 6 h after nifedipine administration, the

mean AUC0�t was increased by 23% without a statistical

significance. The mean AUC0�t ratio of nifedipine to nifedi-

pine was decreased by 11e25% after 0.95 and 1.9 g/kg SY

treatments. Plasma nifedipine levels in this high dose group

were significantly higher than the respective levels in control

rats at 4 and 6 h (elimination phase) after nifedipine

administration (p < 0.05).
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Fig. 4 e Effects of SY treatment on liver to body weight ratio, hepatic content of CYP and activities of NADPH-CYP reductase,

NFO, and UGT in rats. The SY remedy (1.9 g/kg) was administrated to rats for 1 h and thenmicrosomes were prepared for the

determinations as described in the methods. The results show the mean ± SEM of 5 rats. *p < 0.05.
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The inhibition of NFO activity by SY and its lignans can

contribute, at least in part, to the observed decrease in clear-

ance. Ishihara et al. [18] reported that the observed decrease in

hepatic NFO activity in 3- and 6-h A. dahurica extract-treated

rats was recovered after 12 h. Our findings revealed that the

decreased hepatic NFO activity in 1-h SY-treated rats was

restored after the last blood collection (6 h) in the pharmaco-

kinetic study of SY (1.9 g/kg)-treated rats (data not shown).

Compared to the large ketoconazole-induced decrease in

nifedipine clearance, the reduction caused by SY was mod-

erate. When the SY dose was reduced to 0.95 g/kg, the nifed-

ipine clearance was not different from that in the control

group. The underlying cause of the greater increase of Cmax in

the 0.95 g/kg SY-treated group than in the 1.9 g/kg SY-treated

group remains unclear. To confirm this unexpected result, we

have repeated the pharmacokinetic study and obtained the

same results. One of the possible causes is that the higher

dose of particulate SY remedy (in suspension) may cause

greater physical interferencewith the absorption rate of SY (or

nifedipine) in the gastrointestinal tract, leading to the reduc-

tion of the quick increase in Cmax of nifedipine in 1.9 g/kg SY-

treated group. After the absorption process, SY-treatment

decreased nifedipine clearance with dose-related manner.

Therewas little information about the influence of the density

or volume of granules in drug suspension on the drug-drug

interaction. Differences in the time-dependent changes of

plasma schisandrol A concentration have been reported in

rats treated with low and high doses of S. Chinese remedy [27].
At each sampling time within 5e45 min after the remedy

administration, themean level of plasma schisandrol A in 3 g/

kg S. Chinese remedy-treated rats was higher than the

respective level in 10 g/kg remedy-treated group, suggesting

the faster absorption after lower dose treatment and dose-

independence in the absorption phase [27]. However, the

mean Cmax level of schisandrol A (Tmax: ~ 3 h) in 10 g/kg

remedy-treated rats was higher than those with 3 g/kg treat-

ment. The Tmax of schisandrin B was about 4 h in S. Chinese

remedy-treated rats [26]. Although the pharmacokinetics of

lignans, such as schisandrin B, remained unclear in rats

treated with different doses of SY, the differential pharma-

cokinetic behaviors of a lignan in rats treated with low and

high doses of herbal extract could be one of the factors for the

significant increase in the Cmax of nifedipine (Tmax of nifedi-

pine: 0.42 h) by 0.95 g/kg SY treatment and the primary change

in the elimination phase (3e6 h) of nifedipine pharmacoki-

netics in rats treated with a high dose of 1.9 g/kg SY. Treat-

ment of rats with SY decreased the clearance and prolonged

the half-life of nifedipine in a dose-dependentmanner. On the

other hand, the antifungal agent posaconazole has been used

in suspension and is orally administered to patients. The

mean value of Cmax of posaconazole was 2-fold higher in

participants receiving oral suspension (40 mg/ml) at 200 mg 4

times daily than those at 400 mg twice daily for 7 days [38].

Although the daily dose was same, results of this report

revealed that treatment with a greater volume and less fre-

quency of posaconazole suspension generated a lower Cmax.
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The dosing process of suspension might be one of the influ-

encing factors in the pharmacokinetic interaction of drugs

and the suspension of herbal granules.

Ketoconazole co-treatment did not cause a great

decrease of the metabolic ratio of dehydronifedipine to

nifedipine due to that multiple enzymes (including UGT)

participate in the metabolism of dehydronifedipine and the

potent UGT inhibition by ketoconazole [20]. The inhibition

of UGT by ketoconazole can be one of the causes for the

significant increase in the AUC and t1/2 and decrease in

clearance of plasma dehydronifedipine in ketoconazole-

treated rats. For a potent CYP3A and UGT inhibitor, such

as ketoconazole, the plasma concentration of nifedipine can

be a better marker than the metabolic ratio of dehy-

dronifedipine/nifedipine for assessing CYP3A-mediated

drug interaction. Of the compounds present in the SY

component herbs, lignans of S. Chinese selectively inhibited

the activities of human UGT isoforms [39]. The Radix

ophiopogonis constituents, ophiopogonin D and Dʹ, have

also been reported to inhibit the activities of recombinant

human UGTs [40]. However, acute treatment of rats with SY

remedy did not change hepatic UGT activity. SY extract

exhibited weak inhibition of rat liver microsomal UGT ac-

tivity when p-nitrophenol was used as a substrate. The

decrease in UGT activity was 24 ± 3% when the extract

concentration was increased to a level corresponding to

6 mg SY remedy/ml in our assay. As a result, compared to

the changes caused by ketoconazole, the influence of SY on

the pharmacokinetics of dehydronifedipine was minimal in

rats.

In conclusion, the present study is the first to demonstrate

that ketoconazole decreases the clearances of both nifedipine

and dehydronifedipine in rats. The time-dependent inhibition

of NFO activity by SY in vitromight be one of themajor reasons

for the decreased clearance and prolonged half-life of nifedi-

pine in rats treated with SY 1 h prior to nifedipine adminis-

tration. Schisandrin B contributes at least in part to the NFO

inhibition by SY. Adverse effect might happen when SY was

taken 1 h before nifedipine administration. In another rat

study, repeated SY treatment also decreased nifedipine

clearance (unpublished results). Further human study is

warranted to assess the clinical relevance of the pharmaco-

kinetic interaction of SY with nifedipine.
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